/* SPDX-License-Identifier: GPL-2.0 */ #include #include #include #include #include #include #include #include struct swsusp_info { struct new_utsname uts; u32 version_code; unsigned long num_physpages; int cpus; unsigned long image_pages; unsigned long pages; unsigned long size; } __aligned(PAGE_SIZE); #ifdef CONFIG_HIBERNATION /* kernel/power/snapshot.c */ extern void __init hibernate_reserved_size_init(void); extern void __init hibernate_image_size_init(void); #ifdef CONFIG_ARCH_HIBERNATION_HEADER /* Maximum size of architecture specific data in a hibernation header */ #define MAX_ARCH_HEADER_SIZE (sizeof(struct new_utsname) + 4) static inline int init_header_complete(struct swsusp_info *info) { return arch_hibernation_header_save(info, MAX_ARCH_HEADER_SIZE); } static inline const char *check_image_kernel(struct swsusp_info *info) { return arch_hibernation_header_restore(info) ? "architecture specific data" : NULL; } #endif /* CONFIG_ARCH_HIBERNATION_HEADER */ /* * Keep some memory free so that I/O operations can succeed without paging * [Might this be more than 4 MB?] */ #define PAGES_FOR_IO ((4096 * 1024) >> PAGE_SHIFT) /* * Keep 1 MB of memory free so that device drivers can allocate some pages in * their .suspend() routines without breaking the suspend to disk. */ #define SPARE_PAGES ((1024 * 1024) >> PAGE_SHIFT) asmlinkage int swsusp_save(void); /* kernel/power/hibernate.c */ extern bool freezer_test_done; extern char hib_comp_algo[CRYPTO_MAX_ALG_NAME]; /* kernel/power/swap.c */ extern unsigned int swsusp_header_flags; extern int hibernation_snapshot(int platform_mode); extern int hibernation_restore(int platform_mode); extern int hibernation_platform_enter(void); #ifdef CONFIG_STRICT_KERNEL_RWX /* kernel/power/snapshot.c */ extern void enable_restore_image_protection(void); #else static inline void enable_restore_image_protection(void) {} #endif /* CONFIG_STRICT_KERNEL_RWX */ #else /* !CONFIG_HIBERNATION */ static inline void hibernate_reserved_size_init(void) {} static inline void hibernate_image_size_init(void) {} #endif /* !CONFIG_HIBERNATION */ #define power_attr(_name) \ static struct kobj_attribute _name##_attr = { \ .attr = { \ .name = __stringify(_name), \ .mode = 0644, \ }, \ .show = _name##_show, \ .store = _name##_store, \ } #define power_attr_ro(_name) \ static struct kobj_attribute _name##_attr = { \ .attr = { \ .name = __stringify(_name), \ .mode = S_IRUGO, \ }, \ .show = _name##_show, \ } /* Preferred image size in bytes (default 500 MB) */ extern unsigned long image_size; /* Size of memory reserved for drivers (default SPARE_PAGES x PAGE_SIZE) */ extern unsigned long reserved_size; extern int in_suspend; extern dev_t swsusp_resume_device; extern sector_t swsusp_resume_block; extern int create_basic_memory_bitmaps(void); extern void free_basic_memory_bitmaps(void); extern int hibernate_preallocate_memory(void); extern void clear_or_poison_free_pages(void); /* * Auxiliary structure used for reading the snapshot image data and * metadata from and writing them to the list of page backup entries * (PBEs) which is the main data structure of swsusp. * * Using struct snapshot_handle we can transfer the image, including its * metadata, as a continuous sequence of bytes with the help of * snapshot_read_next() and snapshot_write_next(). * * The code that writes the image to a storage or transfers it to * the user land is required to use snapshot_read_next() for this * purpose and it should not make any assumptions regarding the internal * structure of the image. Similarly, the code that reads the image from * a storage or transfers it from the user land is required to use * snapshot_write_next(). * * This may allow us to change the internal structure of the image * in the future with considerably less effort. */ struct snapshot_handle { unsigned int cur; /* number of the block of PAGE_SIZE bytes the * next operation will refer to (ie. current) */ void *buffer; /* address of the block to read from * or write to */ int sync_read; /* Set to one to notify the caller of * snapshot_write_next() that it may * need to call wait_on_bio_chain() */ }; /* This macro returns the address from/to which the caller of * snapshot_read_next()/snapshot_write_next() is allowed to * read/write data after the function returns */ #define data_of(handle) ((handle).buffer) extern unsigned int snapshot_additional_pages(struct zone *zone); extern unsigned long snapshot_get_image_size(void); extern int snapshot_read_next(struct snapshot_handle *handle); extern int snapshot_write_next(struct snapshot_handle *handle); int snapshot_write_finalize(struct snapshot_handle *handle); extern int snapshot_image_loaded(struct snapshot_handle *handle); extern bool hibernate_acquire(void); extern void hibernate_release(void); extern sector_t alloc_swapdev_block(int swap); extern void free_all_swap_pages(int swap); extern int swsusp_swap_in_use(void); /* * Flags that can be passed from the hibernatig hernel to the "boot" kernel in * the image header. */ #define SF_COMPRESSION_ALG_LZO 0 /* dummy, details given below */ #define SF_PLATFORM_MODE 1 #define SF_NOCOMPRESS_MODE 2 #define SF_CRC32_MODE 4 #define SF_HW_SIG 8 /* * Bit to indicate the compression algorithm to be used(for LZ4). The same * could be checked while saving/loading image to/from disk to use the * corresponding algorithms. * * By default, LZO compression is enabled if SF_CRC32_MODE is set. Use * SF_COMPRESSION_ALG_LZ4 to override this behaviour and use LZ4. * * SF_CRC32_MODE, SF_COMPRESSION_ALG_LZO(dummy) -> Compression, LZO * SF_CRC32_MODE, SF_COMPRESSION_ALG_LZ4 -> Compression, LZ4 */ #define SF_COMPRESSION_ALG_LZ4 16 /* kernel/power/hibernate.c */ int swsusp_check(bool exclusive); extern void swsusp_free(void); extern int swsusp_read(unsigned int *flags_p); extern int swsusp_write(unsigned int flags); void swsusp_close(void); #ifdef CONFIG_SUSPEND extern int swsusp_unmark(void); #else static inline int swsusp_unmark(void) { return 0; } #endif struct __kernel_old_timeval; /* kernel/power/swsusp.c */ extern void swsusp_show_speed(ktime_t, ktime_t, unsigned int, char *); #ifdef CONFIG_SUSPEND /* kernel/power/suspend.c */ extern const char * const pm_labels[]; extern const char *pm_states[]; extern const char *mem_sleep_states[]; extern int suspend_devices_and_enter(suspend_state_t state); #else /* !CONFIG_SUSPEND */ #define mem_sleep_current PM_SUSPEND_ON static inline int suspend_devices_and_enter(suspend_state_t state) { return -ENOSYS; } #endif /* !CONFIG_SUSPEND */ #ifdef CONFIG_PM_TEST_SUSPEND /* kernel/power/suspend_test.c */ extern void suspend_test_start(void); extern void suspend_test_finish(const char *label); #else /* !CONFIG_PM_TEST_SUSPEND */ static inline void suspend_test_start(void) {} static inline void suspend_test_finish(const char *label) {} #endif /* !CONFIG_PM_TEST_SUSPEND */ #ifdef CONFIG_PM_SLEEP /* kernel/power/main.c */ extern int pm_notifier_call_chain_robust(unsigned long val_up, unsigned long val_down); extern int pm_notifier_call_chain(unsigned long val); void pm_restrict_gfp_mask(void); void pm_restore_gfp_mask(void); #else static inline void pm_restrict_gfp_mask(void) {} static inline void pm_restore_gfp_mask(void) {} #endif #ifdef CONFIG_HIGHMEM int restore_highmem(void); #else static inline unsigned int count_highmem_pages(void) { return 0; } static inline int restore_highmem(void) { return 0; } #endif /* * Suspend test levels */ enum { /* keep first */ TEST_NONE, TEST_CORE, TEST_CPUS, TEST_PLATFORM, TEST_DEVICES, TEST_FREEZER, /* keep last */ __TEST_AFTER_LAST }; #define TEST_FIRST TEST_NONE #define TEST_MAX (__TEST_AFTER_LAST - 1) #ifdef CONFIG_PM_SLEEP_DEBUG extern int pm_test_level; #else #define pm_test_level (TEST_NONE) #endif #ifdef CONFIG_SUSPEND_FREEZER static inline int suspend_freeze_processes(void) { int error; error = freeze_processes(); /* * freeze_processes() automatically thaws every task if freezing * fails. So we need not do anything extra upon error. */ if (error) return error; error = freeze_kernel_threads(); /* * freeze_kernel_threads() thaws only kernel threads upon freezing * failure. So we have to thaw the userspace tasks ourselves. */ if (error) thaw_processes(); return error; } static inline void suspend_thaw_processes(void) { thaw_processes(); } #else static inline int suspend_freeze_processes(void) { return 0; } static inline void suspend_thaw_processes(void) { } #endif #ifdef CONFIG_PM_AUTOSLEEP /* kernel/power/autosleep.c */ extern int pm_autosleep_init(void); extern int pm_autosleep_lock(void); extern void pm_autosleep_unlock(void); extern suspend_state_t pm_autosleep_state(void); extern int pm_autosleep_set_state(suspend_state_t state); #else /* !CONFIG_PM_AUTOSLEEP */ static inline int pm_autosleep_init(void) { return 0; } static inline int pm_autosleep_lock(void) { return 0; } static inline void pm_autosleep_unlock(void) {} static inline suspend_state_t pm_autosleep_state(void) { return PM_SUSPEND_ON; } #endif /* !CONFIG_PM_AUTOSLEEP */ #ifdef CONFIG_PM_WAKELOCKS /* kernel/power/wakelock.c */ extern ssize_t pm_show_wakelocks(char *buf, bool show_active); extern int pm_wake_lock(const char *buf); extern int pm_wake_unlock(const char *buf); #endif /* !CONFIG_PM_WAKELOCKS */ static inline int pm_sleep_disable_secondary_cpus(void) { cpuidle_pause(); return suspend_disable_secondary_cpus(); } static inline void pm_sleep_enable_secondary_cpus(void) { suspend_enable_secondary_cpus(); cpuidle_resume(); } void dpm_save_errno(int err);