/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_MIN_HEAP_H #define _LINUX_MIN_HEAP_H #include #include #include /** * Data structure to hold a min-heap. * @nr: Number of elements currently in the heap. * @size: Maximum number of elements that can be held in current storage. * @data: Pointer to the start of array holding the heap elements. * @preallocated: Start of the static preallocated array holding the heap elements. */ #define MIN_HEAP_PREALLOCATED(_type, _name, _nr) \ struct _name { \ int nr; \ int size; \ _type *data; \ _type preallocated[_nr]; \ } #define DEFINE_MIN_HEAP(_type, _name) MIN_HEAP_PREALLOCATED(_type, _name, 0) typedef DEFINE_MIN_HEAP(char, min_heap_char) min_heap_char; #define __minheap_cast(_heap) (typeof((_heap)->data[0]) *) #define __minheap_obj_size(_heap) sizeof((_heap)->data[0]) /** * struct min_heap_callbacks - Data/functions to customise the min_heap. * @less: Partial order function for this heap. * @swp: Swap elements function. */ struct min_heap_callbacks { bool (*less)(const void *lhs, const void *rhs, void *args); void (*swp)(void *lhs, void *rhs, void *args); }; /** * is_aligned - is this pointer & size okay for word-wide copying? * @base: pointer to data * @size: size of each element * @align: required alignment (typically 4 or 8) * * Returns true if elements can be copied using word loads and stores. * The size must be a multiple of the alignment, and the base address must * be if we do not have CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS. * * For some reason, gcc doesn't know to optimize "if (a & mask || b & mask)" * to "if ((a | b) & mask)", so we do that by hand. */ __attribute_const__ __always_inline static bool is_aligned(const void *base, size_t size, unsigned char align) { unsigned char lsbits = (unsigned char)size; (void)base; #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS lsbits |= (unsigned char)(uintptr_t)base; #endif return (lsbits & (align - 1)) == 0; } /** * swap_words_32 - swap two elements in 32-bit chunks * @a: pointer to the first element to swap * @b: pointer to the second element to swap * @n: element size (must be a multiple of 4) * * Exchange the two objects in memory. This exploits base+index addressing, * which basically all CPUs have, to minimize loop overhead computations. * * For some reason, on x86 gcc 7.3.0 adds a redundant test of n at the * bottom of the loop, even though the zero flag is still valid from the * subtract (since the intervening mov instructions don't alter the flags). * Gcc 8.1.0 doesn't have that problem. */ static __always_inline void swap_words_32(void *a, void *b, size_t n) { do { u32 t = *(u32 *)(a + (n -= 4)); *(u32 *)(a + n) = *(u32 *)(b + n); *(u32 *)(b + n) = t; } while (n); } /** * swap_words_64 - swap two elements in 64-bit chunks * @a: pointer to the first element to swap * @b: pointer to the second element to swap * @n: element size (must be a multiple of 8) * * Exchange the two objects in memory. This exploits base+index * addressing, which basically all CPUs have, to minimize loop overhead * computations. * * We'd like to use 64-bit loads if possible. If they're not, emulating * one requires base+index+4 addressing which x86 has but most other * processors do not. If CONFIG_64BIT, we definitely have 64-bit loads, * but it's possible to have 64-bit loads without 64-bit pointers (e.g. * x32 ABI). Are there any cases the kernel needs to worry about? */ static __always_inline void swap_words_64(void *a, void *b, size_t n) { do { #ifdef CONFIG_64BIT u64 t = *(u64 *)(a + (n -= 8)); *(u64 *)(a + n) = *(u64 *)(b + n); *(u64 *)(b + n) = t; #else /* Use two 32-bit transfers to avoid base+index+4 addressing */ u32 t = *(u32 *)(a + (n -= 4)); *(u32 *)(a + n) = *(u32 *)(b + n); *(u32 *)(b + n) = t; t = *(u32 *)(a + (n -= 4)); *(u32 *)(a + n) = *(u32 *)(b + n); *(u32 *)(b + n) = t; #endif } while (n); } /** * swap_bytes - swap two elements a byte at a time * @a: pointer to the first element to swap * @b: pointer to the second element to swap * @n: element size * * This is the fallback if alignment doesn't allow using larger chunks. */ static __always_inline void swap_bytes(void *a, void *b, size_t n) { do { char t = ((char *)a)[--n]; ((char *)a)[n] = ((char *)b)[n]; ((char *)b)[n] = t; } while (n); } /* * The values are arbitrary as long as they can't be confused with * a pointer, but small integers make for the smallest compare * instructions. */ #define SWAP_WORDS_64 ((void (*)(void *, void *, void *))0) #define SWAP_WORDS_32 ((void (*)(void *, void *, void *))1) #define SWAP_BYTES ((void (*)(void *, void *, void *))2) /* * Selects the appropriate swap function based on the element size. */ static __always_inline void *select_swap_func(const void *base, size_t size) { if (is_aligned(base, size, 8)) return SWAP_WORDS_64; else if (is_aligned(base, size, 4)) return SWAP_WORDS_32; else return SWAP_BYTES; } static __always_inline void do_swap(void *a, void *b, size_t size, void (*swap_func)(void *lhs, void *rhs, void *args), void *priv) { if (swap_func == SWAP_WORDS_64) swap_words_64(a, b, size); else if (swap_func == SWAP_WORDS_32) swap_words_32(a, b, size); else if (swap_func == SWAP_BYTES) swap_bytes(a, b, size); else swap_func(a, b, priv); } /** * parent - given the offset of the child, find the offset of the parent. * @i: the offset of the heap element whose parent is sought. Non-zero. * @lsbit: a precomputed 1-bit mask, equal to "size & -size" * @size: size of each element * * In terms of array indexes, the parent of element j = @i/@size is simply * (j-1)/2. But when working in byte offsets, we can't use implicit * truncation of integer divides. * * Fortunately, we only need one bit of the quotient, not the full divide. * @size has a least significant bit. That bit will be clear if @i is * an even multiple of @size, and set if it's an odd multiple. * * Logically, we're doing "if (i & lsbit) i -= size;", but since the * branch is unpredictable, it's done with a bit of clever branch-free * code instead. */ __attribute_const__ __always_inline static size_t parent(size_t i, unsigned int lsbit, size_t size) { i -= size; i -= size & -(i & lsbit); return i / 2; } /* Initialize a min-heap. */ static __always_inline void __min_heap_init_inline(min_heap_char *heap, void *data, int size) { heap->nr = 0; heap->size = size; if (data) heap->data = data; else heap->data = heap->preallocated; } #define min_heap_init_inline(_heap, _data, _size) \ __min_heap_init_inline((min_heap_char *)_heap, _data, _size) /* Get the minimum element from the heap. */ static __always_inline void *__min_heap_peek_inline(struct min_heap_char *heap) { return heap->nr ? heap->data : NULL; } #define min_heap_peek_inline(_heap) \ (__minheap_cast(_heap) __min_heap_peek_inline((min_heap_char *)_heap)) /* Check if the heap is full. */ static __always_inline bool __min_heap_full_inline(min_heap_char *heap) { return heap->nr == heap->size; } #define min_heap_full_inline(_heap) \ __min_heap_full_inline((min_heap_char *)_heap) /* Sift the element at pos down the heap. */ static __always_inline void __min_heap_sift_down_inline(min_heap_char *heap, int pos, size_t elem_size, const struct min_heap_callbacks *func, void *args) { const unsigned long lsbit = elem_size & -elem_size; void *data = heap->data; void (*swp)(void *lhs, void *rhs, void *args) = func->swp; /* pre-scale counters for performance */ size_t a = pos * elem_size; size_t b, c, d; size_t n = heap->nr * elem_size; if (!swp) swp = select_swap_func(data, elem_size); /* Find the sift-down path all the way to the leaves. */ for (b = a; c = 2 * b + elem_size, (d = c + elem_size) < n;) b = func->less(data + c, data + d, args) ? c : d; /* Special case for the last leaf with no sibling. */ if (d == n) b = c; /* Backtrack to the correct location. */ while (b != a && func->less(data + a, data + b, args)) b = parent(b, lsbit, elem_size); /* Shift the element into its correct place. */ c = b; while (b != a) { b = parent(b, lsbit, elem_size); do_swap(data + b, data + c, elem_size, swp, args); } } #define min_heap_sift_down_inline(_heap, _pos, _func, _args) \ __min_heap_sift_down_inline((min_heap_char *)_heap, _pos, __minheap_obj_size(_heap), \ _func, _args) /* Sift up ith element from the heap, O(log2(nr)). */ static __always_inline void __min_heap_sift_up_inline(min_heap_char *heap, size_t elem_size, size_t idx, const struct min_heap_callbacks *func, void *args) { const unsigned long lsbit = elem_size & -elem_size; void *data = heap->data; void (*swp)(void *lhs, void *rhs, void *args) = func->swp; /* pre-scale counters for performance */ size_t a = idx * elem_size, b; if (!swp) swp = select_swap_func(data, elem_size); while (a) { b = parent(a, lsbit, elem_size); if (func->less(data + b, data + a, args)) break; do_swap(data + a, data + b, elem_size, swp, args); a = b; } } #define min_heap_sift_up_inline(_heap, _idx, _func, _args) \ __min_heap_sift_up_inline((min_heap_char *)_heap, __minheap_obj_size(_heap), _idx, \ _func, _args) /* Floyd's approach to heapification that is O(nr). */ static __always_inline void __min_heapify_all_inline(min_heap_char *heap, size_t elem_size, const struct min_heap_callbacks *func, void *args) { int i; for (i = heap->nr / 2 - 1; i >= 0; i--) __min_heap_sift_down_inline(heap, i, elem_size, func, args); } #define min_heapify_all_inline(_heap, _func, _args) \ __min_heapify_all_inline((min_heap_char *)_heap, __minheap_obj_size(_heap), _func, _args) /* Remove minimum element from the heap, O(log2(nr)). */ static __always_inline bool __min_heap_pop_inline(min_heap_char *heap, size_t elem_size, const struct min_heap_callbacks *func, void *args) { void *data = heap->data; if (WARN_ONCE(heap->nr <= 0, "Popping an empty heap")) return false; /* Place last element at the root (position 0) and then sift down. */ heap->nr--; memcpy(data, data + (heap->nr * elem_size), elem_size); __min_heap_sift_down_inline(heap, 0, elem_size, func, args); return true; } #define min_heap_pop_inline(_heap, _func, _args) \ __min_heap_pop_inline((min_heap_char *)_heap, __minheap_obj_size(_heap), _func, _args) /* * Remove the minimum element and then push the given element. The * implementation performs 1 sift (O(log2(nr))) and is therefore more * efficient than a pop followed by a push that does 2. */ static __always_inline void __min_heap_pop_push_inline(min_heap_char *heap, const void *element, size_t elem_size, const struct min_heap_callbacks *func, void *args) { memcpy(heap->data, element, elem_size); __min_heap_sift_down_inline(heap, 0, elem_size, func, args); } #define min_heap_pop_push_inline(_heap, _element, _func, _args) \ __min_heap_pop_push_inline((min_heap_char *)_heap, _element, __minheap_obj_size(_heap), \ _func, _args) /* Push an element on to the heap, O(log2(nr)). */ static __always_inline bool __min_heap_push_inline(min_heap_char *heap, const void *element, size_t elem_size, const struct min_heap_callbacks *func, void *args) { void *data = heap->data; int pos; if (WARN_ONCE(heap->nr >= heap->size, "Pushing on a full heap")) return false; /* Place at the end of data. */ pos = heap->nr; memcpy(data + (pos * elem_size), element, elem_size); heap->nr++; /* Sift child at pos up. */ __min_heap_sift_up_inline(heap, elem_size, pos, func, args); return true; } #define min_heap_push_inline(_heap, _element, _func, _args) \ __min_heap_push_inline((min_heap_char *)_heap, _element, __minheap_obj_size(_heap), \ _func, _args) /* Remove ith element from the heap, O(log2(nr)). */ static __always_inline bool __min_heap_del_inline(min_heap_char *heap, size_t elem_size, size_t idx, const struct min_heap_callbacks *func, void *args) { void *data = heap->data; void (*swp)(void *lhs, void *rhs, void *args) = func->swp; if (WARN_ONCE(heap->nr <= 0, "Popping an empty heap")) return false; if (!swp) swp = select_swap_func(data, elem_size); /* Place last element at the root (position 0) and then sift down. */ heap->nr--; if (idx == heap->nr) return true; do_swap(data + (idx * elem_size), data + (heap->nr * elem_size), elem_size, swp, args); __min_heap_sift_up_inline(heap, elem_size, idx, func, args); __min_heap_sift_down_inline(heap, idx, elem_size, func, args); return true; } #define min_heap_del_inline(_heap, _idx, _func, _args) \ __min_heap_del_inline((min_heap_char *)_heap, __minheap_obj_size(_heap), _idx, \ _func, _args) void __min_heap_init(min_heap_char *heap, void *data, int size); void *__min_heap_peek(struct min_heap_char *heap); bool __min_heap_full(min_heap_char *heap); void __min_heap_sift_down(min_heap_char *heap, int pos, size_t elem_size, const struct min_heap_callbacks *func, void *args); void __min_heap_sift_up(min_heap_char *heap, size_t elem_size, size_t idx, const struct min_heap_callbacks *func, void *args); void __min_heapify_all(min_heap_char *heap, size_t elem_size, const struct min_heap_callbacks *func, void *args); bool __min_heap_pop(min_heap_char *heap, size_t elem_size, const struct min_heap_callbacks *func, void *args); void __min_heap_pop_push(min_heap_char *heap, const void *element, size_t elem_size, const struct min_heap_callbacks *func, void *args); bool __min_heap_push(min_heap_char *heap, const void *element, size_t elem_size, const struct min_heap_callbacks *func, void *args); bool __min_heap_del(min_heap_char *heap, size_t elem_size, size_t idx, const struct min_heap_callbacks *func, void *args); #define min_heap_init(_heap, _data, _size) \ __min_heap_init((min_heap_char *)_heap, _data, _size) #define min_heap_peek(_heap) \ (__minheap_cast(_heap) __min_heap_peek((min_heap_char *)_heap)) #define min_heap_full(_heap) \ __min_heap_full((min_heap_char *)_heap) #define min_heap_sift_down(_heap, _pos, _func, _args) \ __min_heap_sift_down((min_heap_char *)_heap, _pos, __minheap_obj_size(_heap), _func, _args) #define min_heap_sift_up(_heap, _idx, _func, _args) \ __min_heap_sift_up((min_heap_char *)_heap, __minheap_obj_size(_heap), _idx, _func, _args) #define min_heapify_all(_heap, _func, _args) \ __min_heapify_all((min_heap_char *)_heap, __minheap_obj_size(_heap), _func, _args) #define min_heap_pop(_heap, _func, _args) \ __min_heap_pop((min_heap_char *)_heap, __minheap_obj_size(_heap), _func, _args) #define min_heap_pop_push(_heap, _element, _func, _args) \ __min_heap_pop_push((min_heap_char *)_heap, _element, __minheap_obj_size(_heap), \ _func, _args) #define min_heap_push(_heap, _element, _func, _args) \ __min_heap_push((min_heap_char *)_heap, _element, __minheap_obj_size(_heap), _func, _args) #define min_heap_del(_heap, _idx, _func, _args) \ __min_heap_del((min_heap_char *)_heap, __minheap_obj_size(_heap), _idx, _func, _args) #endif /* _LINUX_MIN_HEAP_H */