// SPDX-License-Identifier: GPL-2.0 #include #include #include #include #include #include #include "ctree.h" #include "volumes.h" #include "zoned.h" #include "rcu-string.h" #include "disk-io.h" #include "block-group.h" #include "dev-replace.h" #include "space-info.h" #include "fs.h" #include "accessors.h" #include "bio.h" /* Maximum number of zones to report per blkdev_report_zones() call */ #define BTRFS_REPORT_NR_ZONES 4096 /* Invalid allocation pointer value for missing devices */ #define WP_MISSING_DEV ((u64)-1) /* Pseudo write pointer value for conventional zone */ #define WP_CONVENTIONAL ((u64)-2) /* * Location of the first zone of superblock logging zone pairs. * * - primary superblock: 0B (zone 0) * - first copy: 512G (zone starting at that offset) * - second copy: 4T (zone starting at that offset) */ #define BTRFS_SB_LOG_PRIMARY_OFFSET (0ULL) #define BTRFS_SB_LOG_FIRST_OFFSET (512ULL * SZ_1G) #define BTRFS_SB_LOG_SECOND_OFFSET (4096ULL * SZ_1G) #define BTRFS_SB_LOG_FIRST_SHIFT const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET) #define BTRFS_SB_LOG_SECOND_SHIFT const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET) /* Number of superblock log zones */ #define BTRFS_NR_SB_LOG_ZONES 2 /* * Minimum of active zones we need: * * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group * - 1 zone for tree-log dedicated block group * - 1 zone for relocation */ #define BTRFS_MIN_ACTIVE_ZONES (BTRFS_SUPER_MIRROR_MAX + 5) /* * Minimum / maximum supported zone size. Currently, SMR disks have a zone * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range. * We do not expect the zone size to become larger than 8GiB or smaller than * 4MiB in the near future. */ #define BTRFS_MAX_ZONE_SIZE SZ_8G #define BTRFS_MIN_ZONE_SIZE SZ_4M #define SUPER_INFO_SECTORS ((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT) static void wait_eb_writebacks(struct btrfs_block_group *block_group); static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written); static inline bool sb_zone_is_full(const struct blk_zone *zone) { return (zone->cond == BLK_ZONE_COND_FULL) || (zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity); } static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data) { struct blk_zone *zones = data; memcpy(&zones[idx], zone, sizeof(*zone)); return 0; } static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones, u64 *wp_ret) { bool empty[BTRFS_NR_SB_LOG_ZONES]; bool full[BTRFS_NR_SB_LOG_ZONES]; sector_t sector; for (int i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL); empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY); full[i] = sb_zone_is_full(&zones[i]); } /* * Possible states of log buffer zones * * Empty[0] In use[0] Full[0] * Empty[1] * 0 1 * In use[1] x x 1 * Full[1] 0 0 C * * Log position: * *: Special case, no superblock is written * 0: Use write pointer of zones[0] * 1: Use write pointer of zones[1] * C: Compare super blocks from zones[0] and zones[1], use the latest * one determined by generation * x: Invalid state */ if (empty[0] && empty[1]) { /* Special case to distinguish no superblock to read */ *wp_ret = zones[0].start << SECTOR_SHIFT; return -ENOENT; } else if (full[0] && full[1]) { /* Compare two super blocks */ struct address_space *mapping = bdev->bd_mapping; struct page *page[BTRFS_NR_SB_LOG_ZONES]; struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES]; for (int i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { u64 zone_end = (zones[i].start + zones[i].capacity) << SECTOR_SHIFT; u64 bytenr = ALIGN_DOWN(zone_end, BTRFS_SUPER_INFO_SIZE) - BTRFS_SUPER_INFO_SIZE; page[i] = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS); if (IS_ERR(page[i])) { if (i == 1) btrfs_release_disk_super(super[0]); return PTR_ERR(page[i]); } super[i] = page_address(page[i]); } if (btrfs_super_generation(super[0]) > btrfs_super_generation(super[1])) sector = zones[1].start; else sector = zones[0].start; for (int i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) btrfs_release_disk_super(super[i]); } else if (!full[0] && (empty[1] || full[1])) { sector = zones[0].wp; } else if (full[0]) { sector = zones[1].wp; } else { return -EUCLEAN; } *wp_ret = sector << SECTOR_SHIFT; return 0; } /* * Get the first zone number of the superblock mirror */ static inline u32 sb_zone_number(int shift, int mirror) { u64 zone = U64_MAX; ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX); switch (mirror) { case 0: zone = 0; break; case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break; case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break; } ASSERT(zone <= U32_MAX); return (u32)zone; } static inline sector_t zone_start_sector(u32 zone_number, struct block_device *bdev) { return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev)); } static inline u64 zone_start_physical(u32 zone_number, struct btrfs_zoned_device_info *zone_info) { return (u64)zone_number << zone_info->zone_size_shift; } /* * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block * device into static sized chunks and fake a conventional zone on each of * them. */ static int emulate_report_zones(struct btrfs_device *device, u64 pos, struct blk_zone *zones, unsigned int nr_zones) { const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT; sector_t bdev_size = bdev_nr_sectors(device->bdev); unsigned int i; pos >>= SECTOR_SHIFT; for (i = 0; i < nr_zones; i++) { zones[i].start = i * zone_sectors + pos; zones[i].len = zone_sectors; zones[i].capacity = zone_sectors; zones[i].wp = zones[i].start + zone_sectors; zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL; zones[i].cond = BLK_ZONE_COND_NOT_WP; if (zones[i].wp >= bdev_size) { i++; break; } } return i; } static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos, struct blk_zone *zones, unsigned int *nr_zones) { struct btrfs_zoned_device_info *zinfo = device->zone_info; int ret; if (!*nr_zones) return 0; if (!bdev_is_zoned(device->bdev)) { ret = emulate_report_zones(device, pos, zones, *nr_zones); *nr_zones = ret; return 0; } /* Check cache */ if (zinfo->zone_cache) { unsigned int i; u32 zno; ASSERT(IS_ALIGNED(pos, zinfo->zone_size)); zno = pos >> zinfo->zone_size_shift; /* * We cannot report zones beyond the zone end. So, it is OK to * cap *nr_zones to at the end. */ *nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno); for (i = 0; i < *nr_zones; i++) { struct blk_zone *zone_info; zone_info = &zinfo->zone_cache[zno + i]; if (!zone_info->len) break; } if (i == *nr_zones) { /* Cache hit on all the zones */ memcpy(zones, zinfo->zone_cache + zno, sizeof(*zinfo->zone_cache) * *nr_zones); return 0; } } ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones, copy_zone_info_cb, zones); if (ret < 0) { btrfs_err_in_rcu(device->fs_info, "zoned: failed to read zone %llu on %s (devid %llu)", pos, rcu_str_deref(device->name), device->devid); return ret; } *nr_zones = ret; if (!ret) return -EIO; /* Populate cache */ if (zinfo->zone_cache) { u32 zno = pos >> zinfo->zone_size_shift; memcpy(zinfo->zone_cache + zno, zones, sizeof(*zinfo->zone_cache) * *nr_zones); } return 0; } /* The emulated zone size is determined from the size of device extent */ static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info) { BTRFS_PATH_AUTO_FREE(path); struct btrfs_root *root = fs_info->dev_root; struct btrfs_key key; struct extent_buffer *leaf; struct btrfs_dev_extent *dext; int ret = 0; key.objectid = 1; key.type = BTRFS_DEV_EXTENT_KEY; key.offset = 0; path = btrfs_alloc_path(); if (!path) return -ENOMEM; ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); if (ret < 0) return ret; if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { ret = btrfs_next_leaf(root, path); if (ret < 0) return ret; /* No dev extents at all? Not good */ if (ret > 0) return -EUCLEAN; } leaf = path->nodes[0]; dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent); fs_info->zone_size = btrfs_dev_extent_length(leaf, dext); return 0; } int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info) { struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; struct btrfs_device *device; int ret = 0; /* fs_info->zone_size might not set yet. Use the incomapt flag here. */ if (!btrfs_fs_incompat(fs_info, ZONED)) return 0; mutex_lock(&fs_devices->device_list_mutex); list_for_each_entry(device, &fs_devices->devices, dev_list) { /* We can skip reading of zone info for missing devices */ if (!device->bdev) continue; ret = btrfs_get_dev_zone_info(device, true); if (ret) break; } mutex_unlock(&fs_devices->device_list_mutex); return ret; } int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache) { struct btrfs_fs_info *fs_info = device->fs_info; struct btrfs_zoned_device_info *zone_info = NULL; struct block_device *bdev = device->bdev; unsigned int max_active_zones; unsigned int nactive; sector_t nr_sectors; sector_t sector = 0; struct blk_zone *zones = NULL; unsigned int i, nreported = 0, nr_zones; sector_t zone_sectors; char *model, *emulated; int ret; /* * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not * yet be set. */ if (!btrfs_fs_incompat(fs_info, ZONED)) return 0; if (device->zone_info) return 0; zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL); if (!zone_info) return -ENOMEM; device->zone_info = zone_info; if (!bdev_is_zoned(bdev)) { if (!fs_info->zone_size) { ret = calculate_emulated_zone_size(fs_info); if (ret) goto out; } ASSERT(fs_info->zone_size); zone_sectors = fs_info->zone_size >> SECTOR_SHIFT; } else { zone_sectors = bdev_zone_sectors(bdev); } ASSERT(is_power_of_two_u64(zone_sectors)); zone_info->zone_size = zone_sectors << SECTOR_SHIFT; /* We reject devices with a zone size larger than 8GB */ if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) { btrfs_err_in_rcu(fs_info, "zoned: %s: zone size %llu larger than supported maximum %llu", rcu_str_deref(device->name), zone_info->zone_size, BTRFS_MAX_ZONE_SIZE); ret = -EINVAL; goto out; } else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) { btrfs_err_in_rcu(fs_info, "zoned: %s: zone size %llu smaller than supported minimum %u", rcu_str_deref(device->name), zone_info->zone_size, BTRFS_MIN_ZONE_SIZE); ret = -EINVAL; goto out; } nr_sectors = bdev_nr_sectors(bdev); zone_info->zone_size_shift = ilog2(zone_info->zone_size); zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors); if (!IS_ALIGNED(nr_sectors, zone_sectors)) zone_info->nr_zones++; max_active_zones = bdev_max_active_zones(bdev); if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) { btrfs_err_in_rcu(fs_info, "zoned: %s: max active zones %u is too small, need at least %u active zones", rcu_str_deref(device->name), max_active_zones, BTRFS_MIN_ACTIVE_ZONES); ret = -EINVAL; goto out; } zone_info->max_active_zones = max_active_zones; zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); if (!zone_info->seq_zones) { ret = -ENOMEM; goto out; } zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); if (!zone_info->empty_zones) { ret = -ENOMEM; goto out; } zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); if (!zone_info->active_zones) { ret = -ENOMEM; goto out; } zones = kvcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL); if (!zones) { ret = -ENOMEM; goto out; } /* * Enable zone cache only for a zoned device. On a non-zoned device, we * fill the zone info with emulated CONVENTIONAL zones, so no need to * use the cache. */ if (populate_cache && bdev_is_zoned(device->bdev)) { zone_info->zone_cache = vcalloc(zone_info->nr_zones, sizeof(struct blk_zone)); if (!zone_info->zone_cache) { btrfs_err_in_rcu(device->fs_info, "zoned: failed to allocate zone cache for %s", rcu_str_deref(device->name)); ret = -ENOMEM; goto out; } } /* Get zones type */ nactive = 0; while (sector < nr_sectors) { nr_zones = BTRFS_REPORT_NR_ZONES; ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones, &nr_zones); if (ret) goto out; for (i = 0; i < nr_zones; i++) { if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ) __set_bit(nreported, zone_info->seq_zones); switch (zones[i].cond) { case BLK_ZONE_COND_EMPTY: __set_bit(nreported, zone_info->empty_zones); break; case BLK_ZONE_COND_IMP_OPEN: case BLK_ZONE_COND_EXP_OPEN: case BLK_ZONE_COND_CLOSED: __set_bit(nreported, zone_info->active_zones); nactive++; break; } nreported++; } sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len; } if (nreported != zone_info->nr_zones) { btrfs_err_in_rcu(device->fs_info, "inconsistent number of zones on %s (%u/%u)", rcu_str_deref(device->name), nreported, zone_info->nr_zones); ret = -EIO; goto out; } if (max_active_zones) { if (nactive > max_active_zones) { btrfs_err_in_rcu(device->fs_info, "zoned: %u active zones on %s exceeds max_active_zones %u", nactive, rcu_str_deref(device->name), max_active_zones); ret = -EIO; goto out; } atomic_set(&zone_info->active_zones_left, max_active_zones - nactive); set_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags); } /* Validate superblock log */ nr_zones = BTRFS_NR_SB_LOG_ZONES; for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { u32 sb_zone; u64 sb_wp; int sb_pos = BTRFS_NR_SB_LOG_ZONES * i; sb_zone = sb_zone_number(zone_info->zone_size_shift, i); if (sb_zone + 1 >= zone_info->nr_zones) continue; ret = btrfs_get_dev_zones(device, zone_start_physical(sb_zone, zone_info), &zone_info->sb_zones[sb_pos], &nr_zones); if (ret) goto out; if (nr_zones != BTRFS_NR_SB_LOG_ZONES) { btrfs_err_in_rcu(device->fs_info, "zoned: failed to read super block log zone info at devid %llu zone %u", device->devid, sb_zone); ret = -EUCLEAN; goto out; } /* * If zones[0] is conventional, always use the beginning of the * zone to record superblock. No need to validate in that case. */ if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type == BLK_ZONE_TYPE_CONVENTIONAL) continue; ret = sb_write_pointer(device->bdev, &zone_info->sb_zones[sb_pos], &sb_wp); if (ret != -ENOENT && ret) { btrfs_err_in_rcu(device->fs_info, "zoned: super block log zone corrupted devid %llu zone %u", device->devid, sb_zone); ret = -EUCLEAN; goto out; } } kvfree(zones); if (bdev_is_zoned(bdev)) { model = "host-managed zoned"; emulated = ""; } else { model = "regular"; emulated = "emulated "; } btrfs_info_in_rcu(fs_info, "%s block device %s, %u %szones of %llu bytes", model, rcu_str_deref(device->name), zone_info->nr_zones, emulated, zone_info->zone_size); return 0; out: kvfree(zones); btrfs_destroy_dev_zone_info(device); return ret; } void btrfs_destroy_dev_zone_info(struct btrfs_device *device) { struct btrfs_zoned_device_info *zone_info = device->zone_info; if (!zone_info) return; bitmap_free(zone_info->active_zones); bitmap_free(zone_info->seq_zones); bitmap_free(zone_info->empty_zones); vfree(zone_info->zone_cache); kfree(zone_info); device->zone_info = NULL; } struct btrfs_zoned_device_info *btrfs_clone_dev_zone_info(struct btrfs_device *orig_dev) { struct btrfs_zoned_device_info *zone_info; zone_info = kmemdup(orig_dev->zone_info, sizeof(*zone_info), GFP_KERNEL); if (!zone_info) return NULL; zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); if (!zone_info->seq_zones) goto out; bitmap_copy(zone_info->seq_zones, orig_dev->zone_info->seq_zones, zone_info->nr_zones); zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); if (!zone_info->empty_zones) goto out; bitmap_copy(zone_info->empty_zones, orig_dev->zone_info->empty_zones, zone_info->nr_zones); zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); if (!zone_info->active_zones) goto out; bitmap_copy(zone_info->active_zones, orig_dev->zone_info->active_zones, zone_info->nr_zones); zone_info->zone_cache = NULL; return zone_info; out: bitmap_free(zone_info->seq_zones); bitmap_free(zone_info->empty_zones); bitmap_free(zone_info->active_zones); kfree(zone_info); return NULL; } static int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos, struct blk_zone *zone) { unsigned int nr_zones = 1; int ret; ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones); if (ret != 0 || !nr_zones) return ret ? ret : -EIO; return 0; } static int btrfs_check_for_zoned_device(struct btrfs_fs_info *fs_info) { struct btrfs_device *device; list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) { if (device->bdev && bdev_is_zoned(device->bdev)) { btrfs_err(fs_info, "zoned: mode not enabled but zoned device found: %pg", device->bdev); return -EINVAL; } } return 0; } int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info) { struct queue_limits *lim = &fs_info->limits; struct btrfs_device *device; u64 zone_size = 0; int ret; /* * Host-Managed devices can't be used without the ZONED flag. With the * ZONED all devices can be used, using zone emulation if required. */ if (!btrfs_fs_incompat(fs_info, ZONED)) return btrfs_check_for_zoned_device(fs_info); blk_set_stacking_limits(lim); list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) { struct btrfs_zoned_device_info *zone_info = device->zone_info; if (!device->bdev) continue; if (!zone_size) { zone_size = zone_info->zone_size; } else if (zone_info->zone_size != zone_size) { btrfs_err(fs_info, "zoned: unequal block device zone sizes: have %llu found %llu", zone_info->zone_size, zone_size); return -EINVAL; } /* * With the zoned emulation, we can have non-zoned device on the * zoned mode. In this case, we don't have a valid max zone * append size. */ if (bdev_is_zoned(device->bdev)) blk_stack_limits(lim, bdev_limits(device->bdev), 0); } ret = blk_validate_limits(lim); if (ret) { btrfs_err(fs_info, "zoned: failed to validate queue limits"); return ret; } /* * stripe_size is always aligned to BTRFS_STRIPE_LEN in * btrfs_create_chunk(). Since we want stripe_len == zone_size, * check the alignment here. */ if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) { btrfs_err(fs_info, "zoned: zone size %llu not aligned to stripe %u", zone_size, BTRFS_STRIPE_LEN); return -EINVAL; } if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { btrfs_err(fs_info, "zoned: mixed block groups not supported"); return -EINVAL; } fs_info->zone_size = zone_size; /* * Also limit max_zone_append_size by max_segments * PAGE_SIZE. * Technically, we can have multiple pages per segment. But, since * we add the pages one by one to a bio, and cannot increase the * metadata reservation even if it increases the number of extents, it * is safe to stick with the limit. */ fs_info->max_zone_append_size = ALIGN_DOWN( min3((u64)lim->max_zone_append_sectors << SECTOR_SHIFT, (u64)lim->max_sectors << SECTOR_SHIFT, (u64)lim->max_segments << PAGE_SHIFT), fs_info->sectorsize); fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED; fs_info->max_extent_size = min_not_zero(fs_info->max_extent_size, fs_info->max_zone_append_size); /* * Check mount options here, because we might change fs_info->zoned * from fs_info->zone_size. */ ret = btrfs_check_mountopts_zoned(fs_info, &fs_info->mount_opt); if (ret) return ret; btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size); return 0; } int btrfs_check_mountopts_zoned(const struct btrfs_fs_info *info, unsigned long long *mount_opt) { if (!btrfs_is_zoned(info)) return 0; /* * Space cache writing is not COWed. Disable that to avoid write errors * in sequential zones. */ if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE)) { btrfs_err(info, "zoned: space cache v1 is not supported"); return -EINVAL; } if (btrfs_raw_test_opt(*mount_opt, NODATACOW)) { btrfs_err(info, "zoned: NODATACOW not supported"); return -EINVAL; } if (btrfs_raw_test_opt(*mount_opt, DISCARD_ASYNC)) { btrfs_info(info, "zoned: async discard ignored and disabled for zoned mode"); btrfs_clear_opt(*mount_opt, DISCARD_ASYNC); } return 0; } static int sb_log_location(struct block_device *bdev, struct blk_zone *zones, int rw, u64 *bytenr_ret) { u64 wp; int ret; if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) { *bytenr_ret = zones[0].start << SECTOR_SHIFT; return 0; } ret = sb_write_pointer(bdev, zones, &wp); if (ret != -ENOENT && ret < 0) return ret; if (rw == WRITE) { struct blk_zone *reset = NULL; if (wp == zones[0].start << SECTOR_SHIFT) reset = &zones[0]; else if (wp == zones[1].start << SECTOR_SHIFT) reset = &zones[1]; if (reset && reset->cond != BLK_ZONE_COND_EMPTY) { unsigned int nofs_flags; ASSERT(sb_zone_is_full(reset)); nofs_flags = memalloc_nofs_save(); ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, reset->start, reset->len); memalloc_nofs_restore(nofs_flags); if (ret) return ret; reset->cond = BLK_ZONE_COND_EMPTY; reset->wp = reset->start; } } else if (ret != -ENOENT) { /* * For READ, we want the previous one. Move write pointer to * the end of a zone, if it is at the head of a zone. */ u64 zone_end = 0; if (wp == zones[0].start << SECTOR_SHIFT) zone_end = zones[1].start + zones[1].capacity; else if (wp == zones[1].start << SECTOR_SHIFT) zone_end = zones[0].start + zones[0].capacity; if (zone_end) wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT, BTRFS_SUPER_INFO_SIZE); wp -= BTRFS_SUPER_INFO_SIZE; } *bytenr_ret = wp; return 0; } int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw, u64 *bytenr_ret) { struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES]; sector_t zone_sectors; u32 sb_zone; int ret; u8 zone_sectors_shift; sector_t nr_sectors; u32 nr_zones; if (!bdev_is_zoned(bdev)) { *bytenr_ret = btrfs_sb_offset(mirror); return 0; } ASSERT(rw == READ || rw == WRITE); zone_sectors = bdev_zone_sectors(bdev); if (!is_power_of_2(zone_sectors)) return -EINVAL; zone_sectors_shift = ilog2(zone_sectors); nr_sectors = bdev_nr_sectors(bdev); nr_zones = nr_sectors >> zone_sectors_shift; sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror); if (sb_zone + 1 >= nr_zones) return -ENOENT; ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev), BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb, zones); if (ret < 0) return ret; if (ret != BTRFS_NR_SB_LOG_ZONES) return -EIO; return sb_log_location(bdev, zones, rw, bytenr_ret); } int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw, u64 *bytenr_ret) { struct btrfs_zoned_device_info *zinfo = device->zone_info; u32 zone_num; /* * For a zoned filesystem on a non-zoned block device, use the same * super block locations as regular filesystem. Doing so, the super * block can always be retrieved and the zoned flag of the volume * detected from the super block information. */ if (!bdev_is_zoned(device->bdev)) { *bytenr_ret = btrfs_sb_offset(mirror); return 0; } zone_num = sb_zone_number(zinfo->zone_size_shift, mirror); if (zone_num + 1 >= zinfo->nr_zones) return -ENOENT; return sb_log_location(device->bdev, &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror], rw, bytenr_ret); } static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo, int mirror) { u32 zone_num; if (!zinfo) return false; zone_num = sb_zone_number(zinfo->zone_size_shift, mirror); if (zone_num + 1 >= zinfo->nr_zones) return false; if (!test_bit(zone_num, zinfo->seq_zones)) return false; return true; } int btrfs_advance_sb_log(struct btrfs_device *device, int mirror) { struct btrfs_zoned_device_info *zinfo = device->zone_info; struct blk_zone *zone; int i; if (!is_sb_log_zone(zinfo, mirror)) return 0; zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror]; for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { /* Advance the next zone */ if (zone->cond == BLK_ZONE_COND_FULL) { zone++; continue; } if (zone->cond == BLK_ZONE_COND_EMPTY) zone->cond = BLK_ZONE_COND_IMP_OPEN; zone->wp += SUPER_INFO_SECTORS; if (sb_zone_is_full(zone)) { /* * No room left to write new superblock. Since * superblock is written with REQ_SYNC, it is safe to * finish the zone now. * * If the write pointer is exactly at the capacity, * explicit ZONE_FINISH is not necessary. */ if (zone->wp != zone->start + zone->capacity) { unsigned int nofs_flags; int ret; nofs_flags = memalloc_nofs_save(); ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH, zone->start, zone->len); memalloc_nofs_restore(nofs_flags); if (ret) return ret; } zone->wp = zone->start + zone->len; zone->cond = BLK_ZONE_COND_FULL; } return 0; } /* All the zones are FULL. Should not reach here. */ ASSERT(0); return -EIO; } int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror) { unsigned int nofs_flags; sector_t zone_sectors; sector_t nr_sectors; u8 zone_sectors_shift; u32 sb_zone; u32 nr_zones; int ret; zone_sectors = bdev_zone_sectors(bdev); zone_sectors_shift = ilog2(zone_sectors); nr_sectors = bdev_nr_sectors(bdev); nr_zones = nr_sectors >> zone_sectors_shift; sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror); if (sb_zone + 1 >= nr_zones) return -ENOENT; nofs_flags = memalloc_nofs_save(); ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, zone_start_sector(sb_zone, bdev), zone_sectors * BTRFS_NR_SB_LOG_ZONES); memalloc_nofs_restore(nofs_flags); return ret; } /* * Find allocatable zones within a given region. * * @device: the device to allocate a region on * @hole_start: the position of the hole to allocate the region * @num_bytes: size of wanted region * @hole_end: the end of the hole * @return: position of allocatable zones * * Allocatable region should not contain any superblock locations. */ u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start, u64 hole_end, u64 num_bytes) { struct btrfs_zoned_device_info *zinfo = device->zone_info; const u8 shift = zinfo->zone_size_shift; u64 nzones = num_bytes >> shift; u64 pos = hole_start; u64 begin, end; bool have_sb; int i; ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size)); ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size)); while (pos < hole_end) { begin = pos >> shift; end = begin + nzones; if (end > zinfo->nr_zones) return hole_end; /* Check if zones in the region are all empty */ if (btrfs_dev_is_sequential(device, pos) && !bitmap_test_range_all_set(zinfo->empty_zones, begin, nzones)) { pos += zinfo->zone_size; continue; } have_sb = false; for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { u32 sb_zone; u64 sb_pos; sb_zone = sb_zone_number(shift, i); if (!(end <= sb_zone || sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) { have_sb = true; pos = zone_start_physical( sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo); break; } /* We also need to exclude regular superblock positions */ sb_pos = btrfs_sb_offset(i); if (!(pos + num_bytes <= sb_pos || sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) { have_sb = true; pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE, zinfo->zone_size); break; } } if (!have_sb) break; } return pos; } static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos) { struct btrfs_zoned_device_info *zone_info = device->zone_info; unsigned int zno = (pos >> zone_info->zone_size_shift); /* We can use any number of zones */ if (zone_info->max_active_zones == 0) return true; if (!test_bit(zno, zone_info->active_zones)) { /* Active zone left? */ if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0) return false; if (test_and_set_bit(zno, zone_info->active_zones)) { /* Someone already set the bit */ atomic_inc(&zone_info->active_zones_left); } } return true; } static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos) { struct btrfs_zoned_device_info *zone_info = device->zone_info; unsigned int zno = (pos >> zone_info->zone_size_shift); /* We can use any number of zones */ if (zone_info->max_active_zones == 0) return; if (test_and_clear_bit(zno, zone_info->active_zones)) atomic_inc(&zone_info->active_zones_left); } int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical, u64 length, u64 *bytes) { unsigned int nofs_flags; int ret; *bytes = 0; nofs_flags = memalloc_nofs_save(); ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET, physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT); memalloc_nofs_restore(nofs_flags); if (ret) return ret; *bytes = length; while (length) { btrfs_dev_set_zone_empty(device, physical); btrfs_dev_clear_active_zone(device, physical); physical += device->zone_info->zone_size; length -= device->zone_info->zone_size; } return 0; } int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size) { struct btrfs_zoned_device_info *zinfo = device->zone_info; const u8 shift = zinfo->zone_size_shift; unsigned long begin = start >> shift; unsigned long nbits = size >> shift; u64 pos; int ret; ASSERT(IS_ALIGNED(start, zinfo->zone_size)); ASSERT(IS_ALIGNED(size, zinfo->zone_size)); if (begin + nbits > zinfo->nr_zones) return -ERANGE; /* All the zones are conventional */ if (bitmap_test_range_all_zero(zinfo->seq_zones, begin, nbits)) return 0; /* All the zones are sequential and empty */ if (bitmap_test_range_all_set(zinfo->seq_zones, begin, nbits) && bitmap_test_range_all_set(zinfo->empty_zones, begin, nbits)) return 0; for (pos = start; pos < start + size; pos += zinfo->zone_size) { u64 reset_bytes; if (!btrfs_dev_is_sequential(device, pos) || btrfs_dev_is_empty_zone(device, pos)) continue; /* Free regions should be empty */ btrfs_warn_in_rcu( device->fs_info, "zoned: resetting device %s (devid %llu) zone %llu for allocation", rcu_str_deref(device->name), device->devid, pos >> shift); WARN_ON_ONCE(1); ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size, &reset_bytes); if (ret) return ret; } return 0; } /* * Calculate an allocation pointer from the extent allocation information * for a block group consist of conventional zones. It is pointed to the * end of the highest addressed extent in the block group as an allocation * offset. */ static int calculate_alloc_pointer(struct btrfs_block_group *cache, u64 *offset_ret, bool new) { struct btrfs_fs_info *fs_info = cache->fs_info; struct btrfs_root *root; BTRFS_PATH_AUTO_FREE(path); struct btrfs_key key; struct btrfs_key found_key; int ret; u64 length; /* * Avoid tree lookups for a new block group, there's no use for it. * It must always be 0. * * Also, we have a lock chain of extent buffer lock -> chunk mutex. * For new a block group, this function is called from * btrfs_make_block_group() which is already taking the chunk mutex. * Thus, we cannot call calculate_alloc_pointer() which takes extent * buffer locks to avoid deadlock. */ if (new) { *offset_ret = 0; return 0; } path = btrfs_alloc_path(); if (!path) return -ENOMEM; key.objectid = cache->start + cache->length; key.type = 0; key.offset = 0; root = btrfs_extent_root(fs_info, key.objectid); ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); /* We should not find the exact match */ if (!ret) ret = -EUCLEAN; if (ret < 0) return ret; ret = btrfs_previous_extent_item(root, path, cache->start); if (ret) { if (ret == 1) { ret = 0; *offset_ret = 0; } return ret; } btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); if (found_key.type == BTRFS_EXTENT_ITEM_KEY) length = found_key.offset; else length = fs_info->nodesize; if (!(found_key.objectid >= cache->start && found_key.objectid + length <= cache->start + cache->length)) { return -EUCLEAN; } *offset_ret = found_key.objectid + length - cache->start; return 0; } struct zone_info { u64 physical; u64 capacity; u64 alloc_offset; }; static int btrfs_load_zone_info(struct btrfs_fs_info *fs_info, int zone_idx, struct zone_info *info, unsigned long *active, struct btrfs_chunk_map *map) { struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; struct btrfs_device *device; int dev_replace_is_ongoing = 0; unsigned int nofs_flag; struct blk_zone zone; int ret; info->physical = map->stripes[zone_idx].physical; down_read(&dev_replace->rwsem); device = map->stripes[zone_idx].dev; if (!device->bdev) { up_read(&dev_replace->rwsem); info->alloc_offset = WP_MISSING_DEV; return 0; } /* Consider a zone as active if we can allow any number of active zones. */ if (!device->zone_info->max_active_zones) __set_bit(zone_idx, active); if (!btrfs_dev_is_sequential(device, info->physical)) { up_read(&dev_replace->rwsem); info->alloc_offset = WP_CONVENTIONAL; return 0; } /* This zone will be used for allocation, so mark this zone non-empty. */ btrfs_dev_clear_zone_empty(device, info->physical); dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) btrfs_dev_clear_zone_empty(dev_replace->tgtdev, info->physical); /* * The group is mapped to a sequential zone. Get the zone write pointer * to determine the allocation offset within the zone. */ WARN_ON(!IS_ALIGNED(info->physical, fs_info->zone_size)); nofs_flag = memalloc_nofs_save(); ret = btrfs_get_dev_zone(device, info->physical, &zone); memalloc_nofs_restore(nofs_flag); if (ret) { up_read(&dev_replace->rwsem); if (ret != -EIO && ret != -EOPNOTSUPP) return ret; info->alloc_offset = WP_MISSING_DEV; return 0; } if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) { btrfs_err_in_rcu(fs_info, "zoned: unexpected conventional zone %llu on device %s (devid %llu)", zone.start << SECTOR_SHIFT, rcu_str_deref(device->name), device->devid); up_read(&dev_replace->rwsem); return -EIO; } info->capacity = (zone.capacity << SECTOR_SHIFT); switch (zone.cond) { case BLK_ZONE_COND_OFFLINE: case BLK_ZONE_COND_READONLY: btrfs_err_in_rcu(fs_info, "zoned: offline/readonly zone %llu on device %s (devid %llu)", (info->physical >> device->zone_info->zone_size_shift), rcu_str_deref(device->name), device->devid); info->alloc_offset = WP_MISSING_DEV; break; case BLK_ZONE_COND_EMPTY: info->alloc_offset = 0; break; case BLK_ZONE_COND_FULL: info->alloc_offset = info->capacity; break; default: /* Partially used zone. */ info->alloc_offset = ((zone.wp - zone.start) << SECTOR_SHIFT); __set_bit(zone_idx, active); break; } up_read(&dev_replace->rwsem); return 0; } static int btrfs_load_block_group_single(struct btrfs_block_group *bg, struct zone_info *info, unsigned long *active) { if (info->alloc_offset == WP_MISSING_DEV) { btrfs_err(bg->fs_info, "zoned: cannot recover write pointer for zone %llu", info->physical); return -EIO; } bg->alloc_offset = info->alloc_offset; bg->zone_capacity = info->capacity; if (test_bit(0, active)) set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags); return 0; } static int btrfs_load_block_group_dup(struct btrfs_block_group *bg, struct btrfs_chunk_map *map, struct zone_info *zone_info, unsigned long *active) { struct btrfs_fs_info *fs_info = bg->fs_info; if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) { btrfs_err(fs_info, "zoned: data DUP profile needs raid-stripe-tree"); return -EINVAL; } bg->zone_capacity = min_not_zero(zone_info[0].capacity, zone_info[1].capacity); if (zone_info[0].alloc_offset == WP_MISSING_DEV) { btrfs_err(bg->fs_info, "zoned: cannot recover write pointer for zone %llu", zone_info[0].physical); return -EIO; } if (zone_info[1].alloc_offset == WP_MISSING_DEV) { btrfs_err(bg->fs_info, "zoned: cannot recover write pointer for zone %llu", zone_info[1].physical); return -EIO; } if (zone_info[0].alloc_offset != zone_info[1].alloc_offset) { btrfs_err(bg->fs_info, "zoned: write pointer offset mismatch of zones in DUP profile"); return -EIO; } if (test_bit(0, active) != test_bit(1, active)) { if (!btrfs_zone_activate(bg)) return -EIO; } else if (test_bit(0, active)) { set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags); } bg->alloc_offset = zone_info[0].alloc_offset; return 0; } static int btrfs_load_block_group_raid1(struct btrfs_block_group *bg, struct btrfs_chunk_map *map, struct zone_info *zone_info, unsigned long *active) { struct btrfs_fs_info *fs_info = bg->fs_info; int i; if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) { btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree", btrfs_bg_type_to_raid_name(map->type)); return -EINVAL; } /* In case a device is missing we have a cap of 0, so don't use it. */ bg->zone_capacity = min_not_zero(zone_info[0].capacity, zone_info[1].capacity); for (i = 0; i < map->num_stripes; i++) { if (zone_info[i].alloc_offset == WP_MISSING_DEV || zone_info[i].alloc_offset == WP_CONVENTIONAL) continue; if ((zone_info[0].alloc_offset != zone_info[i].alloc_offset) && !btrfs_test_opt(fs_info, DEGRADED)) { btrfs_err(fs_info, "zoned: write pointer offset mismatch of zones in %s profile", btrfs_bg_type_to_raid_name(map->type)); return -EIO; } if (test_bit(0, active) != test_bit(i, active)) { if (!btrfs_test_opt(fs_info, DEGRADED) && !btrfs_zone_activate(bg)) { return -EIO; } } else { if (test_bit(0, active)) set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags); } } if (zone_info[0].alloc_offset != WP_MISSING_DEV) bg->alloc_offset = zone_info[0].alloc_offset; else bg->alloc_offset = zone_info[i - 1].alloc_offset; return 0; } static int btrfs_load_block_group_raid0(struct btrfs_block_group *bg, struct btrfs_chunk_map *map, struct zone_info *zone_info, unsigned long *active) { struct btrfs_fs_info *fs_info = bg->fs_info; if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) { btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree", btrfs_bg_type_to_raid_name(map->type)); return -EINVAL; } for (int i = 0; i < map->num_stripes; i++) { if (zone_info[i].alloc_offset == WP_MISSING_DEV || zone_info[i].alloc_offset == WP_CONVENTIONAL) continue; if (test_bit(0, active) != test_bit(i, active)) { if (!btrfs_zone_activate(bg)) return -EIO; } else { if (test_bit(0, active)) set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags); } bg->zone_capacity += zone_info[i].capacity; bg->alloc_offset += zone_info[i].alloc_offset; } return 0; } static int btrfs_load_block_group_raid10(struct btrfs_block_group *bg, struct btrfs_chunk_map *map, struct zone_info *zone_info, unsigned long *active) { struct btrfs_fs_info *fs_info = bg->fs_info; if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) { btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree", btrfs_bg_type_to_raid_name(map->type)); return -EINVAL; } for (int i = 0; i < map->num_stripes; i++) { if (zone_info[i].alloc_offset == WP_MISSING_DEV || zone_info[i].alloc_offset == WP_CONVENTIONAL) continue; if (test_bit(0, active) != test_bit(i, active)) { if (!btrfs_zone_activate(bg)) return -EIO; } else { if (test_bit(0, active)) set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags); } if ((i % map->sub_stripes) == 0) { bg->zone_capacity += zone_info[i].capacity; bg->alloc_offset += zone_info[i].alloc_offset; } } return 0; } int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new) { struct btrfs_fs_info *fs_info = cache->fs_info; struct btrfs_chunk_map *map; u64 logical = cache->start; u64 length = cache->length; struct zone_info *zone_info = NULL; int ret; int i; unsigned long *active = NULL; u64 last_alloc = 0; u32 num_sequential = 0, num_conventional = 0; u64 profile; if (!btrfs_is_zoned(fs_info)) return 0; /* Sanity check */ if (!IS_ALIGNED(length, fs_info->zone_size)) { btrfs_err(fs_info, "zoned: block group %llu len %llu unaligned to zone size %llu", logical, length, fs_info->zone_size); return -EIO; } map = btrfs_find_chunk_map(fs_info, logical, length); if (!map) return -EINVAL; cache->physical_map = map; zone_info = kcalloc(map->num_stripes, sizeof(*zone_info), GFP_NOFS); if (!zone_info) { ret = -ENOMEM; goto out; } active = bitmap_zalloc(map->num_stripes, GFP_NOFS); if (!active) { ret = -ENOMEM; goto out; } for (i = 0; i < map->num_stripes; i++) { ret = btrfs_load_zone_info(fs_info, i, &zone_info[i], active, map); if (ret) goto out; if (zone_info[i].alloc_offset == WP_CONVENTIONAL) num_conventional++; else num_sequential++; } if (num_sequential > 0) set_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags); if (num_conventional > 0) { /* Zone capacity is always zone size in emulation */ cache->zone_capacity = cache->length; ret = calculate_alloc_pointer(cache, &last_alloc, new); if (ret) { btrfs_err(fs_info, "zoned: failed to determine allocation offset of bg %llu", cache->start); goto out; } else if (map->num_stripes == num_conventional) { cache->alloc_offset = last_alloc; set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags); goto out; } } profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK; switch (profile) { case 0: /* single */ ret = btrfs_load_block_group_single(cache, &zone_info[0], active); break; case BTRFS_BLOCK_GROUP_DUP: ret = btrfs_load_block_group_dup(cache, map, zone_info, active); break; case BTRFS_BLOCK_GROUP_RAID1: case BTRFS_BLOCK_GROUP_RAID1C3: case BTRFS_BLOCK_GROUP_RAID1C4: ret = btrfs_load_block_group_raid1(cache, map, zone_info, active); break; case BTRFS_BLOCK_GROUP_RAID0: ret = btrfs_load_block_group_raid0(cache, map, zone_info, active); break; case BTRFS_BLOCK_GROUP_RAID10: ret = btrfs_load_block_group_raid10(cache, map, zone_info, active); break; case BTRFS_BLOCK_GROUP_RAID5: case BTRFS_BLOCK_GROUP_RAID6: default: btrfs_err(fs_info, "zoned: profile %s not yet supported", btrfs_bg_type_to_raid_name(map->type)); ret = -EINVAL; goto out; } if (ret == -EIO && profile != 0 && profile != BTRFS_BLOCK_GROUP_RAID0 && profile != BTRFS_BLOCK_GROUP_RAID10) { /* * Detected broken write pointer. Make this block group * unallocatable by setting the allocation pointer at the end of * allocatable region. Relocating this block group will fix the * mismatch. * * Currently, we cannot handle RAID0 or RAID10 case like this * because we don't have a proper zone_capacity value. But, * reading from this block group won't work anyway by a missing * stripe. */ cache->alloc_offset = cache->zone_capacity; ret = 0; } out: /* Reject non SINGLE data profiles without RST */ if ((map->type & BTRFS_BLOCK_GROUP_DATA) && (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) && !fs_info->stripe_root) { btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree", btrfs_bg_type_to_raid_name(map->type)); return -EINVAL; } if (cache->alloc_offset > cache->zone_capacity) { btrfs_err(fs_info, "zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu", cache->alloc_offset, cache->zone_capacity, cache->start); ret = -EIO; } /* An extent is allocated after the write pointer */ if (!ret && num_conventional && last_alloc > cache->alloc_offset) { btrfs_err(fs_info, "zoned: got wrong write pointer in BG %llu: %llu > %llu", logical, last_alloc, cache->alloc_offset); ret = -EIO; } if (!ret) { cache->meta_write_pointer = cache->alloc_offset + cache->start; if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags)) { btrfs_get_block_group(cache); spin_lock(&fs_info->zone_active_bgs_lock); list_add_tail(&cache->active_bg_list, &fs_info->zone_active_bgs); spin_unlock(&fs_info->zone_active_bgs_lock); } } else { btrfs_free_chunk_map(cache->physical_map); cache->physical_map = NULL; } bitmap_free(active); kfree(zone_info); return ret; } void btrfs_calc_zone_unusable(struct btrfs_block_group *cache) { u64 unusable, free; if (!btrfs_is_zoned(cache->fs_info)) return; WARN_ON(cache->bytes_super != 0); unusable = (cache->alloc_offset - cache->used) + (cache->length - cache->zone_capacity); free = cache->zone_capacity - cache->alloc_offset; /* We only need ->free_space in ALLOC_SEQ block groups */ cache->cached = BTRFS_CACHE_FINISHED; cache->free_space_ctl->free_space = free; cache->zone_unusable = unusable; } bool btrfs_use_zone_append(struct btrfs_bio *bbio) { u64 start = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT); struct btrfs_inode *inode = bbio->inode; struct btrfs_fs_info *fs_info = bbio->fs_info; struct btrfs_block_group *cache; bool ret = false; if (!btrfs_is_zoned(fs_info)) return false; if (!inode || !is_data_inode(inode)) return false; if (btrfs_op(&bbio->bio) != BTRFS_MAP_WRITE) return false; /* * Using REQ_OP_ZONE_APPEND for relocation can break assumptions on the * extent layout the relocation code has. * Furthermore we have set aside own block-group from which only the * relocation "process" can allocate and make sure only one process at a * time can add pages to an extent that gets relocated, so it's safe to * use regular REQ_OP_WRITE for this special case. */ if (btrfs_is_data_reloc_root(inode->root)) return false; cache = btrfs_lookup_block_group(fs_info, start); ASSERT(cache); if (!cache) return false; ret = !!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags); btrfs_put_block_group(cache); return ret; } void btrfs_record_physical_zoned(struct btrfs_bio *bbio) { const u64 physical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT; struct btrfs_ordered_sum *sum = bbio->sums; if (physical < bbio->orig_physical) sum->logical -= bbio->orig_physical - physical; else sum->logical += physical - bbio->orig_physical; } static void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered, u64 logical) { struct extent_map_tree *em_tree = &ordered->inode->extent_tree; struct extent_map *em; ordered->disk_bytenr = logical; write_lock(&em_tree->lock); em = search_extent_mapping(em_tree, ordered->file_offset, ordered->num_bytes); /* The em should be a new COW extent, thus it should not have an offset. */ ASSERT(em->offset == 0); em->disk_bytenr = logical; free_extent_map(em); write_unlock(&em_tree->lock); } static bool btrfs_zoned_split_ordered(struct btrfs_ordered_extent *ordered, u64 logical, u64 len) { struct btrfs_ordered_extent *new; if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) && split_extent_map(ordered->inode, ordered->file_offset, ordered->num_bytes, len, logical)) return false; new = btrfs_split_ordered_extent(ordered, len); if (IS_ERR(new)) return false; new->disk_bytenr = logical; btrfs_finish_one_ordered(new); return true; } void btrfs_finish_ordered_zoned(struct btrfs_ordered_extent *ordered) { struct btrfs_inode *inode = ordered->inode; struct btrfs_fs_info *fs_info = inode->root->fs_info; struct btrfs_ordered_sum *sum; u64 logical, len; /* * Write to pre-allocated region is for the data relocation, and so * it should use WRITE operation. No split/rewrite are necessary. */ if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) return; ASSERT(!list_empty(&ordered->list)); /* The ordered->list can be empty in the above pre-alloc case. */ sum = list_first_entry(&ordered->list, struct btrfs_ordered_sum, list); logical = sum->logical; len = sum->len; while (len < ordered->disk_num_bytes) { sum = list_next_entry(sum, list); if (sum->logical == logical + len) { len += sum->len; continue; } if (!btrfs_zoned_split_ordered(ordered, logical, len)) { set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); btrfs_err(fs_info, "failed to split ordered extent"); goto out; } logical = sum->logical; len = sum->len; } if (ordered->disk_bytenr != logical) btrfs_rewrite_logical_zoned(ordered, logical); out: /* * If we end up here for nodatasum I/O, the btrfs_ordered_sum structures * were allocated by btrfs_alloc_dummy_sum only to record the logical * addresses and don't contain actual checksums. We thus must free them * here so that we don't attempt to log the csums later. */ if ((inode->flags & BTRFS_INODE_NODATASUM) || test_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state)) { while ((sum = list_first_entry_or_null(&ordered->list, typeof(*sum), list))) { list_del(&sum->list); kfree(sum); } } } static bool check_bg_is_active(struct btrfs_eb_write_context *ctx, struct btrfs_block_group **active_bg) { const struct writeback_control *wbc = ctx->wbc; struct btrfs_block_group *block_group = ctx->zoned_bg; struct btrfs_fs_info *fs_info = block_group->fs_info; if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) return true; if (fs_info->treelog_bg == block_group->start) { if (!btrfs_zone_activate(block_group)) { int ret_fin = btrfs_zone_finish_one_bg(fs_info); if (ret_fin != 1 || !btrfs_zone_activate(block_group)) return false; } } else if (*active_bg != block_group) { struct btrfs_block_group *tgt = *active_bg; /* zoned_meta_io_lock protects fs_info->active_{meta,system}_bg. */ lockdep_assert_held(&fs_info->zoned_meta_io_lock); if (tgt) { /* * If there is an unsent IO left in the allocated area, * we cannot wait for them as it may cause a deadlock. */ if (tgt->meta_write_pointer < tgt->start + tgt->alloc_offset) { if (wbc->sync_mode == WB_SYNC_NONE || (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)) return false; } /* Pivot active metadata/system block group. */ btrfs_zoned_meta_io_unlock(fs_info); wait_eb_writebacks(tgt); do_zone_finish(tgt, true); btrfs_zoned_meta_io_lock(fs_info); if (*active_bg == tgt) { btrfs_put_block_group(tgt); *active_bg = NULL; } } if (!btrfs_zone_activate(block_group)) return false; if (*active_bg != block_group) { ASSERT(*active_bg == NULL); *active_bg = block_group; btrfs_get_block_group(block_group); } } return true; } /* * Check if @ctx->eb is aligned to the write pointer. * * Return: * 0: @ctx->eb is at the write pointer. You can write it. * -EAGAIN: There is a hole. The caller should handle the case. * -EBUSY: There is a hole, but the caller can just bail out. */ int btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info, struct btrfs_eb_write_context *ctx) { const struct writeback_control *wbc = ctx->wbc; const struct extent_buffer *eb = ctx->eb; struct btrfs_block_group *block_group = ctx->zoned_bg; if (!btrfs_is_zoned(fs_info)) return 0; if (block_group) { if (block_group->start > eb->start || block_group->start + block_group->length <= eb->start) { btrfs_put_block_group(block_group); block_group = NULL; ctx->zoned_bg = NULL; } } if (!block_group) { block_group = btrfs_lookup_block_group(fs_info, eb->start); if (!block_group) return 0; ctx->zoned_bg = block_group; } if (block_group->meta_write_pointer == eb->start) { struct btrfs_block_group **tgt; if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags)) return 0; if (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM) tgt = &fs_info->active_system_bg; else tgt = &fs_info->active_meta_bg; if (check_bg_is_active(ctx, tgt)) return 0; } /* * Since we may release fs_info->zoned_meta_io_lock, someone can already * start writing this eb. In that case, we can just bail out. */ if (block_group->meta_write_pointer > eb->start) return -EBUSY; /* If for_sync, this hole will be filled with transaction commit. */ if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) return -EAGAIN; return -EBUSY; } int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length) { if (!btrfs_dev_is_sequential(device, physical)) return -EOPNOTSUPP; return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT, GFP_NOFS, 0); } static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical, struct blk_zone *zone) { struct btrfs_io_context *bioc = NULL; u64 mapped_length = PAGE_SIZE; unsigned int nofs_flag; int nmirrors; int i, ret; ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical, &mapped_length, &bioc, NULL, NULL); if (ret || !bioc || mapped_length < PAGE_SIZE) { ret = -EIO; goto out_put_bioc; } if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { ret = -EINVAL; goto out_put_bioc; } nofs_flag = memalloc_nofs_save(); nmirrors = (int)bioc->num_stripes; for (i = 0; i < nmirrors; i++) { u64 physical = bioc->stripes[i].physical; struct btrfs_device *dev = bioc->stripes[i].dev; /* Missing device */ if (!dev->bdev) continue; ret = btrfs_get_dev_zone(dev, physical, zone); /* Failing device */ if (ret == -EIO || ret == -EOPNOTSUPP) continue; break; } memalloc_nofs_restore(nofs_flag); out_put_bioc: btrfs_put_bioc(bioc); return ret; } /* * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by * filling zeros between @physical_pos to a write pointer of dev-replace * source device. */ int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical, u64 physical_start, u64 physical_pos) { struct btrfs_fs_info *fs_info = tgt_dev->fs_info; struct blk_zone zone; u64 length; u64 wp; int ret; if (!btrfs_dev_is_sequential(tgt_dev, physical_pos)) return 0; ret = read_zone_info(fs_info, logical, &zone); if (ret) return ret; wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT); if (physical_pos == wp) return 0; if (physical_pos > wp) return -EUCLEAN; length = wp - physical_pos; return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length); } /* * Activate block group and underlying device zones * * @block_group: the block group to activate * * Return: true on success, false otherwise */ bool btrfs_zone_activate(struct btrfs_block_group *block_group) { struct btrfs_fs_info *fs_info = block_group->fs_info; struct btrfs_chunk_map *map; struct btrfs_device *device; u64 physical; const bool is_data = (block_group->flags & BTRFS_BLOCK_GROUP_DATA); bool ret; int i; if (!btrfs_is_zoned(block_group->fs_info)) return true; map = block_group->physical_map; spin_lock(&fs_info->zone_active_bgs_lock); spin_lock(&block_group->lock); if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) { ret = true; goto out_unlock; } /* No space left */ if (btrfs_zoned_bg_is_full(block_group)) { ret = false; goto out_unlock; } for (i = 0; i < map->num_stripes; i++) { struct btrfs_zoned_device_info *zinfo; int reserved = 0; device = map->stripes[i].dev; physical = map->stripes[i].physical; zinfo = device->zone_info; if (zinfo->max_active_zones == 0) continue; if (is_data) reserved = zinfo->reserved_active_zones; /* * For the data block group, leave active zones for one * metadata block group and one system block group. */ if (atomic_read(&zinfo->active_zones_left) <= reserved) { ret = false; goto out_unlock; } if (!btrfs_dev_set_active_zone(device, physical)) { /* Cannot activate the zone */ ret = false; goto out_unlock; } if (!is_data) zinfo->reserved_active_zones--; } /* Successfully activated all the zones */ set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags); spin_unlock(&block_group->lock); /* For the active block group list */ btrfs_get_block_group(block_group); list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs); spin_unlock(&fs_info->zone_active_bgs_lock); return true; out_unlock: spin_unlock(&block_group->lock); spin_unlock(&fs_info->zone_active_bgs_lock); return ret; } static void wait_eb_writebacks(struct btrfs_block_group *block_group) { struct btrfs_fs_info *fs_info = block_group->fs_info; const u64 end = block_group->start + block_group->length; struct radix_tree_iter iter; struct extent_buffer *eb; void __rcu **slot; rcu_read_lock(); radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter, block_group->start >> fs_info->sectorsize_bits) { eb = radix_tree_deref_slot(slot); if (!eb) continue; if (radix_tree_deref_retry(eb)) { slot = radix_tree_iter_retry(&iter); continue; } if (eb->start < block_group->start) continue; if (eb->start >= end) break; slot = radix_tree_iter_resume(slot, &iter); rcu_read_unlock(); wait_on_extent_buffer_writeback(eb); rcu_read_lock(); } rcu_read_unlock(); } static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written) { struct btrfs_fs_info *fs_info = block_group->fs_info; struct btrfs_chunk_map *map; const bool is_metadata = (block_group->flags & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)); struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; int ret = 0; int i; spin_lock(&block_group->lock); if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) { spin_unlock(&block_group->lock); return 0; } /* Check if we have unwritten allocated space */ if (is_metadata && block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) { spin_unlock(&block_group->lock); return -EAGAIN; } /* * If we are sure that the block group is full (= no more room left for * new allocation) and the IO for the last usable block is completed, we * don't need to wait for the other IOs. This holds because we ensure * the sequential IO submissions using the ZONE_APPEND command for data * and block_group->meta_write_pointer for metadata. */ if (!fully_written) { if (test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) { spin_unlock(&block_group->lock); return -EAGAIN; } spin_unlock(&block_group->lock); ret = btrfs_inc_block_group_ro(block_group, false); if (ret) return ret; /* Ensure all writes in this block group finish */ btrfs_wait_block_group_reservations(block_group); /* No need to wait for NOCOW writers. Zoned mode does not allow that */ btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group); /* Wait for extent buffers to be written. */ if (is_metadata) wait_eb_writebacks(block_group); spin_lock(&block_group->lock); /* * Bail out if someone already deactivated the block group, or * allocated space is left in the block group. */ if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) { spin_unlock(&block_group->lock); btrfs_dec_block_group_ro(block_group); return 0; } if (block_group->reserved || test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) { spin_unlock(&block_group->lock); btrfs_dec_block_group_ro(block_group); return -EAGAIN; } } clear_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags); block_group->alloc_offset = block_group->zone_capacity; if (block_group->flags & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)) block_group->meta_write_pointer = block_group->start + block_group->zone_capacity; block_group->free_space_ctl->free_space = 0; btrfs_clear_treelog_bg(block_group); btrfs_clear_data_reloc_bg(block_group); spin_unlock(&block_group->lock); down_read(&dev_replace->rwsem); map = block_group->physical_map; for (i = 0; i < map->num_stripes; i++) { struct btrfs_device *device = map->stripes[i].dev; const u64 physical = map->stripes[i].physical; struct btrfs_zoned_device_info *zinfo = device->zone_info; unsigned int nofs_flags; if (zinfo->max_active_zones == 0) continue; nofs_flags = memalloc_nofs_save(); ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH, physical >> SECTOR_SHIFT, zinfo->zone_size >> SECTOR_SHIFT); memalloc_nofs_restore(nofs_flags); if (ret) { up_read(&dev_replace->rwsem); return ret; } if (!(block_group->flags & BTRFS_BLOCK_GROUP_DATA)) zinfo->reserved_active_zones++; btrfs_dev_clear_active_zone(device, physical); } up_read(&dev_replace->rwsem); if (!fully_written) btrfs_dec_block_group_ro(block_group); spin_lock(&fs_info->zone_active_bgs_lock); ASSERT(!list_empty(&block_group->active_bg_list)); list_del_init(&block_group->active_bg_list); spin_unlock(&fs_info->zone_active_bgs_lock); /* For active_bg_list */ btrfs_put_block_group(block_group); clear_and_wake_up_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags); return 0; } int btrfs_zone_finish(struct btrfs_block_group *block_group) { if (!btrfs_is_zoned(block_group->fs_info)) return 0; return do_zone_finish(block_group, false); } bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags) { struct btrfs_fs_info *fs_info = fs_devices->fs_info; struct btrfs_device *device; bool ret = false; if (!btrfs_is_zoned(fs_info)) return true; /* Check if there is a device with active zones left */ mutex_lock(&fs_info->chunk_mutex); spin_lock(&fs_info->zone_active_bgs_lock); list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { struct btrfs_zoned_device_info *zinfo = device->zone_info; int reserved = 0; if (!device->bdev) continue; if (!zinfo->max_active_zones) { ret = true; break; } if (flags & BTRFS_BLOCK_GROUP_DATA) reserved = zinfo->reserved_active_zones; switch (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) { case 0: /* single */ ret = (atomic_read(&zinfo->active_zones_left) >= (1 + reserved)); break; case BTRFS_BLOCK_GROUP_DUP: ret = (atomic_read(&zinfo->active_zones_left) >= (2 + reserved)); break; } if (ret) break; } spin_unlock(&fs_info->zone_active_bgs_lock); mutex_unlock(&fs_info->chunk_mutex); if (!ret) set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags); return ret; } void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length) { struct btrfs_block_group *block_group; u64 min_alloc_bytes; if (!btrfs_is_zoned(fs_info)) return; block_group = btrfs_lookup_block_group(fs_info, logical); ASSERT(block_group); /* No MIXED_BG on zoned btrfs. */ if (block_group->flags & BTRFS_BLOCK_GROUP_DATA) min_alloc_bytes = fs_info->sectorsize; else min_alloc_bytes = fs_info->nodesize; /* Bail out if we can allocate more data from this block group. */ if (logical + length + min_alloc_bytes <= block_group->start + block_group->zone_capacity) goto out; do_zone_finish(block_group, true); out: btrfs_put_block_group(block_group); } static void btrfs_zone_finish_endio_workfn(struct work_struct *work) { struct btrfs_block_group *bg = container_of(work, struct btrfs_block_group, zone_finish_work); wait_on_extent_buffer_writeback(bg->last_eb); free_extent_buffer(bg->last_eb); btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length); btrfs_put_block_group(bg); } void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg, struct extent_buffer *eb) { if (!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &bg->runtime_flags) || eb->start + eb->len * 2 <= bg->start + bg->zone_capacity) return; if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) { btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing", bg->start); return; } /* For the work */ btrfs_get_block_group(bg); atomic_inc(&eb->refs); bg->last_eb = eb; INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn); queue_work(system_unbound_wq, &bg->zone_finish_work); } void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg) { struct btrfs_fs_info *fs_info = bg->fs_info; spin_lock(&fs_info->relocation_bg_lock); if (fs_info->data_reloc_bg == bg->start) fs_info->data_reloc_bg = 0; spin_unlock(&fs_info->relocation_bg_lock); } void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info) { struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; struct btrfs_device *device; if (!btrfs_is_zoned(fs_info)) return; mutex_lock(&fs_devices->device_list_mutex); list_for_each_entry(device, &fs_devices->devices, dev_list) { if (device->zone_info) { vfree(device->zone_info->zone_cache); device->zone_info->zone_cache = NULL; } } mutex_unlock(&fs_devices->device_list_mutex); } bool btrfs_zoned_should_reclaim(const struct btrfs_fs_info *fs_info) { struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; struct btrfs_device *device; u64 used = 0; u64 total = 0; u64 factor; ASSERT(btrfs_is_zoned(fs_info)); if (fs_info->bg_reclaim_threshold == 0) return false; mutex_lock(&fs_devices->device_list_mutex); list_for_each_entry(device, &fs_devices->devices, dev_list) { if (!device->bdev) continue; total += device->disk_total_bytes; used += device->bytes_used; } mutex_unlock(&fs_devices->device_list_mutex); factor = div64_u64(used * 100, total); return factor >= fs_info->bg_reclaim_threshold; } void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical, u64 length) { struct btrfs_block_group *block_group; if (!btrfs_is_zoned(fs_info)) return; block_group = btrfs_lookup_block_group(fs_info, logical); /* It should be called on a previous data relocation block group. */ ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)); spin_lock(&block_group->lock); if (!test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) goto out; /* All relocation extents are written. */ if (block_group->start + block_group->alloc_offset == logical + length) { /* * Now, release this block group for further allocations and * zone finish. */ clear_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags); } out: spin_unlock(&block_group->lock); btrfs_put_block_group(block_group); } int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info) { struct btrfs_block_group *block_group; struct btrfs_block_group *min_bg = NULL; u64 min_avail = U64_MAX; int ret; spin_lock(&fs_info->zone_active_bgs_lock); list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) { u64 avail; spin_lock(&block_group->lock); if (block_group->reserved || block_group->alloc_offset == 0 || (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM) || test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) { spin_unlock(&block_group->lock); continue; } avail = block_group->zone_capacity - block_group->alloc_offset; if (min_avail > avail) { if (min_bg) btrfs_put_block_group(min_bg); min_bg = block_group; min_avail = avail; btrfs_get_block_group(min_bg); } spin_unlock(&block_group->lock); } spin_unlock(&fs_info->zone_active_bgs_lock); if (!min_bg) return 0; ret = btrfs_zone_finish(min_bg); btrfs_put_block_group(min_bg); return ret < 0 ? ret : 1; } int btrfs_zoned_activate_one_bg(struct btrfs_fs_info *fs_info, struct btrfs_space_info *space_info, bool do_finish) { struct btrfs_block_group *bg; int index; if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA)) return 0; for (;;) { int ret; bool need_finish = false; down_read(&space_info->groups_sem); for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) { list_for_each_entry(bg, &space_info->block_groups[index], list) { if (!spin_trylock(&bg->lock)) continue; if (btrfs_zoned_bg_is_full(bg) || test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags)) { spin_unlock(&bg->lock); continue; } spin_unlock(&bg->lock); if (btrfs_zone_activate(bg)) { up_read(&space_info->groups_sem); return 1; } need_finish = true; } } up_read(&space_info->groups_sem); if (!do_finish || !need_finish) break; ret = btrfs_zone_finish_one_bg(fs_info); if (ret == 0) break; if (ret < 0) return ret; } return 0; } /* * Reserve zones for one metadata block group, one tree-log block group, and one * system block group. */ void btrfs_check_active_zone_reservation(struct btrfs_fs_info *fs_info) { struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; struct btrfs_block_group *block_group; struct btrfs_device *device; /* Reserve zones for normal SINGLE metadata and tree-log block group. */ unsigned int metadata_reserve = 2; /* Reserve a zone for SINGLE system block group. */ unsigned int system_reserve = 1; if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags)) return; /* * This function is called from the mount context. So, there is no * parallel process touching the bits. No need for read_seqretry(). */ if (fs_info->avail_metadata_alloc_bits & BTRFS_BLOCK_GROUP_DUP) metadata_reserve = 4; if (fs_info->avail_system_alloc_bits & BTRFS_BLOCK_GROUP_DUP) system_reserve = 2; /* Apply the reservation on all the devices. */ mutex_lock(&fs_devices->device_list_mutex); list_for_each_entry(device, &fs_devices->devices, dev_list) { if (!device->bdev) continue; device->zone_info->reserved_active_zones = metadata_reserve + system_reserve; } mutex_unlock(&fs_devices->device_list_mutex); /* Release reservation for currently active block groups. */ spin_lock(&fs_info->zone_active_bgs_lock); list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) { struct btrfs_chunk_map *map = block_group->physical_map; if (!(block_group->flags & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM))) continue; for (int i = 0; i < map->num_stripes; i++) map->stripes[i].dev->zone_info->reserved_active_zones--; } spin_unlock(&fs_info->zone_active_bgs_lock); }