/* SPDX-License-Identifier: GPL-2.0 */ /* * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk). * * (C) SGI 2006, Christoph Lameter * Cleaned up and restructured to ease the addition of alternative * implementations of SLAB allocators. * (C) Linux Foundation 2008-2013 * Unified interface for all slab allocators */ #ifndef _LINUX_SLAB_H #define _LINUX_SLAB_H #include #include #include #include #include #include #include #include enum _slab_flag_bits { _SLAB_CONSISTENCY_CHECKS, _SLAB_RED_ZONE, _SLAB_POISON, _SLAB_KMALLOC, _SLAB_HWCACHE_ALIGN, _SLAB_CACHE_DMA, _SLAB_CACHE_DMA32, _SLAB_STORE_USER, _SLAB_PANIC, _SLAB_TYPESAFE_BY_RCU, _SLAB_TRACE, #ifdef CONFIG_DEBUG_OBJECTS _SLAB_DEBUG_OBJECTS, #endif _SLAB_NOLEAKTRACE, _SLAB_NO_MERGE, #ifdef CONFIG_FAILSLAB _SLAB_FAILSLAB, #endif #ifdef CONFIG_MEMCG _SLAB_ACCOUNT, #endif #ifdef CONFIG_KASAN_GENERIC _SLAB_KASAN, #endif _SLAB_NO_USER_FLAGS, #ifdef CONFIG_KFENCE _SLAB_SKIP_KFENCE, #endif #ifndef CONFIG_SLUB_TINY _SLAB_RECLAIM_ACCOUNT, #endif _SLAB_OBJECT_POISON, _SLAB_CMPXCHG_DOUBLE, #ifdef CONFIG_SLAB_OBJ_EXT _SLAB_NO_OBJ_EXT, #endif _SLAB_FLAGS_LAST_BIT }; #define __SLAB_FLAG_BIT(nr) ((slab_flags_t __force)(1U << (nr))) #define __SLAB_FLAG_UNUSED ((slab_flags_t __force)(0U)) /* * Flags to pass to kmem_cache_create(). * The ones marked DEBUG need CONFIG_SLUB_DEBUG enabled, otherwise are no-op */ /* DEBUG: Perform (expensive) checks on alloc/free */ #define SLAB_CONSISTENCY_CHECKS __SLAB_FLAG_BIT(_SLAB_CONSISTENCY_CHECKS) /* DEBUG: Red zone objs in a cache */ #define SLAB_RED_ZONE __SLAB_FLAG_BIT(_SLAB_RED_ZONE) /* DEBUG: Poison objects */ #define SLAB_POISON __SLAB_FLAG_BIT(_SLAB_POISON) /* Indicate a kmalloc slab */ #define SLAB_KMALLOC __SLAB_FLAG_BIT(_SLAB_KMALLOC) /** * define SLAB_HWCACHE_ALIGN - Align objects on cache line boundaries. * * Sufficiently large objects are aligned on cache line boundary. For object * size smaller than a half of cache line size, the alignment is on the half of * cache line size. In general, if object size is smaller than 1/2^n of cache * line size, the alignment is adjusted to 1/2^n. * * If explicit alignment is also requested by the respective * &struct kmem_cache_args field, the greater of both is alignments is applied. */ #define SLAB_HWCACHE_ALIGN __SLAB_FLAG_BIT(_SLAB_HWCACHE_ALIGN) /* Use GFP_DMA memory */ #define SLAB_CACHE_DMA __SLAB_FLAG_BIT(_SLAB_CACHE_DMA) /* Use GFP_DMA32 memory */ #define SLAB_CACHE_DMA32 __SLAB_FLAG_BIT(_SLAB_CACHE_DMA32) /* DEBUG: Store the last owner for bug hunting */ #define SLAB_STORE_USER __SLAB_FLAG_BIT(_SLAB_STORE_USER) /* Panic if kmem_cache_create() fails */ #define SLAB_PANIC __SLAB_FLAG_BIT(_SLAB_PANIC) /** * define SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS! * * This delays freeing the SLAB page by a grace period, it does _NOT_ * delay object freeing. This means that if you do kmem_cache_free() * that memory location is free to be reused at any time. Thus it may * be possible to see another object there in the same RCU grace period. * * This feature only ensures the memory location backing the object * stays valid, the trick to using this is relying on an independent * object validation pass. Something like: * * :: * * begin: * rcu_read_lock(); * obj = lockless_lookup(key); * if (obj) { * if (!try_get_ref(obj)) // might fail for free objects * rcu_read_unlock(); * goto begin; * * if (obj->key != key) { // not the object we expected * put_ref(obj); * rcu_read_unlock(); * goto begin; * } * } * rcu_read_unlock(); * * This is useful if we need to approach a kernel structure obliquely, * from its address obtained without the usual locking. We can lock * the structure to stabilize it and check it's still at the given address, * only if we can be sure that the memory has not been meanwhile reused * for some other kind of object (which our subsystem's lock might corrupt). * * rcu_read_lock before reading the address, then rcu_read_unlock after * taking the spinlock within the structure expected at that address. * * Note that it is not possible to acquire a lock within a structure * allocated with SLAB_TYPESAFE_BY_RCU without first acquiring a reference * as described above. The reason is that SLAB_TYPESAFE_BY_RCU pages * are not zeroed before being given to the slab, which means that any * locks must be initialized after each and every kmem_struct_alloc(). * Alternatively, make the ctor passed to kmem_cache_create() initialize * the locks at page-allocation time, as is done in __i915_request_ctor(), * sighand_ctor(), and anon_vma_ctor(). Such a ctor permits readers * to safely acquire those ctor-initialized locks under rcu_read_lock() * protection. * * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU. */ #define SLAB_TYPESAFE_BY_RCU __SLAB_FLAG_BIT(_SLAB_TYPESAFE_BY_RCU) /* Trace allocations and frees */ #define SLAB_TRACE __SLAB_FLAG_BIT(_SLAB_TRACE) /* Flag to prevent checks on free */ #ifdef CONFIG_DEBUG_OBJECTS # define SLAB_DEBUG_OBJECTS __SLAB_FLAG_BIT(_SLAB_DEBUG_OBJECTS) #else # define SLAB_DEBUG_OBJECTS __SLAB_FLAG_UNUSED #endif /* Avoid kmemleak tracing */ #define SLAB_NOLEAKTRACE __SLAB_FLAG_BIT(_SLAB_NOLEAKTRACE) /* * Prevent merging with compatible kmem caches. This flag should be used * cautiously. Valid use cases: * * - caches created for self-tests (e.g. kunit) * - general caches created and used by a subsystem, only when a * (subsystem-specific) debug option is enabled * - performance critical caches, should be very rare and consulted with slab * maintainers, and not used together with CONFIG_SLUB_TINY */ #define SLAB_NO_MERGE __SLAB_FLAG_BIT(_SLAB_NO_MERGE) /* Fault injection mark */ #ifdef CONFIG_FAILSLAB # define SLAB_FAILSLAB __SLAB_FLAG_BIT(_SLAB_FAILSLAB) #else # define SLAB_FAILSLAB __SLAB_FLAG_UNUSED #endif /** * define SLAB_ACCOUNT - Account allocations to memcg. * * All object allocations from this cache will be memcg accounted, regardless of * __GFP_ACCOUNT being or not being passed to individual allocations. */ #ifdef CONFIG_MEMCG # define SLAB_ACCOUNT __SLAB_FLAG_BIT(_SLAB_ACCOUNT) #else # define SLAB_ACCOUNT __SLAB_FLAG_UNUSED #endif #ifdef CONFIG_KASAN_GENERIC #define SLAB_KASAN __SLAB_FLAG_BIT(_SLAB_KASAN) #else #define SLAB_KASAN __SLAB_FLAG_UNUSED #endif /* * Ignore user specified debugging flags. * Intended for caches created for self-tests so they have only flags * specified in the code and other flags are ignored. */ #define SLAB_NO_USER_FLAGS __SLAB_FLAG_BIT(_SLAB_NO_USER_FLAGS) #ifdef CONFIG_KFENCE #define SLAB_SKIP_KFENCE __SLAB_FLAG_BIT(_SLAB_SKIP_KFENCE) #else #define SLAB_SKIP_KFENCE __SLAB_FLAG_UNUSED #endif /* The following flags affect the page allocator grouping pages by mobility */ /** * define SLAB_RECLAIM_ACCOUNT - Objects are reclaimable. * * Use this flag for caches that have an associated shrinker. As a result, slab * pages are allocated with __GFP_RECLAIMABLE, which affects grouping pages by * mobility, and are accounted in SReclaimable counter in /proc/meminfo */ #ifndef CONFIG_SLUB_TINY #define SLAB_RECLAIM_ACCOUNT __SLAB_FLAG_BIT(_SLAB_RECLAIM_ACCOUNT) #else #define SLAB_RECLAIM_ACCOUNT __SLAB_FLAG_UNUSED #endif #define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */ /* Slab created using create_boot_cache */ #ifdef CONFIG_SLAB_OBJ_EXT #define SLAB_NO_OBJ_EXT __SLAB_FLAG_BIT(_SLAB_NO_OBJ_EXT) #else #define SLAB_NO_OBJ_EXT __SLAB_FLAG_UNUSED #endif /* * freeptr_t represents a SLUB freelist pointer, which might be encoded * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled. */ typedef struct { unsigned long v; } freeptr_t; /* * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests. * * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault. * * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can. * Both make kfree a no-op. */ #define ZERO_SIZE_PTR ((void *)16) #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \ (unsigned long)ZERO_SIZE_PTR) #include struct list_lru; struct mem_cgroup; /* * struct kmem_cache related prototypes */ bool slab_is_available(void); /** * struct kmem_cache_args - Less common arguments for kmem_cache_create() * * Any uninitialized fields of the structure are interpreted as unused. The * exception is @freeptr_offset where %0 is a valid value, so * @use_freeptr_offset must be also set to %true in order to interpret the field * as used. For @useroffset %0 is also valid, but only with non-%0 * @usersize. * * When %NULL args is passed to kmem_cache_create(), it is equivalent to all * fields unused. */ struct kmem_cache_args { /** * @align: The required alignment for the objects. * * %0 means no specific alignment is requested. */ unsigned int align; /** * @useroffset: Usercopy region offset. * * %0 is a valid offset, when @usersize is non-%0 */ unsigned int useroffset; /** * @usersize: Usercopy region size. * * %0 means no usercopy region is specified. */ unsigned int usersize; /** * @freeptr_offset: Custom offset for the free pointer * in &SLAB_TYPESAFE_BY_RCU caches * * By default &SLAB_TYPESAFE_BY_RCU caches place the free pointer * outside of the object. This might cause the object to grow in size. * Cache creators that have a reason to avoid this can specify a custom * free pointer offset in their struct where the free pointer will be * placed. * * Note that placing the free pointer inside the object requires the * caller to ensure that no fields are invalidated that are required to * guard against object recycling (See &SLAB_TYPESAFE_BY_RCU for * details). * * Using %0 as a value for @freeptr_offset is valid. If @freeptr_offset * is specified, %use_freeptr_offset must be set %true. * * Note that @ctor currently isn't supported with custom free pointers * as a @ctor requires an external free pointer. */ unsigned int freeptr_offset; /** * @use_freeptr_offset: Whether a @freeptr_offset is used. */ bool use_freeptr_offset; /** * @ctor: A constructor for the objects. * * The constructor is invoked for each object in a newly allocated slab * page. It is the cache user's responsibility to free object in the * same state as after calling the constructor, or deal appropriately * with any differences between a freshly constructed and a reallocated * object. * * %NULL means no constructor. */ void (*ctor)(void *); }; struct kmem_cache *__kmem_cache_create_args(const char *name, unsigned int object_size, struct kmem_cache_args *args, slab_flags_t flags); static inline struct kmem_cache * __kmem_cache_create(const char *name, unsigned int size, unsigned int align, slab_flags_t flags, void (*ctor)(void *)) { struct kmem_cache_args kmem_args = { .align = align, .ctor = ctor, }; return __kmem_cache_create_args(name, size, &kmem_args, flags); } /** * kmem_cache_create_usercopy - Create a kmem cache with a region suitable * for copying to userspace. * @name: A string which is used in /proc/slabinfo to identify this cache. * @size: The size of objects to be created in this cache. * @align: The required alignment for the objects. * @flags: SLAB flags * @useroffset: Usercopy region offset * @usersize: Usercopy region size * @ctor: A constructor for the objects, or %NULL. * * This is a legacy wrapper, new code should use either KMEM_CACHE_USERCOPY() * if whitelisting a single field is sufficient, or kmem_cache_create() with * the necessary parameters passed via the args parameter (see * &struct kmem_cache_args) * * Return: a pointer to the cache on success, NULL on failure. */ static inline struct kmem_cache * kmem_cache_create_usercopy(const char *name, unsigned int size, unsigned int align, slab_flags_t flags, unsigned int useroffset, unsigned int usersize, void (*ctor)(void *)) { struct kmem_cache_args kmem_args = { .align = align, .ctor = ctor, .useroffset = useroffset, .usersize = usersize, }; return __kmem_cache_create_args(name, size, &kmem_args, flags); } /* If NULL is passed for @args, use this variant with default arguments. */ static inline struct kmem_cache * __kmem_cache_default_args(const char *name, unsigned int size, struct kmem_cache_args *args, slab_flags_t flags) { struct kmem_cache_args kmem_default_args = {}; /* Make sure we don't get passed garbage. */ if (WARN_ON_ONCE(args)) return ERR_PTR(-EINVAL); return __kmem_cache_create_args(name, size, &kmem_default_args, flags); } /** * kmem_cache_create - Create a kmem cache. * @__name: A string which is used in /proc/slabinfo to identify this cache. * @__object_size: The size of objects to be created in this cache. * @__args: Optional arguments, see &struct kmem_cache_args. Passing %NULL * means defaults will be used for all the arguments. * * This is currently implemented as a macro using ``_Generic()`` to call * either the new variant of the function, or a legacy one. * * The new variant has 4 parameters: * ``kmem_cache_create(name, object_size, args, flags)`` * * See __kmem_cache_create_args() which implements this. * * The legacy variant has 5 parameters: * ``kmem_cache_create(name, object_size, align, flags, ctor)`` * * The align and ctor parameters map to the respective fields of * &struct kmem_cache_args * * Context: Cannot be called within a interrupt, but can be interrupted. * * Return: a pointer to the cache on success, NULL on failure. */ #define kmem_cache_create(__name, __object_size, __args, ...) \ _Generic((__args), \ struct kmem_cache_args *: __kmem_cache_create_args, \ void *: __kmem_cache_default_args, \ default: __kmem_cache_create)(__name, __object_size, __args, __VA_ARGS__) void kmem_cache_destroy(struct kmem_cache *s); int kmem_cache_shrink(struct kmem_cache *s); /* * Please use this macro to create slab caches. Simply specify the * name of the structure and maybe some flags that are listed above. * * The alignment of the struct determines object alignment. If you * f.e. add ____cacheline_aligned_in_smp to the struct declaration * then the objects will be properly aligned in SMP configurations. */ #define KMEM_CACHE(__struct, __flags) \ __kmem_cache_create_args(#__struct, sizeof(struct __struct), \ &(struct kmem_cache_args) { \ .align = __alignof__(struct __struct), \ }, (__flags)) /* * To whitelist a single field for copying to/from usercopy, use this * macro instead for KMEM_CACHE() above. */ #define KMEM_CACHE_USERCOPY(__struct, __flags, __field) \ __kmem_cache_create_args(#__struct, sizeof(struct __struct), \ &(struct kmem_cache_args) { \ .align = __alignof__(struct __struct), \ .useroffset = offsetof(struct __struct, __field), \ .usersize = sizeof_field(struct __struct, __field), \ }, (__flags)) /* * Common kmalloc functions provided by all allocators */ void * __must_check krealloc_noprof(const void *objp, size_t new_size, gfp_t flags) __realloc_size(2); #define krealloc(...) alloc_hooks(krealloc_noprof(__VA_ARGS__)) void kfree(const void *objp); void kfree_sensitive(const void *objp); size_t __ksize(const void *objp); DEFINE_FREE(kfree, void *, if (!IS_ERR_OR_NULL(_T)) kfree(_T)) DEFINE_FREE(kfree_sensitive, void *, if (_T) kfree_sensitive(_T)) /** * ksize - Report actual allocation size of associated object * * @objp: Pointer returned from a prior kmalloc()-family allocation. * * This should not be used for writing beyond the originally requested * allocation size. Either use krealloc() or round up the allocation size * with kmalloc_size_roundup() prior to allocation. If this is used to * access beyond the originally requested allocation size, UBSAN_BOUNDS * and/or FORTIFY_SOURCE may trip, since they only know about the * originally allocated size via the __alloc_size attribute. */ size_t ksize(const void *objp); #ifdef CONFIG_PRINTK bool kmem_dump_obj(void *object); #else static inline bool kmem_dump_obj(void *object) { return false; } #endif /* * Some archs want to perform DMA into kmalloc caches and need a guaranteed * alignment larger than the alignment of a 64-bit integer. * Setting ARCH_DMA_MINALIGN in arch headers allows that. */ #ifdef ARCH_HAS_DMA_MINALIGN #if ARCH_DMA_MINALIGN > 8 && !defined(ARCH_KMALLOC_MINALIGN) #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN #endif #endif #ifndef ARCH_KMALLOC_MINALIGN #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) #elif ARCH_KMALLOC_MINALIGN > 8 #define KMALLOC_MIN_SIZE ARCH_KMALLOC_MINALIGN #define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE) #endif /* * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment. * Intended for arches that get misalignment faults even for 64 bit integer * aligned buffers. */ #ifndef ARCH_SLAB_MINALIGN #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) #endif /* * Arches can define this function if they want to decide the minimum slab * alignment at runtime. The value returned by the function must be a power * of two and >= ARCH_SLAB_MINALIGN. */ #ifndef arch_slab_minalign static inline unsigned int arch_slab_minalign(void) { return ARCH_SLAB_MINALIGN; } #endif /* * kmem_cache_alloc and friends return pointers aligned to ARCH_SLAB_MINALIGN. * kmalloc and friends return pointers aligned to both ARCH_KMALLOC_MINALIGN * and ARCH_SLAB_MINALIGN, but here we only assume the former alignment. */ #define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN) #define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN) #define __assume_page_alignment __assume_aligned(PAGE_SIZE) /* * Kmalloc array related definitions */ /* * SLUB directly allocates requests fitting in to an order-1 page * (PAGE_SIZE*2). Larger requests are passed to the page allocator. */ #define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1) #define KMALLOC_SHIFT_MAX (MAX_PAGE_ORDER + PAGE_SHIFT) #ifndef KMALLOC_SHIFT_LOW #define KMALLOC_SHIFT_LOW 3 #endif /* Maximum allocatable size */ #define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX) /* Maximum size for which we actually use a slab cache */ #define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH) /* Maximum order allocatable via the slab allocator */ #define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT) /* * Kmalloc subsystem. */ #ifndef KMALLOC_MIN_SIZE #define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW) #endif /* * This restriction comes from byte sized index implementation. * Page size is normally 2^12 bytes and, in this case, if we want to use * byte sized index which can represent 2^8 entries, the size of the object * should be equal or greater to 2^12 / 2^8 = 2^4 = 16. * If minimum size of kmalloc is less than 16, we use it as minimum object * size and give up to use byte sized index. */ #define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \ (KMALLOC_MIN_SIZE) : 16) #ifdef CONFIG_RANDOM_KMALLOC_CACHES #define RANDOM_KMALLOC_CACHES_NR 15 // # of cache copies #else #define RANDOM_KMALLOC_CACHES_NR 0 #endif /* * Whenever changing this, take care of that kmalloc_type() and * create_kmalloc_caches() still work as intended. * * KMALLOC_NORMAL can contain only unaccounted objects whereas KMALLOC_CGROUP * is for accounted but unreclaimable and non-dma objects. All the other * kmem caches can have both accounted and unaccounted objects. */ enum kmalloc_cache_type { KMALLOC_NORMAL = 0, #ifndef CONFIG_ZONE_DMA KMALLOC_DMA = KMALLOC_NORMAL, #endif #ifndef CONFIG_MEMCG KMALLOC_CGROUP = KMALLOC_NORMAL, #endif KMALLOC_RANDOM_START = KMALLOC_NORMAL, KMALLOC_RANDOM_END = KMALLOC_RANDOM_START + RANDOM_KMALLOC_CACHES_NR, #ifdef CONFIG_SLUB_TINY KMALLOC_RECLAIM = KMALLOC_NORMAL, #else KMALLOC_RECLAIM, #endif #ifdef CONFIG_ZONE_DMA KMALLOC_DMA, #endif #ifdef CONFIG_MEMCG KMALLOC_CGROUP, #endif NR_KMALLOC_TYPES }; typedef struct kmem_cache * kmem_buckets[KMALLOC_SHIFT_HIGH + 1]; extern kmem_buckets kmalloc_caches[NR_KMALLOC_TYPES]; /* * Define gfp bits that should not be set for KMALLOC_NORMAL. */ #define KMALLOC_NOT_NORMAL_BITS \ (__GFP_RECLAIMABLE | \ (IS_ENABLED(CONFIG_ZONE_DMA) ? __GFP_DMA : 0) | \ (IS_ENABLED(CONFIG_MEMCG) ? __GFP_ACCOUNT : 0)) extern unsigned long random_kmalloc_seed; static __always_inline enum kmalloc_cache_type kmalloc_type(gfp_t flags, unsigned long caller) { /* * The most common case is KMALLOC_NORMAL, so test for it * with a single branch for all the relevant flags. */ if (likely((flags & KMALLOC_NOT_NORMAL_BITS) == 0)) #ifdef CONFIG_RANDOM_KMALLOC_CACHES /* RANDOM_KMALLOC_CACHES_NR (=15) copies + the KMALLOC_NORMAL */ return KMALLOC_RANDOM_START + hash_64(caller ^ random_kmalloc_seed, ilog2(RANDOM_KMALLOC_CACHES_NR + 1)); #else return KMALLOC_NORMAL; #endif /* * At least one of the flags has to be set. Their priorities in * decreasing order are: * 1) __GFP_DMA * 2) __GFP_RECLAIMABLE * 3) __GFP_ACCOUNT */ if (IS_ENABLED(CONFIG_ZONE_DMA) && (flags & __GFP_DMA)) return KMALLOC_DMA; if (!IS_ENABLED(CONFIG_MEMCG) || (flags & __GFP_RECLAIMABLE)) return KMALLOC_RECLAIM; else return KMALLOC_CGROUP; } /* * Figure out which kmalloc slab an allocation of a certain size * belongs to. * 0 = zero alloc * 1 = 65 .. 96 bytes * 2 = 129 .. 192 bytes * n = 2^(n-1)+1 .. 2^n * * Note: __kmalloc_index() is compile-time optimized, and not runtime optimized; * typical usage is via kmalloc_index() and therefore evaluated at compile-time. * Callers where !size_is_constant should only be test modules, where runtime * overheads of __kmalloc_index() can be tolerated. Also see kmalloc_slab(). */ static __always_inline unsigned int __kmalloc_index(size_t size, bool size_is_constant) { if (!size) return 0; if (size <= KMALLOC_MIN_SIZE) return KMALLOC_SHIFT_LOW; if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96) return 1; if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192) return 2; if (size <= 8) return 3; if (size <= 16) return 4; if (size <= 32) return 5; if (size <= 64) return 6; if (size <= 128) return 7; if (size <= 256) return 8; if (size <= 512) return 9; if (size <= 1024) return 10; if (size <= 2 * 1024) return 11; if (size <= 4 * 1024) return 12; if (size <= 8 * 1024) return 13; if (size <= 16 * 1024) return 14; if (size <= 32 * 1024) return 15; if (size <= 64 * 1024) return 16; if (size <= 128 * 1024) return 17; if (size <= 256 * 1024) return 18; if (size <= 512 * 1024) return 19; if (size <= 1024 * 1024) return 20; if (size <= 2 * 1024 * 1024) return 21; if (!IS_ENABLED(CONFIG_PROFILE_ALL_BRANCHES) && size_is_constant) BUILD_BUG_ON_MSG(1, "unexpected size in kmalloc_index()"); else BUG(); /* Will never be reached. Needed because the compiler may complain */ return -1; } static_assert(PAGE_SHIFT <= 20); #define kmalloc_index(s) __kmalloc_index(s, true) #include /** * kmem_cache_alloc - Allocate an object * @cachep: The cache to allocate from. * @flags: See kmalloc(). * * Allocate an object from this cache. * See kmem_cache_zalloc() for a shortcut of adding __GFP_ZERO to flags. * * Return: pointer to the new object or %NULL in case of error */ void *kmem_cache_alloc_noprof(struct kmem_cache *cachep, gfp_t flags) __assume_slab_alignment __malloc; #define kmem_cache_alloc(...) alloc_hooks(kmem_cache_alloc_noprof(__VA_ARGS__)) void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru, gfp_t gfpflags) __assume_slab_alignment __malloc; #define kmem_cache_alloc_lru(...) alloc_hooks(kmem_cache_alloc_lru_noprof(__VA_ARGS__)) /** * kmem_cache_charge - memcg charge an already allocated slab memory * @objp: address of the slab object to memcg charge * @gfpflags: describe the allocation context * * kmem_cache_charge allows charging a slab object to the current memcg, * primarily in cases where charging at allocation time might not be possible * because the target memcg is not known (i.e. softirq context) * * The objp should be pointer returned by the slab allocator functions like * kmalloc (with __GFP_ACCOUNT in flags) or kmem_cache_alloc. The memcg charge * behavior can be controlled through gfpflags parameter, which affects how the * necessary internal metadata can be allocated. Including __GFP_NOFAIL denotes * that overcharging is requested instead of failure, but is not applied for the * internal metadata allocation. * * There are several cases where it will return true even if the charging was * not done: * More specifically: * * 1. For !CONFIG_MEMCG or cgroup_disable=memory systems. * 2. Already charged slab objects. * 3. For slab objects from KMALLOC_NORMAL caches - allocated by kmalloc() * without __GFP_ACCOUNT * 4. Allocating internal metadata has failed * * Return: true if charge was successful otherwise false. */ bool kmem_cache_charge(void *objp, gfp_t gfpflags); void kmem_cache_free(struct kmem_cache *s, void *objp); kmem_buckets *kmem_buckets_create(const char *name, slab_flags_t flags, unsigned int useroffset, unsigned int usersize, void (*ctor)(void *)); /* * Bulk allocation and freeing operations. These are accelerated in an * allocator specific way to avoid taking locks repeatedly or building * metadata structures unnecessarily. * * Note that interrupts must be enabled when calling these functions. */ void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p); int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size, void **p); #define kmem_cache_alloc_bulk(...) alloc_hooks(kmem_cache_alloc_bulk_noprof(__VA_ARGS__)) static __always_inline void kfree_bulk(size_t size, void **p) { kmem_cache_free_bulk(NULL, size, p); } void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t flags, int node) __assume_slab_alignment __malloc; #define kmem_cache_alloc_node(...) alloc_hooks(kmem_cache_alloc_node_noprof(__VA_ARGS__)) /* * These macros allow declaring a kmem_buckets * parameter alongside size, which * can be compiled out with CONFIG_SLAB_BUCKETS=n so that a large number of call * sites don't have to pass NULL. */ #ifdef CONFIG_SLAB_BUCKETS #define DECL_BUCKET_PARAMS(_size, _b) size_t (_size), kmem_buckets *(_b) #define PASS_BUCKET_PARAMS(_size, _b) (_size), (_b) #define PASS_BUCKET_PARAM(_b) (_b) #else #define DECL_BUCKET_PARAMS(_size, _b) size_t (_size) #define PASS_BUCKET_PARAMS(_size, _b) (_size) #define PASS_BUCKET_PARAM(_b) NULL #endif /* * The following functions are not to be used directly and are intended only * for internal use from kmalloc() and kmalloc_node() * with the exception of kunit tests */ void *__kmalloc_noprof(size_t size, gfp_t flags) __assume_kmalloc_alignment __alloc_size(1); void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node) __assume_kmalloc_alignment __alloc_size(1); void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t flags, size_t size) __assume_kmalloc_alignment __alloc_size(3); void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node, size_t size) __assume_kmalloc_alignment __alloc_size(4); void *__kmalloc_large_noprof(size_t size, gfp_t flags) __assume_page_alignment __alloc_size(1); void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node) __assume_page_alignment __alloc_size(1); /** * kmalloc - allocate kernel memory * @size: how many bytes of memory are required. * @flags: describe the allocation context * * kmalloc is the normal method of allocating memory * for objects smaller than page size in the kernel. * * The allocated object address is aligned to at least ARCH_KMALLOC_MINALIGN * bytes. For @size of power of two bytes, the alignment is also guaranteed * to be at least to the size. For other sizes, the alignment is guaranteed to * be at least the largest power-of-two divisor of @size. * * The @flags argument may be one of the GFP flags defined at * include/linux/gfp_types.h and described at * :ref:`Documentation/core-api/mm-api.rst ` * * The recommended usage of the @flags is described at * :ref:`Documentation/core-api/memory-allocation.rst ` * * Below is a brief outline of the most useful GFP flags * * %GFP_KERNEL * Allocate normal kernel ram. May sleep. * * %GFP_NOWAIT * Allocation will not sleep. * * %GFP_ATOMIC * Allocation will not sleep. May use emergency pools. * * Also it is possible to set different flags by OR'ing * in one or more of the following additional @flags: * * %__GFP_ZERO * Zero the allocated memory before returning. Also see kzalloc(). * * %__GFP_HIGH * This allocation has high priority and may use emergency pools. * * %__GFP_NOFAIL * Indicate that this allocation is in no way allowed to fail * (think twice before using). * * %__GFP_NORETRY * If memory is not immediately available, * then give up at once. * * %__GFP_NOWARN * If allocation fails, don't issue any warnings. * * %__GFP_RETRY_MAYFAIL * Try really hard to succeed the allocation but fail * eventually. */ static __always_inline __alloc_size(1) void *kmalloc_noprof(size_t size, gfp_t flags) { if (__builtin_constant_p(size) && size) { unsigned int index; if (size > KMALLOC_MAX_CACHE_SIZE) return __kmalloc_large_noprof(size, flags); index = kmalloc_index(size); return __kmalloc_cache_noprof( kmalloc_caches[kmalloc_type(flags, _RET_IP_)][index], flags, size); } return __kmalloc_noprof(size, flags); } #define kmalloc(...) alloc_hooks(kmalloc_noprof(__VA_ARGS__)) #define kmem_buckets_alloc(_b, _size, _flags) \ alloc_hooks(__kmalloc_node_noprof(PASS_BUCKET_PARAMS(_size, _b), _flags, NUMA_NO_NODE)) #define kmem_buckets_alloc_track_caller(_b, _size, _flags) \ alloc_hooks(__kmalloc_node_track_caller_noprof(PASS_BUCKET_PARAMS(_size, _b), _flags, NUMA_NO_NODE, _RET_IP_)) static __always_inline __alloc_size(1) void *kmalloc_node_noprof(size_t size, gfp_t flags, int node) { if (__builtin_constant_p(size) && size) { unsigned int index; if (size > KMALLOC_MAX_CACHE_SIZE) return __kmalloc_large_node_noprof(size, flags, node); index = kmalloc_index(size); return __kmalloc_cache_node_noprof( kmalloc_caches[kmalloc_type(flags, _RET_IP_)][index], flags, node, size); } return __kmalloc_node_noprof(PASS_BUCKET_PARAMS(size, NULL), flags, node); } #define kmalloc_node(...) alloc_hooks(kmalloc_node_noprof(__VA_ARGS__)) /** * kmalloc_array - allocate memory for an array. * @n: number of elements. * @size: element size. * @flags: the type of memory to allocate (see kmalloc). */ static inline __alloc_size(1, 2) void *kmalloc_array_noprof(size_t n, size_t size, gfp_t flags) { size_t bytes; if (unlikely(check_mul_overflow(n, size, &bytes))) return NULL; if (__builtin_constant_p(n) && __builtin_constant_p(size)) return kmalloc_noprof(bytes, flags); return kmalloc_noprof(bytes, flags); } #define kmalloc_array(...) alloc_hooks(kmalloc_array_noprof(__VA_ARGS__)) /** * krealloc_array - reallocate memory for an array. * @p: pointer to the memory chunk to reallocate * @new_n: new number of elements to alloc * @new_size: new size of a single member of the array * @flags: the type of memory to allocate (see kmalloc) * * If __GFP_ZERO logic is requested, callers must ensure that, starting with the * initial memory allocation, every subsequent call to this API for the same * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that * __GFP_ZERO is not fully honored by this API. * * See krealloc_noprof() for further details. * * In any case, the contents of the object pointed to are preserved up to the * lesser of the new and old sizes. */ static inline __realloc_size(2, 3) void * __must_check krealloc_array_noprof(void *p, size_t new_n, size_t new_size, gfp_t flags) { size_t bytes; if (unlikely(check_mul_overflow(new_n, new_size, &bytes))) return NULL; return krealloc_noprof(p, bytes, flags); } #define krealloc_array(...) alloc_hooks(krealloc_array_noprof(__VA_ARGS__)) /** * kcalloc - allocate memory for an array. The memory is set to zero. * @n: number of elements. * @size: element size. * @flags: the type of memory to allocate (see kmalloc). */ #define kcalloc(n, size, flags) kmalloc_array(n, size, (flags) | __GFP_ZERO) void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node, unsigned long caller) __alloc_size(1); #define kmalloc_node_track_caller_noprof(size, flags, node, caller) \ __kmalloc_node_track_caller_noprof(PASS_BUCKET_PARAMS(size, NULL), flags, node, caller) #define kmalloc_node_track_caller(...) \ alloc_hooks(kmalloc_node_track_caller_noprof(__VA_ARGS__, _RET_IP_)) /* * kmalloc_track_caller is a special version of kmalloc that records the * calling function of the routine calling it for slab leak tracking instead * of just the calling function (confusing, eh?). * It's useful when the call to kmalloc comes from a widely-used standard * allocator where we care about the real place the memory allocation * request comes from. */ #define kmalloc_track_caller(...) kmalloc_node_track_caller(__VA_ARGS__, NUMA_NO_NODE) #define kmalloc_track_caller_noprof(...) \ kmalloc_node_track_caller_noprof(__VA_ARGS__, NUMA_NO_NODE, _RET_IP_) static inline __alloc_size(1, 2) void *kmalloc_array_node_noprof(size_t n, size_t size, gfp_t flags, int node) { size_t bytes; if (unlikely(check_mul_overflow(n, size, &bytes))) return NULL; if (__builtin_constant_p(n) && __builtin_constant_p(size)) return kmalloc_node_noprof(bytes, flags, node); return __kmalloc_node_noprof(PASS_BUCKET_PARAMS(bytes, NULL), flags, node); } #define kmalloc_array_node(...) alloc_hooks(kmalloc_array_node_noprof(__VA_ARGS__)) #define kcalloc_node(_n, _size, _flags, _node) \ kmalloc_array_node(_n, _size, (_flags) | __GFP_ZERO, _node) /* * Shortcuts */ #define kmem_cache_zalloc(_k, _flags) kmem_cache_alloc(_k, (_flags)|__GFP_ZERO) /** * kzalloc - allocate memory. The memory is set to zero. * @size: how many bytes of memory are required. * @flags: the type of memory to allocate (see kmalloc). */ static inline __alloc_size(1) void *kzalloc_noprof(size_t size, gfp_t flags) { return kmalloc_noprof(size, flags | __GFP_ZERO); } #define kzalloc(...) alloc_hooks(kzalloc_noprof(__VA_ARGS__)) #define kzalloc_node(_size, _flags, _node) kmalloc_node(_size, (_flags)|__GFP_ZERO, _node) void *__kvmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node) __alloc_size(1); #define kvmalloc_node_noprof(size, flags, node) \ __kvmalloc_node_noprof(PASS_BUCKET_PARAMS(size, NULL), flags, node) #define kvmalloc_node(...) alloc_hooks(kvmalloc_node_noprof(__VA_ARGS__)) #define kvmalloc(_size, _flags) kvmalloc_node(_size, _flags, NUMA_NO_NODE) #define kvmalloc_noprof(_size, _flags) kvmalloc_node_noprof(_size, _flags, NUMA_NO_NODE) #define kvzalloc(_size, _flags) kvmalloc(_size, (_flags)|__GFP_ZERO) #define kvzalloc_node(_size, _flags, _node) kvmalloc_node(_size, (_flags)|__GFP_ZERO, _node) #define kmem_buckets_valloc(_b, _size, _flags) \ alloc_hooks(__kvmalloc_node_noprof(PASS_BUCKET_PARAMS(_size, _b), _flags, NUMA_NO_NODE)) static inline __alloc_size(1, 2) void * kvmalloc_array_node_noprof(size_t n, size_t size, gfp_t flags, int node) { size_t bytes; if (unlikely(check_mul_overflow(n, size, &bytes))) return NULL; return kvmalloc_node_noprof(bytes, flags, node); } #define kvmalloc_array_noprof(...) kvmalloc_array_node_noprof(__VA_ARGS__, NUMA_NO_NODE) #define kvcalloc_node_noprof(_n,_s,_f,_node) kvmalloc_array_node_noprof(_n,_s,(_f)|__GFP_ZERO,_node) #define kvcalloc_noprof(...) kvcalloc_node_noprof(__VA_ARGS__, NUMA_NO_NODE) #define kvmalloc_array(...) alloc_hooks(kvmalloc_array_noprof(__VA_ARGS__)) #define kvcalloc_node(...) alloc_hooks(kvcalloc_node_noprof(__VA_ARGS__)) #define kvcalloc(...) alloc_hooks(kvcalloc_noprof(__VA_ARGS__)) void *kvrealloc_noprof(const void *p, size_t size, gfp_t flags) __realloc_size(2); #define kvrealloc(...) alloc_hooks(kvrealloc_noprof(__VA_ARGS__)) extern void kvfree(const void *addr); DEFINE_FREE(kvfree, void *, if (!IS_ERR_OR_NULL(_T)) kvfree(_T)) extern void kvfree_sensitive(const void *addr, size_t len); unsigned int kmem_cache_size(struct kmem_cache *s); /** * kmalloc_size_roundup - Report allocation bucket size for the given size * * @size: Number of bytes to round up from. * * This returns the number of bytes that would be available in a kmalloc() * allocation of @size bytes. For example, a 126 byte request would be * rounded up to the next sized kmalloc bucket, 128 bytes. (This is strictly * for the general-purpose kmalloc()-based allocations, and is not for the * pre-sized kmem_cache_alloc()-based allocations.) * * Use this to kmalloc() the full bucket size ahead of time instead of using * ksize() to query the size after an allocation. */ size_t kmalloc_size_roundup(size_t size); void __init kmem_cache_init_late(void); #endif /* _LINUX_SLAB_H */