/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_HELPER_MACROS_H_ #define _LINUX_HELPER_MACROS_H_ #include /** * find_closest - locate the closest element in a sorted array * @x: The reference value. * @a: The array in which to look for the closest element. Must be sorted * in ascending order. * @as: Size of 'a'. * * Returns the index of the element closest to 'x'. * Note: If using an array of negative numbers (or mixed positive numbers), * then be sure that 'x' is of a signed-type to get good results. */ #define find_closest(x, a, as) \ ({ \ typeof(as) __fc_i, __fc_as = (as) - 1; \ long __fc_mid_x, __fc_x = (x); \ long __fc_left, __fc_right; \ typeof(*a) const *__fc_a = (a); \ for (__fc_i = 0; __fc_i < __fc_as; __fc_i++) { \ __fc_mid_x = (__fc_a[__fc_i] + __fc_a[__fc_i + 1]) / 2; \ if (__fc_x <= __fc_mid_x) { \ __fc_left = __fc_x - __fc_a[__fc_i]; \ __fc_right = __fc_a[__fc_i + 1] - __fc_x; \ if (__fc_right < __fc_left) \ __fc_i++; \ break; \ } \ } \ (__fc_i); \ }) /** * find_closest_descending - locate the closest element in a sorted array * @x: The reference value. * @a: The array in which to look for the closest element. Must be sorted * in descending order. * @as: Size of 'a'. * * Similar to find_closest() but 'a' is expected to be sorted in descending * order. The iteration is done in reverse order, so that the comparison * of '__fc_right' & '__fc_left' also works for unsigned numbers. */ #define find_closest_descending(x, a, as) \ ({ \ typeof(as) __fc_i, __fc_as = (as) - 1; \ long __fc_mid_x, __fc_x = (x); \ long __fc_left, __fc_right; \ typeof(*a) const *__fc_a = (a); \ for (__fc_i = __fc_as; __fc_i >= 1; __fc_i--) { \ __fc_mid_x = (__fc_a[__fc_i] + __fc_a[__fc_i - 1]) / 2; \ if (__fc_x <= __fc_mid_x) { \ __fc_left = __fc_x - __fc_a[__fc_i]; \ __fc_right = __fc_a[__fc_i - 1] - __fc_x; \ if (__fc_right < __fc_left) \ __fc_i--; \ break; \ } \ } \ (__fc_i); \ }) /** * is_insidevar - check if the @ptr points inside the @var memory range. * @ptr: the pointer to a memory address. * @var: the variable which address and size identify the memory range. * * Evaluates to true if the address in @ptr lies within the memory * range allocated to @var. */ #define is_insidevar(ptr, var) \ ((uintptr_t)(ptr) >= (uintptr_t)(var) && \ (uintptr_t)(ptr) < (uintptr_t)(var) + sizeof(var)) #endif