// SPDX-License-Identifier: GPL-2.0 /* * Driver for Atmel QSPI Controller * * Copyright (C) 2015 Atmel Corporation * Copyright (C) 2018 Cryptera A/S * * Author: Cyrille Pitchen * Author: Piotr Bugalski * * This driver is based on drivers/mtd/spi-nor/fsl-quadspi.c from Freescale. */ #include #include #include #include #include #include #include #include #include #include #include #include /* QSPI register offsets */ #define QSPI_CR 0x0000 /* Control Register */ #define QSPI_MR 0x0004 /* Mode Register */ #define QSPI_RD 0x0008 /* Receive Data Register */ #define QSPI_TD 0x000c /* Transmit Data Register */ #define QSPI_SR 0x0010 /* Status Register */ #define QSPI_IER 0x0014 /* Interrupt Enable Register */ #define QSPI_IDR 0x0018 /* Interrupt Disable Register */ #define QSPI_IMR 0x001c /* Interrupt Mask Register */ #define QSPI_SCR 0x0020 /* Serial Clock Register */ #define QSPI_IAR 0x0030 /* Instruction Address Register */ #define QSPI_ICR 0x0034 /* Instruction Code Register */ #define QSPI_WICR 0x0034 /* Write Instruction Code Register */ #define QSPI_IFR 0x0038 /* Instruction Frame Register */ #define QSPI_RICR 0x003C /* Read Instruction Code Register */ #define QSPI_SMR 0x0040 /* Scrambling Mode Register */ #define QSPI_SKR 0x0044 /* Scrambling Key Register */ #define QSPI_WPMR 0x00E4 /* Write Protection Mode Register */ #define QSPI_WPSR 0x00E8 /* Write Protection Status Register */ #define QSPI_VERSION 0x00FC /* Version Register */ /* Bitfields in QSPI_CR (Control Register) */ #define QSPI_CR_QSPIEN BIT(0) #define QSPI_CR_QSPIDIS BIT(1) #define QSPI_CR_SWRST BIT(7) #define QSPI_CR_LASTXFER BIT(24) /* Bitfields in QSPI_MR (Mode Register) */ #define QSPI_MR_SMM BIT(0) #define QSPI_MR_LLB BIT(1) #define QSPI_MR_WDRBT BIT(2) #define QSPI_MR_SMRM BIT(3) #define QSPI_MR_CSMODE_MASK GENMASK(5, 4) #define QSPI_MR_CSMODE_NOT_RELOADED (0 << 4) #define QSPI_MR_CSMODE_LASTXFER (1 << 4) #define QSPI_MR_CSMODE_SYSTEMATICALLY (2 << 4) #define QSPI_MR_NBBITS_MASK GENMASK(11, 8) #define QSPI_MR_NBBITS(n) ((((n) - 8) << 8) & QSPI_MR_NBBITS_MASK) #define QSPI_MR_DLYBCT_MASK GENMASK(23, 16) #define QSPI_MR_DLYBCT(n) (((n) << 16) & QSPI_MR_DLYBCT_MASK) #define QSPI_MR_DLYCS_MASK GENMASK(31, 24) #define QSPI_MR_DLYCS(n) (((n) << 24) & QSPI_MR_DLYCS_MASK) /* Bitfields in QSPI_SR/QSPI_IER/QSPI_IDR/QSPI_IMR */ #define QSPI_SR_RDRF BIT(0) #define QSPI_SR_TDRE BIT(1) #define QSPI_SR_TXEMPTY BIT(2) #define QSPI_SR_OVRES BIT(3) #define QSPI_SR_CSR BIT(8) #define QSPI_SR_CSS BIT(9) #define QSPI_SR_INSTRE BIT(10) #define QSPI_SR_QSPIENS BIT(24) #define QSPI_SR_CMD_COMPLETED (QSPI_SR_INSTRE | QSPI_SR_CSR) /* Bitfields in QSPI_SCR (Serial Clock Register) */ #define QSPI_SCR_CPOL BIT(0) #define QSPI_SCR_CPHA BIT(1) #define QSPI_SCR_SCBR_MASK GENMASK(15, 8) #define QSPI_SCR_SCBR(n) (((n) << 8) & QSPI_SCR_SCBR_MASK) #define QSPI_SCR_DLYBS_MASK GENMASK(23, 16) #define QSPI_SCR_DLYBS(n) (((n) << 16) & QSPI_SCR_DLYBS_MASK) /* Bitfields in QSPI_ICR (Read/Write Instruction Code Register) */ #define QSPI_ICR_INST_MASK GENMASK(7, 0) #define QSPI_ICR_INST(inst) (((inst) << 0) & QSPI_ICR_INST_MASK) #define QSPI_ICR_OPT_MASK GENMASK(23, 16) #define QSPI_ICR_OPT(opt) (((opt) << 16) & QSPI_ICR_OPT_MASK) /* Bitfields in QSPI_IFR (Instruction Frame Register) */ #define QSPI_IFR_WIDTH_MASK GENMASK(2, 0) #define QSPI_IFR_WIDTH_SINGLE_BIT_SPI (0 << 0) #define QSPI_IFR_WIDTH_DUAL_OUTPUT (1 << 0) #define QSPI_IFR_WIDTH_QUAD_OUTPUT (2 << 0) #define QSPI_IFR_WIDTH_DUAL_IO (3 << 0) #define QSPI_IFR_WIDTH_QUAD_IO (4 << 0) #define QSPI_IFR_WIDTH_DUAL_CMD (5 << 0) #define QSPI_IFR_WIDTH_QUAD_CMD (6 << 0) #define QSPI_IFR_INSTEN BIT(4) #define QSPI_IFR_ADDREN BIT(5) #define QSPI_IFR_OPTEN BIT(6) #define QSPI_IFR_DATAEN BIT(7) #define QSPI_IFR_OPTL_MASK GENMASK(9, 8) #define QSPI_IFR_OPTL_1BIT (0 << 8) #define QSPI_IFR_OPTL_2BIT (1 << 8) #define QSPI_IFR_OPTL_4BIT (2 << 8) #define QSPI_IFR_OPTL_8BIT (3 << 8) #define QSPI_IFR_ADDRL BIT(10) #define QSPI_IFR_TFRTYP_MEM BIT(12) #define QSPI_IFR_SAMA5D2_WRITE_TRSFR BIT(13) #define QSPI_IFR_CRM BIT(14) #define QSPI_IFR_NBDUM_MASK GENMASK(20, 16) #define QSPI_IFR_NBDUM(n) (((n) << 16) & QSPI_IFR_NBDUM_MASK) #define QSPI_IFR_APBTFRTYP_READ BIT(24) /* Defined in SAM9X60 */ /* Bitfields in QSPI_SMR (Scrambling Mode Register) */ #define QSPI_SMR_SCREN BIT(0) #define QSPI_SMR_RVDIS BIT(1) /* Bitfields in QSPI_WPMR (Write Protection Mode Register) */ #define QSPI_WPMR_WPEN BIT(0) #define QSPI_WPMR_WPKEY_MASK GENMASK(31, 8) #define QSPI_WPMR_WPKEY(wpkey) (((wpkey) << 8) & QSPI_WPMR_WPKEY_MASK) /* Bitfields in QSPI_WPSR (Write Protection Status Register) */ #define QSPI_WPSR_WPVS BIT(0) #define QSPI_WPSR_WPVSRC_MASK GENMASK(15, 8) #define QSPI_WPSR_WPVSRC(src) (((src) << 8) & QSPI_WPSR_WPVSRC) struct atmel_qspi_caps { bool has_qspick; bool has_ricr; }; struct atmel_qspi { void __iomem *regs; void __iomem *mem; struct clk *pclk; struct clk *qspick; struct platform_device *pdev; const struct atmel_qspi_caps *caps; resource_size_t mmap_size; u32 pending; u32 mr; u32 scr; struct completion cmd_completion; }; struct atmel_qspi_mode { u8 cmd_buswidth; u8 addr_buswidth; u8 data_buswidth; u32 config; }; static const struct atmel_qspi_mode atmel_qspi_modes[] = { { 1, 1, 1, QSPI_IFR_WIDTH_SINGLE_BIT_SPI }, { 1, 1, 2, QSPI_IFR_WIDTH_DUAL_OUTPUT }, { 1, 1, 4, QSPI_IFR_WIDTH_QUAD_OUTPUT }, { 1, 2, 2, QSPI_IFR_WIDTH_DUAL_IO }, { 1, 4, 4, QSPI_IFR_WIDTH_QUAD_IO }, { 2, 2, 2, QSPI_IFR_WIDTH_DUAL_CMD }, { 4, 4, 4, QSPI_IFR_WIDTH_QUAD_CMD }, }; #ifdef VERBOSE_DEBUG static const char *atmel_qspi_reg_name(u32 offset, char *tmp, size_t sz) { switch (offset) { case QSPI_CR: return "CR"; case QSPI_MR: return "MR"; case QSPI_RD: return "RD"; case QSPI_TD: return "TD"; case QSPI_SR: return "SR"; case QSPI_IER: return "IER"; case QSPI_IDR: return "IDR"; case QSPI_IMR: return "IMR"; case QSPI_SCR: return "SCR"; case QSPI_IAR: return "IAR"; case QSPI_ICR: return "ICR/WICR"; case QSPI_IFR: return "IFR"; case QSPI_RICR: return "RICR"; case QSPI_SMR: return "SMR"; case QSPI_SKR: return "SKR"; case QSPI_WPMR: return "WPMR"; case QSPI_WPSR: return "WPSR"; case QSPI_VERSION: return "VERSION"; default: snprintf(tmp, sz, "0x%02x", offset); break; } return tmp; } #endif /* VERBOSE_DEBUG */ static u32 atmel_qspi_read(struct atmel_qspi *aq, u32 offset) { u32 value = readl_relaxed(aq->regs + offset); #ifdef VERBOSE_DEBUG char tmp[8]; dev_vdbg(&aq->pdev->dev, "read 0x%08x from %s\n", value, atmel_qspi_reg_name(offset, tmp, sizeof(tmp))); #endif /* VERBOSE_DEBUG */ return value; } static void atmel_qspi_write(u32 value, struct atmel_qspi *aq, u32 offset) { #ifdef VERBOSE_DEBUG char tmp[8]; dev_vdbg(&aq->pdev->dev, "write 0x%08x into %s\n", value, atmel_qspi_reg_name(offset, tmp, sizeof(tmp))); #endif /* VERBOSE_DEBUG */ writel_relaxed(value, aq->regs + offset); } static inline bool atmel_qspi_is_compatible(const struct spi_mem_op *op, const struct atmel_qspi_mode *mode) { if (op->cmd.buswidth != mode->cmd_buswidth) return false; if (op->addr.nbytes && op->addr.buswidth != mode->addr_buswidth) return false; if (op->data.nbytes && op->data.buswidth != mode->data_buswidth) return false; return true; } static int atmel_qspi_find_mode(const struct spi_mem_op *op) { u32 i; for (i = 0; i < ARRAY_SIZE(atmel_qspi_modes); i++) if (atmel_qspi_is_compatible(op, &atmel_qspi_modes[i])) return i; return -EOPNOTSUPP; } static bool atmel_qspi_supports_op(struct spi_mem *mem, const struct spi_mem_op *op) { if (!spi_mem_default_supports_op(mem, op)) return false; if (atmel_qspi_find_mode(op) < 0) return false; /* special case not supported by hardware */ if (op->addr.nbytes == 2 && op->cmd.buswidth != op->addr.buswidth && op->dummy.nbytes == 0) return false; return true; } static int atmel_qspi_set_cfg(struct atmel_qspi *aq, const struct spi_mem_op *op, u32 *offset) { u32 iar, icr, ifr; u32 dummy_cycles = 0; int mode; iar = 0; icr = QSPI_ICR_INST(op->cmd.opcode); ifr = QSPI_IFR_INSTEN; mode = atmel_qspi_find_mode(op); if (mode < 0) return mode; ifr |= atmel_qspi_modes[mode].config; if (op->dummy.nbytes) dummy_cycles = op->dummy.nbytes * 8 / op->dummy.buswidth; /* * The controller allows 24 and 32-bit addressing while NAND-flash * requires 16-bit long. Handling 8-bit long addresses is done using * the option field. For the 16-bit addresses, the workaround depends * of the number of requested dummy bits. If there are 8 or more dummy * cycles, the address is shifted and sent with the first dummy byte. * Otherwise opcode is disabled and the first byte of the address * contains the command opcode (works only if the opcode and address * use the same buswidth). The limitation is when the 16-bit address is * used without enough dummy cycles and the opcode is using a different * buswidth than the address. */ if (op->addr.buswidth) { switch (op->addr.nbytes) { case 0: break; case 1: ifr |= QSPI_IFR_OPTEN | QSPI_IFR_OPTL_8BIT; icr |= QSPI_ICR_OPT(op->addr.val & 0xff); break; case 2: if (dummy_cycles < 8 / op->addr.buswidth) { ifr &= ~QSPI_IFR_INSTEN; ifr |= QSPI_IFR_ADDREN; iar = (op->cmd.opcode << 16) | (op->addr.val & 0xffff); } else { ifr |= QSPI_IFR_ADDREN; iar = (op->addr.val << 8) & 0xffffff; dummy_cycles -= 8 / op->addr.buswidth; } break; case 3: ifr |= QSPI_IFR_ADDREN; iar = op->addr.val & 0xffffff; break; case 4: ifr |= QSPI_IFR_ADDREN | QSPI_IFR_ADDRL; iar = op->addr.val & 0x7ffffff; break; default: return -ENOTSUPP; } } /* offset of the data access in the QSPI memory space */ *offset = iar; /* Set number of dummy cycles */ if (dummy_cycles) ifr |= QSPI_IFR_NBDUM(dummy_cycles); /* Set data enable and data transfer type. */ if (op->data.nbytes) { ifr |= QSPI_IFR_DATAEN; if (op->addr.nbytes) ifr |= QSPI_IFR_TFRTYP_MEM; } /* * If the QSPI controller is set in regular SPI mode, set it in * Serial Memory Mode (SMM). */ if (!(aq->mr & QSPI_MR_SMM)) { aq->mr |= QSPI_MR_SMM; atmel_qspi_write(aq->mr, aq, QSPI_MR); } /* Clear pending interrupts */ (void)atmel_qspi_read(aq, QSPI_SR); /* Set QSPI Instruction Frame registers. */ if (op->addr.nbytes && !op->data.nbytes) atmel_qspi_write(iar, aq, QSPI_IAR); if (aq->caps->has_ricr) { if (op->data.dir == SPI_MEM_DATA_IN) atmel_qspi_write(icr, aq, QSPI_RICR); else atmel_qspi_write(icr, aq, QSPI_WICR); } else { if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT) ifr |= QSPI_IFR_SAMA5D2_WRITE_TRSFR; atmel_qspi_write(icr, aq, QSPI_ICR); } atmel_qspi_write(ifr, aq, QSPI_IFR); return 0; } static int atmel_qspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op) { struct atmel_qspi *aq = spi_controller_get_devdata(mem->spi->controller); u32 sr, offset; int err; /* * Check if the address exceeds the MMIO window size. An improvement * would be to add support for regular SPI mode and fall back to it * when the flash memories overrun the controller's memory space. */ if (op->addr.val + op->data.nbytes > aq->mmap_size) return -ENOTSUPP; err = pm_runtime_resume_and_get(&aq->pdev->dev); if (err < 0) return err; err = atmel_qspi_set_cfg(aq, op, &offset); if (err) goto pm_runtime_put; /* Skip to the final steps if there is no data */ if (op->data.nbytes) { /* Dummy read of QSPI_IFR to synchronize APB and AHB accesses */ (void)atmel_qspi_read(aq, QSPI_IFR); /* Send/Receive data */ if (op->data.dir == SPI_MEM_DATA_IN) memcpy_fromio(op->data.buf.in, aq->mem + offset, op->data.nbytes); else memcpy_toio(aq->mem + offset, op->data.buf.out, op->data.nbytes); /* Release the chip-select */ atmel_qspi_write(QSPI_CR_LASTXFER, aq, QSPI_CR); } /* Poll INSTRuction End status */ sr = atmel_qspi_read(aq, QSPI_SR); if ((sr & QSPI_SR_CMD_COMPLETED) == QSPI_SR_CMD_COMPLETED) goto pm_runtime_put; /* Wait for INSTRuction End interrupt */ reinit_completion(&aq->cmd_completion); aq->pending = sr & QSPI_SR_CMD_COMPLETED; atmel_qspi_write(QSPI_SR_CMD_COMPLETED, aq, QSPI_IER); if (!wait_for_completion_timeout(&aq->cmd_completion, msecs_to_jiffies(1000))) err = -ETIMEDOUT; atmel_qspi_write(QSPI_SR_CMD_COMPLETED, aq, QSPI_IDR); pm_runtime_put: pm_runtime_mark_last_busy(&aq->pdev->dev); pm_runtime_put_autosuspend(&aq->pdev->dev); return err; } static const char *atmel_qspi_get_name(struct spi_mem *spimem) { return dev_name(spimem->spi->dev.parent); } static const struct spi_controller_mem_ops atmel_qspi_mem_ops = { .supports_op = atmel_qspi_supports_op, .exec_op = atmel_qspi_exec_op, .get_name = atmel_qspi_get_name }; static int atmel_qspi_setup(struct spi_device *spi) { struct spi_controller *ctrl = spi->controller; struct atmel_qspi *aq = spi_controller_get_devdata(ctrl); unsigned long src_rate; u32 scbr; int ret; if (ctrl->busy) return -EBUSY; if (!spi->max_speed_hz) return -EINVAL; src_rate = clk_get_rate(aq->pclk); if (!src_rate) return -EINVAL; /* Compute the QSPI baudrate */ scbr = DIV_ROUND_UP(src_rate, spi->max_speed_hz); if (scbr > 0) scbr--; ret = pm_runtime_resume_and_get(ctrl->dev.parent); if (ret < 0) return ret; aq->scr &= ~QSPI_SCR_SCBR_MASK; aq->scr |= QSPI_SCR_SCBR(scbr); atmel_qspi_write(aq->scr, aq, QSPI_SCR); pm_runtime_mark_last_busy(ctrl->dev.parent); pm_runtime_put_autosuspend(ctrl->dev.parent); return 0; } static int atmel_qspi_set_cs_timing(struct spi_device *spi) { struct spi_controller *ctrl = spi->controller; struct atmel_qspi *aq = spi_controller_get_devdata(ctrl); unsigned long clk_rate; u32 cs_inactive; u32 cs_setup; u32 cs_hold; int delay; int ret; clk_rate = clk_get_rate(aq->pclk); if (!clk_rate) return -EINVAL; /* hold */ delay = spi_delay_to_ns(&spi->cs_hold, NULL); if (aq->mr & QSPI_MR_SMM) { if (delay > 0) dev_warn(&aq->pdev->dev, "Ignoring cs_hold, must be 0 in Serial Memory Mode.\n"); cs_hold = 0; } else { delay = spi_delay_to_ns(&spi->cs_hold, NULL); if (delay < 0) return delay; cs_hold = DIV_ROUND_UP((delay * DIV_ROUND_UP(clk_rate, 1000000)), 32000); } /* setup */ delay = spi_delay_to_ns(&spi->cs_setup, NULL); if (delay < 0) return delay; cs_setup = DIV_ROUND_UP((delay * DIV_ROUND_UP(clk_rate, 1000000)), 1000); /* inactive */ delay = spi_delay_to_ns(&spi->cs_inactive, NULL); if (delay < 0) return delay; cs_inactive = DIV_ROUND_UP((delay * DIV_ROUND_UP(clk_rate, 1000000)), 1000); ret = pm_runtime_resume_and_get(ctrl->dev.parent); if (ret < 0) return ret; aq->scr &= ~QSPI_SCR_DLYBS_MASK; aq->scr |= QSPI_SCR_DLYBS(cs_setup); atmel_qspi_write(aq->scr, aq, QSPI_SCR); aq->mr &= ~(QSPI_MR_DLYBCT_MASK | QSPI_MR_DLYCS_MASK); aq->mr |= QSPI_MR_DLYBCT(cs_hold) | QSPI_MR_DLYCS(cs_inactive); atmel_qspi_write(aq->mr, aq, QSPI_MR); pm_runtime_mark_last_busy(ctrl->dev.parent); pm_runtime_put_autosuspend(ctrl->dev.parent); return 0; } static void atmel_qspi_init(struct atmel_qspi *aq) { /* Reset the QSPI controller */ atmel_qspi_write(QSPI_CR_SWRST, aq, QSPI_CR); /* Set the QSPI controller by default in Serial Memory Mode */ aq->mr |= QSPI_MR_SMM; atmel_qspi_write(aq->mr, aq, QSPI_MR); /* Enable the QSPI controller */ atmel_qspi_write(QSPI_CR_QSPIEN, aq, QSPI_CR); } static irqreturn_t atmel_qspi_interrupt(int irq, void *dev_id) { struct atmel_qspi *aq = dev_id; u32 status, mask, pending; status = atmel_qspi_read(aq, QSPI_SR); mask = atmel_qspi_read(aq, QSPI_IMR); pending = status & mask; if (!pending) return IRQ_NONE; aq->pending |= pending; if ((aq->pending & QSPI_SR_CMD_COMPLETED) == QSPI_SR_CMD_COMPLETED) complete(&aq->cmd_completion); return IRQ_HANDLED; } static int atmel_qspi_probe(struct platform_device *pdev) { struct spi_controller *ctrl; struct atmel_qspi *aq; struct resource *res; int irq, err = 0; ctrl = devm_spi_alloc_host(&pdev->dev, sizeof(*aq)); if (!ctrl) return -ENOMEM; ctrl->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_TX_DUAL | SPI_TX_QUAD; ctrl->setup = atmel_qspi_setup; ctrl->set_cs_timing = atmel_qspi_set_cs_timing; ctrl->bus_num = -1; ctrl->mem_ops = &atmel_qspi_mem_ops; ctrl->num_chipselect = 1; ctrl->dev.of_node = pdev->dev.of_node; platform_set_drvdata(pdev, ctrl); aq = spi_controller_get_devdata(ctrl); init_completion(&aq->cmd_completion); aq->pdev = pdev; /* Map the registers */ aq->regs = devm_platform_ioremap_resource_byname(pdev, "qspi_base"); if (IS_ERR(aq->regs)) return dev_err_probe(&pdev->dev, PTR_ERR(aq->regs), "missing registers\n"); /* Map the AHB memory */ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qspi_mmap"); aq->mem = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(aq->mem)) return dev_err_probe(&pdev->dev, PTR_ERR(aq->mem), "missing AHB memory\n"); aq->mmap_size = resource_size(res); /* Get the peripheral clock */ aq->pclk = devm_clk_get(&pdev->dev, "pclk"); if (IS_ERR(aq->pclk)) aq->pclk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(aq->pclk)) return dev_err_probe(&pdev->dev, PTR_ERR(aq->pclk), "missing peripheral clock\n"); /* Enable the peripheral clock */ err = clk_prepare_enable(aq->pclk); if (err) return dev_err_probe(&pdev->dev, err, "failed to enable the peripheral clock\n"); aq->caps = of_device_get_match_data(&pdev->dev); if (!aq->caps) { dev_err(&pdev->dev, "Could not retrieve QSPI caps\n"); err = -EINVAL; goto disable_pclk; } if (aq->caps->has_qspick) { /* Get the QSPI system clock */ aq->qspick = devm_clk_get(&pdev->dev, "qspick"); if (IS_ERR(aq->qspick)) { dev_err(&pdev->dev, "missing system clock\n"); err = PTR_ERR(aq->qspick); goto disable_pclk; } /* Enable the QSPI system clock */ err = clk_prepare_enable(aq->qspick); if (err) { dev_err(&pdev->dev, "failed to enable the QSPI system clock\n"); goto disable_pclk; } } /* Request the IRQ */ irq = platform_get_irq(pdev, 0); if (irq < 0) { err = irq; goto disable_qspick; } err = devm_request_irq(&pdev->dev, irq, atmel_qspi_interrupt, 0, dev_name(&pdev->dev), aq); if (err) goto disable_qspick; pm_runtime_set_autosuspend_delay(&pdev->dev, 500); pm_runtime_use_autosuspend(&pdev->dev); pm_runtime_set_active(&pdev->dev); pm_runtime_enable(&pdev->dev); pm_runtime_get_noresume(&pdev->dev); atmel_qspi_init(aq); err = spi_register_controller(ctrl); if (err) { pm_runtime_put_noidle(&pdev->dev); pm_runtime_disable(&pdev->dev); pm_runtime_set_suspended(&pdev->dev); pm_runtime_dont_use_autosuspend(&pdev->dev); goto disable_qspick; } pm_runtime_mark_last_busy(&pdev->dev); pm_runtime_put_autosuspend(&pdev->dev); return 0; disable_qspick: clk_disable_unprepare(aq->qspick); disable_pclk: clk_disable_unprepare(aq->pclk); return err; } static void atmel_qspi_remove(struct platform_device *pdev) { struct spi_controller *ctrl = platform_get_drvdata(pdev); struct atmel_qspi *aq = spi_controller_get_devdata(ctrl); int ret; spi_unregister_controller(ctrl); ret = pm_runtime_get_sync(&pdev->dev); if (ret >= 0) { atmel_qspi_write(QSPI_CR_QSPIDIS, aq, QSPI_CR); clk_disable(aq->qspick); clk_disable(aq->pclk); } else { /* * atmel_qspi_runtime_{suspend,resume} just disable and enable * the two clks respectively. So after resume failed these are * off, and we skip hardware access and disabling these clks again. */ dev_warn(&pdev->dev, "Failed to resume device on remove\n"); } clk_unprepare(aq->qspick); clk_unprepare(aq->pclk); pm_runtime_disable(&pdev->dev); pm_runtime_dont_use_autosuspend(&pdev->dev); pm_runtime_put_noidle(&pdev->dev); } static int __maybe_unused atmel_qspi_suspend(struct device *dev) { struct spi_controller *ctrl = dev_get_drvdata(dev); struct atmel_qspi *aq = spi_controller_get_devdata(ctrl); int ret; ret = pm_runtime_resume_and_get(dev); if (ret < 0) return ret; atmel_qspi_write(QSPI_CR_QSPIDIS, aq, QSPI_CR); pm_runtime_mark_last_busy(dev); pm_runtime_force_suspend(dev); clk_unprepare(aq->qspick); clk_unprepare(aq->pclk); return 0; } static int __maybe_unused atmel_qspi_resume(struct device *dev) { struct spi_controller *ctrl = dev_get_drvdata(dev); struct atmel_qspi *aq = spi_controller_get_devdata(ctrl); int ret; ret = clk_prepare(aq->pclk); if (ret) return ret; ret = clk_prepare(aq->qspick); if (ret) { clk_unprepare(aq->pclk); return ret; } ret = pm_runtime_force_resume(dev); if (ret < 0) return ret; atmel_qspi_init(aq); atmel_qspi_write(aq->scr, aq, QSPI_SCR); pm_runtime_mark_last_busy(dev); pm_runtime_put_autosuspend(dev); return 0; } static int __maybe_unused atmel_qspi_runtime_suspend(struct device *dev) { struct spi_controller *ctrl = dev_get_drvdata(dev); struct atmel_qspi *aq = spi_controller_get_devdata(ctrl); clk_disable(aq->qspick); clk_disable(aq->pclk); return 0; } static int __maybe_unused atmel_qspi_runtime_resume(struct device *dev) { struct spi_controller *ctrl = dev_get_drvdata(dev); struct atmel_qspi *aq = spi_controller_get_devdata(ctrl); int ret; ret = clk_enable(aq->pclk); if (ret) return ret; ret = clk_enable(aq->qspick); if (ret) clk_disable(aq->pclk); return ret; } static const struct dev_pm_ops __maybe_unused atmel_qspi_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(atmel_qspi_suspend, atmel_qspi_resume) SET_RUNTIME_PM_OPS(atmel_qspi_runtime_suspend, atmel_qspi_runtime_resume, NULL) }; static const struct atmel_qspi_caps atmel_sama5d2_qspi_caps = {}; static const struct atmel_qspi_caps atmel_sam9x60_qspi_caps = { .has_qspick = true, .has_ricr = true, }; static const struct of_device_id atmel_qspi_dt_ids[] = { { .compatible = "atmel,sama5d2-qspi", .data = &atmel_sama5d2_qspi_caps, }, { .compatible = "microchip,sam9x60-qspi", .data = &atmel_sam9x60_qspi_caps, }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, atmel_qspi_dt_ids); static struct platform_driver atmel_qspi_driver = { .driver = { .name = "atmel_qspi", .of_match_table = atmel_qspi_dt_ids, .pm = pm_ptr(&atmel_qspi_pm_ops), }, .probe = atmel_qspi_probe, .remove = atmel_qspi_remove, }; module_platform_driver(atmel_qspi_driver); MODULE_AUTHOR("Cyrille Pitchen "); MODULE_AUTHOR("Piotr Bugalski