// SPDX-License-Identifier: GPL-2.0 /* * mm/mremap.c * * (C) Copyright 1996 Linus Torvalds * * Address space accounting code * (C) Copyright 2002 Red Hat Inc, All Rights Reserved */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "internal.h" /* Classify the kind of remap operation being performed. */ enum mremap_type { MREMAP_INVALID, /* Initial state. */ MREMAP_NO_RESIZE, /* old_len == new_len, if not moved, do nothing. */ MREMAP_SHRINK, /* old_len > new_len. */ MREMAP_EXPAND, /* old_len < new_len. */ }; /* * Describes a VMA mremap() operation and is threaded throughout it. * * Any of the fields may be mutated by the operation, however these values will * always accurately reflect the remap (for instance, we may adjust lengths and * delta to account for hugetlb alignment). */ struct vma_remap_struct { /* User-provided state. */ unsigned long addr; /* User-specified address from which we remap. */ unsigned long old_len; /* Length of range being remapped. */ unsigned long new_len; /* Desired new length of mapping. */ unsigned long flags; /* user-specified MREMAP_* flags. */ unsigned long new_addr; /* Optionally, desired new address. */ /* uffd state. */ struct vm_userfaultfd_ctx *uf; struct list_head *uf_unmap_early; struct list_head *uf_unmap; /* VMA state, determined in do_mremap(). */ struct vm_area_struct *vma; /* Internal state, determined in do_mremap(). */ unsigned long delta; /* Absolute delta of old_len,new_len. */ bool mlocked; /* Was the VMA mlock()'d? */ enum mremap_type remap_type; /* expand, shrink, etc. */ bool mmap_locked; /* Is mm currently write-locked? */ unsigned long charged; /* If VM_ACCOUNT, # pages to account. */ }; static pud_t *get_old_pud(struct mm_struct *mm, unsigned long addr) { pgd_t *pgd; p4d_t *p4d; pud_t *pud; pgd = pgd_offset(mm, addr); if (pgd_none_or_clear_bad(pgd)) return NULL; p4d = p4d_offset(pgd, addr); if (p4d_none_or_clear_bad(p4d)) return NULL; pud = pud_offset(p4d, addr); if (pud_none_or_clear_bad(pud)) return NULL; return pud; } static pmd_t *get_old_pmd(struct mm_struct *mm, unsigned long addr) { pud_t *pud; pmd_t *pmd; pud = get_old_pud(mm, addr); if (!pud) return NULL; pmd = pmd_offset(pud, addr); if (pmd_none(*pmd)) return NULL; return pmd; } static pud_t *alloc_new_pud(struct mm_struct *mm, unsigned long addr) { pgd_t *pgd; p4d_t *p4d; pgd = pgd_offset(mm, addr); p4d = p4d_alloc(mm, pgd, addr); if (!p4d) return NULL; return pud_alloc(mm, p4d, addr); } static pmd_t *alloc_new_pmd(struct mm_struct *mm, unsigned long addr) { pud_t *pud; pmd_t *pmd; pud = alloc_new_pud(mm, addr); if (!pud) return NULL; pmd = pmd_alloc(mm, pud, addr); if (!pmd) return NULL; VM_BUG_ON(pmd_trans_huge(*pmd)); return pmd; } static void take_rmap_locks(struct vm_area_struct *vma) { if (vma->vm_file) i_mmap_lock_write(vma->vm_file->f_mapping); if (vma->anon_vma) anon_vma_lock_write(vma->anon_vma); } static void drop_rmap_locks(struct vm_area_struct *vma) { if (vma->anon_vma) anon_vma_unlock_write(vma->anon_vma); if (vma->vm_file) i_mmap_unlock_write(vma->vm_file->f_mapping); } static pte_t move_soft_dirty_pte(pte_t pte) { /* * Set soft dirty bit so we can notice * in userspace the ptes were moved. */ #ifdef CONFIG_MEM_SOFT_DIRTY if (pte_present(pte)) pte = pte_mksoft_dirty(pte); else if (is_swap_pte(pte)) pte = pte_swp_mksoft_dirty(pte); #endif return pte; } static int move_ptes(struct pagetable_move_control *pmc, unsigned long extent, pmd_t *old_pmd, pmd_t *new_pmd) { struct vm_area_struct *vma = pmc->old; bool need_clear_uffd_wp = vma_has_uffd_without_event_remap(vma); struct mm_struct *mm = vma->vm_mm; pte_t *old_pte, *new_pte, pte; pmd_t dummy_pmdval; spinlock_t *old_ptl, *new_ptl; bool force_flush = false; unsigned long old_addr = pmc->old_addr; unsigned long new_addr = pmc->new_addr; unsigned long old_end = old_addr + extent; unsigned long len = old_end - old_addr; int err = 0; /* * When need_rmap_locks is true, we take the i_mmap_rwsem and anon_vma * locks to ensure that rmap will always observe either the old or the * new ptes. This is the easiest way to avoid races with * truncate_pagecache(), page migration, etc... * * When need_rmap_locks is false, we use other ways to avoid * such races: * * - During exec() shift_arg_pages(), we use a specially tagged vma * which rmap call sites look for using vma_is_temporary_stack(). * * - During mremap(), new_vma is often known to be placed after vma * in rmap traversal order. This ensures rmap will always observe * either the old pte, or the new pte, or both (the page table locks * serialize access to individual ptes, but only rmap traversal * order guarantees that we won't miss both the old and new ptes). */ if (pmc->need_rmap_locks) take_rmap_locks(vma); /* * We don't have to worry about the ordering of src and dst * pte locks because exclusive mmap_lock prevents deadlock. */ old_pte = pte_offset_map_lock(mm, old_pmd, old_addr, &old_ptl); if (!old_pte) { err = -EAGAIN; goto out; } /* * Now new_pte is none, so hpage_collapse_scan_file() path can not find * this by traversing file->f_mapping, so there is no concurrency with * retract_page_tables(). In addition, we already hold the exclusive * mmap_lock, so this new_pte page is stable, so there is no need to get * pmdval and do pmd_same() check. */ new_pte = pte_offset_map_rw_nolock(mm, new_pmd, new_addr, &dummy_pmdval, &new_ptl); if (!new_pte) { pte_unmap_unlock(old_pte, old_ptl); err = -EAGAIN; goto out; } if (new_ptl != old_ptl) spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); flush_tlb_batched_pending(vma->vm_mm); arch_enter_lazy_mmu_mode(); for (; old_addr < old_end; old_pte++, old_addr += PAGE_SIZE, new_pte++, new_addr += PAGE_SIZE) { if (pte_none(ptep_get(old_pte))) continue; pte = ptep_get_and_clear(mm, old_addr, old_pte); /* * If we are remapping a valid PTE, make sure * to flush TLB before we drop the PTL for the * PTE. * * NOTE! Both old and new PTL matter: the old one * for racing with folio_mkclean(), the new one to * make sure the physical page stays valid until * the TLB entry for the old mapping has been * flushed. */ if (pte_present(pte)) force_flush = true; pte = move_pte(pte, old_addr, new_addr); pte = move_soft_dirty_pte(pte); if (need_clear_uffd_wp && pte_marker_uffd_wp(pte)) pte_clear(mm, new_addr, new_pte); else { if (need_clear_uffd_wp) { if (pte_present(pte)) pte = pte_clear_uffd_wp(pte); else if (is_swap_pte(pte)) pte = pte_swp_clear_uffd_wp(pte); } set_pte_at(mm, new_addr, new_pte, pte); } } arch_leave_lazy_mmu_mode(); if (force_flush) flush_tlb_range(vma, old_end - len, old_end); if (new_ptl != old_ptl) spin_unlock(new_ptl); pte_unmap(new_pte - 1); pte_unmap_unlock(old_pte - 1, old_ptl); out: if (pmc->need_rmap_locks) drop_rmap_locks(vma); return err; } #ifndef arch_supports_page_table_move #define arch_supports_page_table_move arch_supports_page_table_move static inline bool arch_supports_page_table_move(void) { return IS_ENABLED(CONFIG_HAVE_MOVE_PMD) || IS_ENABLED(CONFIG_HAVE_MOVE_PUD); } #endif #ifdef CONFIG_HAVE_MOVE_PMD static bool move_normal_pmd(struct pagetable_move_control *pmc, pmd_t *old_pmd, pmd_t *new_pmd) { spinlock_t *old_ptl, *new_ptl; struct vm_area_struct *vma = pmc->old; struct mm_struct *mm = vma->vm_mm; bool res = false; pmd_t pmd; if (!arch_supports_page_table_move()) return false; /* * The destination pmd shouldn't be established, free_pgtables() * should have released it. * * However, there's a case during execve() where we use mremap * to move the initial stack, and in that case the target area * may overlap the source area (always moving down). * * If everything is PMD-aligned, that works fine, as moving * each pmd down will clear the source pmd. But if we first * have a few 4kB-only pages that get moved down, and then * hit the "now the rest is PMD-aligned, let's do everything * one pmd at a time", we will still have the old (now empty * of any 4kB pages, but still there) PMD in the page table * tree. * * Warn on it once - because we really should try to figure * out how to do this better - but then say "I won't move * this pmd". * * One alternative might be to just unmap the target pmd at * this point, and verify that it really is empty. We'll see. */ if (WARN_ON_ONCE(!pmd_none(*new_pmd))) return false; /* If this pmd belongs to a uffd vma with remap events disabled, we need * to ensure that the uffd-wp state is cleared from all pgtables. This * means recursing into lower page tables in move_page_tables(), and we * can reuse the existing code if we simply treat the entry as "not * moved". */ if (vma_has_uffd_without_event_remap(vma)) return false; /* * We don't have to worry about the ordering of src and dst * ptlocks because exclusive mmap_lock prevents deadlock. */ old_ptl = pmd_lock(mm, old_pmd); new_ptl = pmd_lockptr(mm, new_pmd); if (new_ptl != old_ptl) spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); pmd = *old_pmd; /* Racing with collapse? */ if (unlikely(!pmd_present(pmd) || pmd_leaf(pmd))) goto out_unlock; /* Clear the pmd */ pmd_clear(old_pmd); res = true; VM_BUG_ON(!pmd_none(*new_pmd)); pmd_populate(mm, new_pmd, pmd_pgtable(pmd)); flush_tlb_range(vma, pmc->old_addr, pmc->old_addr + PMD_SIZE); out_unlock: if (new_ptl != old_ptl) spin_unlock(new_ptl); spin_unlock(old_ptl); return res; } #else static inline bool move_normal_pmd(struct pagetable_move_control *pmc, pmd_t *old_pmd, pmd_t *new_pmd) { return false; } #endif #if CONFIG_PGTABLE_LEVELS > 2 && defined(CONFIG_HAVE_MOVE_PUD) static bool move_normal_pud(struct pagetable_move_control *pmc, pud_t *old_pud, pud_t *new_pud) { spinlock_t *old_ptl, *new_ptl; struct vm_area_struct *vma = pmc->old; struct mm_struct *mm = vma->vm_mm; pud_t pud; if (!arch_supports_page_table_move()) return false; /* * The destination pud shouldn't be established, free_pgtables() * should have released it. */ if (WARN_ON_ONCE(!pud_none(*new_pud))) return false; /* If this pud belongs to a uffd vma with remap events disabled, we need * to ensure that the uffd-wp state is cleared from all pgtables. This * means recursing into lower page tables in move_page_tables(), and we * can reuse the existing code if we simply treat the entry as "not * moved". */ if (vma_has_uffd_without_event_remap(vma)) return false; /* * We don't have to worry about the ordering of src and dst * ptlocks because exclusive mmap_lock prevents deadlock. */ old_ptl = pud_lock(mm, old_pud); new_ptl = pud_lockptr(mm, new_pud); if (new_ptl != old_ptl) spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); /* Clear the pud */ pud = *old_pud; pud_clear(old_pud); VM_BUG_ON(!pud_none(*new_pud)); pud_populate(mm, new_pud, pud_pgtable(pud)); flush_tlb_range(vma, pmc->old_addr, pmc->old_addr + PUD_SIZE); if (new_ptl != old_ptl) spin_unlock(new_ptl); spin_unlock(old_ptl); return true; } #else static inline bool move_normal_pud(struct pagetable_move_control *pmc, pud_t *old_pud, pud_t *new_pud) { return false; } #endif #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) static bool move_huge_pud(struct pagetable_move_control *pmc, pud_t *old_pud, pud_t *new_pud) { spinlock_t *old_ptl, *new_ptl; struct vm_area_struct *vma = pmc->old; struct mm_struct *mm = vma->vm_mm; pud_t pud; /* * The destination pud shouldn't be established, free_pgtables() * should have released it. */ if (WARN_ON_ONCE(!pud_none(*new_pud))) return false; /* * We don't have to worry about the ordering of src and dst * ptlocks because exclusive mmap_lock prevents deadlock. */ old_ptl = pud_lock(mm, old_pud); new_ptl = pud_lockptr(mm, new_pud); if (new_ptl != old_ptl) spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); /* Clear the pud */ pud = *old_pud; pud_clear(old_pud); VM_BUG_ON(!pud_none(*new_pud)); /* Set the new pud */ /* mark soft_ditry when we add pud level soft dirty support */ set_pud_at(mm, pmc->new_addr, new_pud, pud); flush_pud_tlb_range(vma, pmc->old_addr, pmc->old_addr + HPAGE_PUD_SIZE); if (new_ptl != old_ptl) spin_unlock(new_ptl); spin_unlock(old_ptl); return true; } #else static bool move_huge_pud(struct pagetable_move_control *pmc, pud_t *old_pud, pud_t *new_pud) { WARN_ON_ONCE(1); return false; } #endif enum pgt_entry { NORMAL_PMD, HPAGE_PMD, NORMAL_PUD, HPAGE_PUD, }; /* * Returns an extent of the corresponding size for the pgt_entry specified if * valid. Else returns a smaller extent bounded by the end of the source and * destination pgt_entry. */ static __always_inline unsigned long get_extent(enum pgt_entry entry, struct pagetable_move_control *pmc) { unsigned long next, extent, mask, size; unsigned long old_addr = pmc->old_addr; unsigned long old_end = pmc->old_end; unsigned long new_addr = pmc->new_addr; switch (entry) { case HPAGE_PMD: case NORMAL_PMD: mask = PMD_MASK; size = PMD_SIZE; break; case HPAGE_PUD: case NORMAL_PUD: mask = PUD_MASK; size = PUD_SIZE; break; default: BUILD_BUG(); break; } next = (old_addr + size) & mask; /* even if next overflowed, extent below will be ok */ extent = next - old_addr; if (extent > old_end - old_addr) extent = old_end - old_addr; next = (new_addr + size) & mask; if (extent > next - new_addr) extent = next - new_addr; return extent; } /* * Should move_pgt_entry() acquire the rmap locks? This is either expressed in * the PMC, or overridden in the case of normal, larger page tables. */ static bool should_take_rmap_locks(struct pagetable_move_control *pmc, enum pgt_entry entry) { switch (entry) { case NORMAL_PMD: case NORMAL_PUD: return true; default: return pmc->need_rmap_locks; } } /* * Attempts to speedup the move by moving entry at the level corresponding to * pgt_entry. Returns true if the move was successful, else false. */ static bool move_pgt_entry(struct pagetable_move_control *pmc, enum pgt_entry entry, void *old_entry, void *new_entry) { bool moved = false; bool need_rmap_locks = should_take_rmap_locks(pmc, entry); /* See comment in move_ptes() */ if (need_rmap_locks) take_rmap_locks(pmc->old); switch (entry) { case NORMAL_PMD: moved = move_normal_pmd(pmc, old_entry, new_entry); break; case NORMAL_PUD: moved = move_normal_pud(pmc, old_entry, new_entry); break; case HPAGE_PMD: moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && move_huge_pmd(pmc->old, pmc->old_addr, pmc->new_addr, old_entry, new_entry); break; case HPAGE_PUD: moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && move_huge_pud(pmc, old_entry, new_entry); break; default: WARN_ON_ONCE(1); break; } if (need_rmap_locks) drop_rmap_locks(pmc->old); return moved; } /* * A helper to check if aligning down is OK. The aligned address should fall * on *no mapping*. For the stack moving down, that's a special move within * the VMA that is created to span the source and destination of the move, * so we make an exception for it. */ static bool can_align_down(struct pagetable_move_control *pmc, struct vm_area_struct *vma, unsigned long addr_to_align, unsigned long mask) { unsigned long addr_masked = addr_to_align & mask; /* * If @addr_to_align of either source or destination is not the beginning * of the corresponding VMA, we can't align down or we will destroy part * of the current mapping. */ if (!pmc->for_stack && vma->vm_start != addr_to_align) return false; /* In the stack case we explicitly permit in-VMA alignment. */ if (pmc->for_stack && addr_masked >= vma->vm_start) return true; /* * Make sure the realignment doesn't cause the address to fall on an * existing mapping. */ return find_vma_intersection(vma->vm_mm, addr_masked, vma->vm_start) == NULL; } /* * Determine if are in fact able to realign for efficiency to a higher page * table boundary. */ static bool can_realign_addr(struct pagetable_move_control *pmc, unsigned long pagetable_mask) { unsigned long align_mask = ~pagetable_mask; unsigned long old_align = pmc->old_addr & align_mask; unsigned long new_align = pmc->new_addr & align_mask; unsigned long pagetable_size = align_mask + 1; unsigned long old_align_next = pagetable_size - old_align; /* * We don't want to have to go hunting for VMAs from the end of the old * VMA to the next page table boundary, also we want to make sure the * operation is wortwhile. * * So ensure that we only perform this realignment if the end of the * range being copied reaches or crosses the page table boundary. * * boundary boundary * .<- old_align -> . * . |----------------.-----------| * . | vma . | * . |----------------.-----------| * . <----------------.-----------> * . len_in * <-------------------------------> * . pagetable_size . * . <----------------> * . old_align_next . */ if (pmc->len_in < old_align_next) return false; /* Skip if the addresses are already aligned. */ if (old_align == 0) return false; /* Only realign if the new and old addresses are mutually aligned. */ if (old_align != new_align) return false; /* Ensure realignment doesn't cause overlap with existing mappings. */ if (!can_align_down(pmc, pmc->old, pmc->old_addr, pagetable_mask) || !can_align_down(pmc, pmc->new, pmc->new_addr, pagetable_mask)) return false; return true; } /* * Opportunistically realign to specified boundary for faster copy. * * Consider an mremap() of a VMA with page table boundaries as below, and no * preceding VMAs from the lower page table boundary to the start of the VMA, * with the end of the range reaching or crossing the page table boundary. * * boundary boundary * . |----------------.-----------| * . | vma . | * . |----------------.-----------| * . pmc->old_addr . pmc->old_end * . <----------------------------> * . move these page tables * * If we proceed with moving page tables in this scenario, we will have a lot of * work to do traversing old page tables and establishing new ones in the * destination across multiple lower level page tables. * * The idea here is simply to align pmc->old_addr, pmc->new_addr down to the * page table boundary, so we can simply copy a single page table entry for the * aligned portion of the VMA instead: * * boundary boundary * . |----------------.-----------| * . | vma . | * . |----------------.-----------| * pmc->old_addr . pmc->old_end * <-------------------------------------------> * . move these page tables */ static void try_realign_addr(struct pagetable_move_control *pmc, unsigned long pagetable_mask) { if (!can_realign_addr(pmc, pagetable_mask)) return; /* * Simply align to page table boundaries. Note that we do NOT update the * pmc->old_end value, and since the move_page_tables() operation spans * from [old_addr, old_end) (offsetting new_addr as it is performed), * this simply changes the start of the copy, not the end. */ pmc->old_addr &= pagetable_mask; pmc->new_addr &= pagetable_mask; } /* Is the page table move operation done? */ static bool pmc_done(struct pagetable_move_control *pmc) { return pmc->old_addr >= pmc->old_end; } /* Advance to the next page table, offset by extent bytes. */ static void pmc_next(struct pagetable_move_control *pmc, unsigned long extent) { pmc->old_addr += extent; pmc->new_addr += extent; } /* * Determine how many bytes in the specified input range have had their page * tables moved so far. */ static unsigned long pmc_progress(struct pagetable_move_control *pmc) { unsigned long orig_old_addr = pmc->old_end - pmc->len_in; unsigned long old_addr = pmc->old_addr; /* * Prevent negative return values when {old,new}_addr was realigned but * we broke out of the loop in move_page_tables() for the first PMD * itself. */ return old_addr < orig_old_addr ? 0 : old_addr - orig_old_addr; } unsigned long move_page_tables(struct pagetable_move_control *pmc) { unsigned long extent; struct mmu_notifier_range range; pmd_t *old_pmd, *new_pmd; pud_t *old_pud, *new_pud; struct mm_struct *mm = pmc->old->vm_mm; if (!pmc->len_in) return 0; if (is_vm_hugetlb_page(pmc->old)) return move_hugetlb_page_tables(pmc->old, pmc->new, pmc->old_addr, pmc->new_addr, pmc->len_in); /* * If possible, realign addresses to PMD boundary for faster copy. * Only realign if the mremap copying hits a PMD boundary. */ try_realign_addr(pmc, PMD_MASK); flush_cache_range(pmc->old, pmc->old_addr, pmc->old_end); mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, mm, pmc->old_addr, pmc->old_end); mmu_notifier_invalidate_range_start(&range); for (; !pmc_done(pmc); pmc_next(pmc, extent)) { cond_resched(); /* * If extent is PUD-sized try to speed up the move by moving at the * PUD level if possible. */ extent = get_extent(NORMAL_PUD, pmc); old_pud = get_old_pud(mm, pmc->old_addr); if (!old_pud) continue; new_pud = alloc_new_pud(mm, pmc->new_addr); if (!new_pud) break; if (pud_trans_huge(*old_pud) || pud_devmap(*old_pud)) { if (extent == HPAGE_PUD_SIZE) { move_pgt_entry(pmc, HPAGE_PUD, old_pud, new_pud); /* We ignore and continue on error? */ continue; } } else if (IS_ENABLED(CONFIG_HAVE_MOVE_PUD) && extent == PUD_SIZE) { if (move_pgt_entry(pmc, NORMAL_PUD, old_pud, new_pud)) continue; } extent = get_extent(NORMAL_PMD, pmc); old_pmd = get_old_pmd(mm, pmc->old_addr); if (!old_pmd) continue; new_pmd = alloc_new_pmd(mm, pmc->new_addr); if (!new_pmd) break; again: if (is_swap_pmd(*old_pmd) || pmd_trans_huge(*old_pmd) || pmd_devmap(*old_pmd)) { if (extent == HPAGE_PMD_SIZE && move_pgt_entry(pmc, HPAGE_PMD, old_pmd, new_pmd)) continue; split_huge_pmd(pmc->old, old_pmd, pmc->old_addr); } else if (IS_ENABLED(CONFIG_HAVE_MOVE_PMD) && extent == PMD_SIZE) { /* * If the extent is PMD-sized, try to speed the move by * moving at the PMD level if possible. */ if (move_pgt_entry(pmc, NORMAL_PMD, old_pmd, new_pmd)) continue; } if (pmd_none(*old_pmd)) continue; if (pte_alloc(pmc->new->vm_mm, new_pmd)) break; if (move_ptes(pmc, extent, old_pmd, new_pmd) < 0) goto again; } mmu_notifier_invalidate_range_end(&range); return pmc_progress(pmc); } /* Set vrm->delta to the difference in VMA size specified by user. */ static void vrm_set_delta(struct vma_remap_struct *vrm) { vrm->delta = abs_diff(vrm->old_len, vrm->new_len); } /* Determine what kind of remap this is - shrink, expand or no resize at all. */ static enum mremap_type vrm_remap_type(struct vma_remap_struct *vrm) { if (vrm->delta == 0) return MREMAP_NO_RESIZE; if (vrm->old_len > vrm->new_len) return MREMAP_SHRINK; return MREMAP_EXPAND; } /* * When moving a VMA to vrm->new_adr, does this result in the new and old VMAs * overlapping? */ static bool vrm_overlaps(struct vma_remap_struct *vrm) { unsigned long start_old = vrm->addr; unsigned long start_new = vrm->new_addr; unsigned long end_old = vrm->addr + vrm->old_len; unsigned long end_new = vrm->new_addr + vrm->new_len; /* * start_old end_old * |-----------| * | | * |-----------| * |-------------| * | | * |-------------| * start_new end_new */ if (end_old > start_new && end_new > start_old) return true; return false; } /* Do the mremap() flags require that the new_addr parameter be specified? */ static bool vrm_implies_new_addr(struct vma_remap_struct *vrm) { return vrm->flags & (MREMAP_FIXED | MREMAP_DONTUNMAP); } /* * Find an unmapped area for the requested vrm->new_addr. * * If MREMAP_FIXED then this is equivalent to a MAP_FIXED mmap() call. If only * MREMAP_DONTUNMAP is set, then this is equivalent to providing a hint to * mmap(), otherwise this is equivalent to mmap() specifying a NULL address. * * Returns 0 on success (with vrm->new_addr updated), or an error code upon * failure. */ static unsigned long vrm_set_new_addr(struct vma_remap_struct *vrm) { struct vm_area_struct *vma = vrm->vma; unsigned long map_flags = 0; /* Page Offset _into_ the VMA. */ pgoff_t internal_pgoff = (vrm->addr - vma->vm_start) >> PAGE_SHIFT; pgoff_t pgoff = vma->vm_pgoff + internal_pgoff; unsigned long new_addr = vrm_implies_new_addr(vrm) ? vrm->new_addr : 0; unsigned long res; if (vrm->flags & MREMAP_FIXED) map_flags |= MAP_FIXED; if (vma->vm_flags & VM_MAYSHARE) map_flags |= MAP_SHARED; res = get_unmapped_area(vma->vm_file, new_addr, vrm->new_len, pgoff, map_flags); if (IS_ERR_VALUE(res)) return res; vrm->new_addr = res; return 0; } /* * Keep track of pages which have been added to the memory mapping. If the VMA * is accounted, also check to see if there is sufficient memory. * * Returns true on success, false if insufficient memory to charge. */ static bool vrm_charge(struct vma_remap_struct *vrm) { unsigned long charged; if (!(vrm->vma->vm_flags & VM_ACCOUNT)) return true; /* * If we don't unmap the old mapping, then we account the entirety of * the length of the new one. Otherwise it's just the delta in size. */ if (vrm->flags & MREMAP_DONTUNMAP) charged = vrm->new_len >> PAGE_SHIFT; else charged = vrm->delta >> PAGE_SHIFT; /* This accounts 'charged' pages of memory. */ if (security_vm_enough_memory_mm(current->mm, charged)) return false; vrm->charged = charged; return true; } /* * an error has occurred so we will not be using vrm->charged memory. Unaccount * this memory if the VMA is accounted. */ static void vrm_uncharge(struct vma_remap_struct *vrm) { if (!(vrm->vma->vm_flags & VM_ACCOUNT)) return; vm_unacct_memory(vrm->charged); vrm->charged = 0; } /* * Update mm exec_vm, stack_vm, data_vm, and locked_vm fields as needed to * account for 'bytes' memory used, and if locked, indicate this in the VRM so * we can handle this correctly later. */ static void vrm_stat_account(struct vma_remap_struct *vrm, unsigned long bytes) { unsigned long pages = bytes >> PAGE_SHIFT; struct mm_struct *mm = current->mm; struct vm_area_struct *vma = vrm->vma; vm_stat_account(mm, vma->vm_flags, pages); if (vma->vm_flags & VM_LOCKED) { mm->locked_vm += pages; vrm->mlocked = true; } } /* * Perform checks before attempting to write a VMA prior to it being * moved. */ static unsigned long prep_move_vma(struct vma_remap_struct *vrm) { unsigned long err = 0; struct vm_area_struct *vma = vrm->vma; unsigned long old_addr = vrm->addr; unsigned long old_len = vrm->old_len; unsigned long dummy = vma->vm_flags; /* * We'd prefer to avoid failure later on in do_munmap: * which may split one vma into three before unmapping. */ if (current->mm->map_count >= sysctl_max_map_count - 3) return -ENOMEM; if (vma->vm_ops && vma->vm_ops->may_split) { if (vma->vm_start != old_addr) err = vma->vm_ops->may_split(vma, old_addr); if (!err && vma->vm_end != old_addr + old_len) err = vma->vm_ops->may_split(vma, old_addr + old_len); if (err) return err; } /* * Advise KSM to break any KSM pages in the area to be moved: * it would be confusing if they were to turn up at the new * location, where they happen to coincide with different KSM * pages recently unmapped. But leave vma->vm_flags as it was, * so KSM can come around to merge on vma and new_vma afterwards. */ err = ksm_madvise(vma, old_addr, old_addr + old_len, MADV_UNMERGEABLE, &dummy); if (err) return err; return 0; } /* * Unmap source VMA for VMA move, turning it from a copy to a move, being * careful to ensure we do not underflow memory account while doing so if an * accountable move. * * This is best effort, if we fail to unmap then we simply try to correct * accounting and exit. */ static void unmap_source_vma(struct vma_remap_struct *vrm) { struct mm_struct *mm = current->mm; unsigned long addr = vrm->addr; unsigned long len = vrm->old_len; struct vm_area_struct *vma = vrm->vma; VMA_ITERATOR(vmi, mm, addr); int err; unsigned long vm_start; unsigned long vm_end; /* * It might seem odd that we check for MREMAP_DONTUNMAP here, given this * function implies that we unmap the original VMA, which seems * contradictory. * * However, this occurs when this operation was attempted and an error * arose, in which case we _do_ wish to unmap the _new_ VMA, which means * we actually _do_ want it be unaccounted. */ bool accountable_move = (vma->vm_flags & VM_ACCOUNT) && !(vrm->flags & MREMAP_DONTUNMAP); /* * So we perform a trick here to prevent incorrect accounting. Any merge * or new VMA allocation performed in copy_vma() does not adjust * accounting, it is expected that callers handle this. * * And indeed we already have, accounting appropriately in the case of * both in vrm_charge(). * * However, when we unmap the existing VMA (to effect the move), this * code will, if the VMA has VM_ACCOUNT set, attempt to unaccount * removed pages. * * To avoid this we temporarily clear this flag, reinstating on any * portions of the original VMA that remain. */ if (accountable_move) { vm_flags_clear(vma, VM_ACCOUNT); /* We are about to split vma, so store the start/end. */ vm_start = vma->vm_start; vm_end = vma->vm_end; } err = do_vmi_munmap(&vmi, mm, addr, len, vrm->uf_unmap, /* unlock= */false); vrm->vma = NULL; /* Invalidated. */ if (err) { /* OOM: unable to split vma, just get accounts right */ vm_acct_memory(len >> PAGE_SHIFT); return; } /* * If we mremap() from a VMA like this: * * addr end * | | * v v * |-------------| * | | * |-------------| * * Having cleared VM_ACCOUNT from the whole VMA, after we unmap above * we'll end up with: * * addr end * | | * v v * |---| |---| * | A | | B | * |---| |---| * * The VMI is still pointing at addr, so vma_prev() will give us A, and * a subsequent or lone vma_next() will give as B. * * do_vmi_munmap() will have restored the VMI back to addr. */ if (accountable_move) { unsigned long end = addr + len; if (vm_start < addr) { struct vm_area_struct *prev = vma_prev(&vmi); vm_flags_set(prev, VM_ACCOUNT); /* Acquires VMA lock. */ } if (vm_end > end) { struct vm_area_struct *next = vma_next(&vmi); vm_flags_set(next, VM_ACCOUNT); /* Acquires VMA lock. */ } } } /* * Copy vrm->vma over to vrm->new_addr possibly adjusting size as part of the * process. Additionally handle an error occurring on moving of page tables, * where we reset vrm state to cause unmapping of the new VMA. * * Outputs the newly installed VMA to new_vma_ptr. Returns 0 on success or an * error code. */ static int copy_vma_and_data(struct vma_remap_struct *vrm, struct vm_area_struct **new_vma_ptr) { unsigned long internal_offset = vrm->addr - vrm->vma->vm_start; unsigned long internal_pgoff = internal_offset >> PAGE_SHIFT; unsigned long new_pgoff = vrm->vma->vm_pgoff + internal_pgoff; unsigned long moved_len; struct vm_area_struct *vma = vrm->vma; struct vm_area_struct *new_vma; int err = 0; PAGETABLE_MOVE(pmc, NULL, NULL, vrm->addr, vrm->new_addr, vrm->old_len); new_vma = copy_vma(&vma, vrm->new_addr, vrm->new_len, new_pgoff, &pmc.need_rmap_locks); if (!new_vma) { vrm_uncharge(vrm); *new_vma_ptr = NULL; return -ENOMEM; } vrm->vma = vma; pmc.old = vma; pmc.new = new_vma; moved_len = move_page_tables(&pmc); if (moved_len < vrm->old_len) err = -ENOMEM; else if (vma->vm_ops && vma->vm_ops->mremap) err = vma->vm_ops->mremap(new_vma); if (unlikely(err)) { PAGETABLE_MOVE(pmc_revert, new_vma, vma, vrm->new_addr, vrm->addr, moved_len); /* * On error, move entries back from new area to old, * which will succeed since page tables still there, * and then proceed to unmap new area instead of old. */ pmc_revert.need_rmap_locks = true; move_page_tables(&pmc_revert); vrm->vma = new_vma; vrm->old_len = vrm->new_len; vrm->addr = vrm->new_addr; } else { mremap_userfaultfd_prep(new_vma, vrm->uf); } if (is_vm_hugetlb_page(vma)) clear_vma_resv_huge_pages(vma); /* Tell pfnmap has moved from this vma */ if (unlikely(vma->vm_flags & VM_PFNMAP)) untrack_pfn_clear(vma); *new_vma_ptr = new_vma; return err; } /* * Perform final tasks for MADV_DONTUNMAP operation, clearing mlock() and * account flags on remaining VMA by convention (it cannot be mlock()'d any * longer, as pages in range are no longer mapped), and removing anon_vma_chain * links from it (if the entire VMA was copied over). */ static void dontunmap_complete(struct vma_remap_struct *vrm, struct vm_area_struct *new_vma) { unsigned long start = vrm->addr; unsigned long end = vrm->addr + vrm->old_len; unsigned long old_start = vrm->vma->vm_start; unsigned long old_end = vrm->vma->vm_end; /* * We always clear VM_LOCKED[ONFAULT] | VM_ACCOUNT on the old * vma. */ vm_flags_clear(vrm->vma, VM_LOCKED_MASK | VM_ACCOUNT); /* * anon_vma links of the old vma is no longer needed after its page * table has been moved. */ if (new_vma != vrm->vma && start == old_start && end == old_end) unlink_anon_vmas(vrm->vma); /* Because we won't unmap we don't need to touch locked_vm. */ } static unsigned long move_vma(struct vma_remap_struct *vrm) { struct mm_struct *mm = current->mm; struct vm_area_struct *new_vma; unsigned long hiwater_vm; int err; err = prep_move_vma(vrm); if (err) return err; /* If accounted, charge the number of bytes the operation will use. */ if (!vrm_charge(vrm)) return -ENOMEM; /* We don't want racing faults. */ vma_start_write(vrm->vma); /* Perform copy step. */ err = copy_vma_and_data(vrm, &new_vma); /* * If we established the copied-to VMA, we attempt to recover from the * error by setting the destination VMA to the source VMA and unmapping * it below. */ if (err && !new_vma) return err; /* * If we failed to move page tables we still do total_vm increment * since do_munmap() will decrement it by old_len == new_len. * * Since total_vm is about to be raised artificially high for a * moment, we need to restore high watermark afterwards: if stats * are taken meanwhile, total_vm and hiwater_vm appear too high. * If this were a serious issue, we'd add a flag to do_munmap(). */ hiwater_vm = mm->hiwater_vm; vrm_stat_account(vrm, vrm->new_len); if (unlikely(!err && (vrm->flags & MREMAP_DONTUNMAP))) dontunmap_complete(vrm, new_vma); else unmap_source_vma(vrm); mm->hiwater_vm = hiwater_vm; return err ? (unsigned long)err : vrm->new_addr; } /* * resize_is_valid() - Ensure the vma can be resized to the new length at the give * address. * * Return 0 on success, error otherwise. */ static int resize_is_valid(struct vma_remap_struct *vrm) { struct mm_struct *mm = current->mm; struct vm_area_struct *vma = vrm->vma; unsigned long addr = vrm->addr; unsigned long old_len = vrm->old_len; unsigned long new_len = vrm->new_len; unsigned long pgoff; /* * !old_len is a special case where an attempt is made to 'duplicate' * a mapping. This makes no sense for private mappings as it will * instead create a fresh/new mapping unrelated to the original. This * is contrary to the basic idea of mremap which creates new mappings * based on the original. There are no known use cases for this * behavior. As a result, fail such attempts. */ if (!old_len && !(vma->vm_flags & (VM_SHARED | VM_MAYSHARE))) { pr_warn_once("%s (%d): attempted to duplicate a private mapping with mremap. This is not supported.\n", current->comm, current->pid); return -EINVAL; } if ((vrm->flags & MREMAP_DONTUNMAP) && (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP))) return -EINVAL; /* We can't remap across vm area boundaries */ if (old_len > vma->vm_end - addr) return -EFAULT; if (new_len == old_len) return 0; /* Need to be careful about a growing mapping */ pgoff = (addr - vma->vm_start) >> PAGE_SHIFT; pgoff += vma->vm_pgoff; if (pgoff + (new_len >> PAGE_SHIFT) < pgoff) return -EINVAL; if (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP)) return -EFAULT; if (!mlock_future_ok(mm, vma->vm_flags, vrm->delta)) return -EAGAIN; if (!may_expand_vm(mm, vma->vm_flags, vrm->delta >> PAGE_SHIFT)) return -ENOMEM; return 0; } /* * The user has requested that the VMA be shrunk (i.e., old_len > new_len), so * execute this, optionally dropping the mmap lock when we do so. * * In both cases this invalidates the VMA, however if we don't drop the lock, * then load the correct VMA into vrm->vma afterwards. */ static unsigned long shrink_vma(struct vma_remap_struct *vrm, bool drop_lock) { struct mm_struct *mm = current->mm; unsigned long unmap_start = vrm->addr + vrm->new_len; unsigned long unmap_bytes = vrm->delta; unsigned long res; VMA_ITERATOR(vmi, mm, unmap_start); VM_BUG_ON(vrm->remap_type != MREMAP_SHRINK); res = do_vmi_munmap(&vmi, mm, unmap_start, unmap_bytes, vrm->uf_unmap, drop_lock); vrm->vma = NULL; /* Invalidated. */ if (res) return res; /* * If we've not dropped the lock, then we should reload the VMA to * replace the invalidated VMA with the one that may have now been * split. */ if (drop_lock) { vrm->mmap_locked = false; } else { vrm->vma = vma_lookup(mm, vrm->addr); if (!vrm->vma) return -EFAULT; } return 0; } /* * mremap_to() - remap a vma to a new location. * Returns: The new address of the vma or an error. */ static unsigned long mremap_to(struct vma_remap_struct *vrm) { struct mm_struct *mm = current->mm; unsigned long err; /* Is the new length or address silly? */ if (vrm->new_len > TASK_SIZE || vrm->new_addr > TASK_SIZE - vrm->new_len) return -EINVAL; if (vrm_overlaps(vrm)) return -EINVAL; if (vrm->flags & MREMAP_FIXED) { /* * In mremap_to(). * VMA is moved to dst address, and munmap dst first. * do_munmap will check if dst is sealed. */ err = do_munmap(mm, vrm->new_addr, vrm->new_len, vrm->uf_unmap_early); vrm->vma = NULL; /* Invalidated. */ if (err) return err; /* * If we remap a portion of a VMA elsewhere in the same VMA, * this can invalidate the old VMA. Reset. */ vrm->vma = vma_lookup(mm, vrm->addr); if (!vrm->vma) return -EFAULT; } if (vrm->remap_type == MREMAP_SHRINK) { err = shrink_vma(vrm, /* drop_lock= */false); if (err) return err; /* Set up for the move now shrink has been executed. */ vrm->old_len = vrm->new_len; } err = resize_is_valid(vrm); if (err) return err; /* MREMAP_DONTUNMAP expands by old_len since old_len == new_len */ if (vrm->flags & MREMAP_DONTUNMAP) { vm_flags_t vm_flags = vrm->vma->vm_flags; unsigned long pages = vrm->old_len >> PAGE_SHIFT; if (!may_expand_vm(mm, vm_flags, pages)) return -ENOMEM; } err = vrm_set_new_addr(vrm); if (err) return err; return move_vma(vrm); } static int vma_expandable(struct vm_area_struct *vma, unsigned long delta) { unsigned long end = vma->vm_end + delta; if (end < vma->vm_end) /* overflow */ return 0; if (find_vma_intersection(vma->vm_mm, vma->vm_end, end)) return 0; if (get_unmapped_area(NULL, vma->vm_start, end - vma->vm_start, 0, MAP_FIXED) & ~PAGE_MASK) return 0; return 1; } /* Determine whether we are actually able to execute an in-place expansion. */ static bool vrm_can_expand_in_place(struct vma_remap_struct *vrm) { /* Number of bytes from vrm->addr to end of VMA. */ unsigned long suffix_bytes = vrm->vma->vm_end - vrm->addr; /* If end of range aligns to end of VMA, we can just expand in-place. */ if (suffix_bytes != vrm->old_len) return false; /* Check whether this is feasible. */ if (!vma_expandable(vrm->vma, vrm->delta)) return false; return true; } /* * Are the parameters passed to mremap() valid? If so return 0, otherwise return * error. */ static unsigned long check_mremap_params(struct vma_remap_struct *vrm) { unsigned long addr = vrm->addr; unsigned long flags = vrm->flags; /* Ensure no unexpected flag values. */ if (flags & ~(MREMAP_FIXED | MREMAP_MAYMOVE | MREMAP_DONTUNMAP)) return -EINVAL; /* Start address must be page-aligned. */ if (offset_in_page(addr)) return -EINVAL; /* * We allow a zero old-len as a special case * for DOS-emu "duplicate shm area" thing. But * a zero new-len is nonsensical. */ if (!PAGE_ALIGN(vrm->new_len)) return -EINVAL; /* Remainder of checks are for cases with specific new_addr. */ if (!vrm_implies_new_addr(vrm)) return 0; /* The new address must be page-aligned. */ if (offset_in_page(vrm->new_addr)) return -EINVAL; /* A fixed address implies a move. */ if (!(flags & MREMAP_MAYMOVE)) return -EINVAL; /* MREMAP_DONTUNMAP does not allow resizing in the process. */ if (flags & MREMAP_DONTUNMAP && vrm->old_len != vrm->new_len) return -EINVAL; /* * move_vma() need us to stay 4 maps below the threshold, otherwise * it will bail out at the very beginning. * That is a problem if we have already unmaped the regions here * (new_addr, and old_addr), because userspace will not know the * state of the vma's after it gets -ENOMEM. * So, to avoid such scenario we can pre-compute if the whole * operation has high chances to success map-wise. * Worst-scenario case is when both vma's (new_addr and old_addr) get * split in 3 before unmapping it. * That means 2 more maps (1 for each) to the ones we already hold. * Check whether current map count plus 2 still leads us to 4 maps below * the threshold, otherwise return -ENOMEM here to be more safe. */ if ((current->mm->map_count + 2) >= sysctl_max_map_count - 3) return -ENOMEM; return 0; } /* * We know we can expand the VMA in-place by delta pages, so do so. * * If we discover the VMA is locked, update mm_struct statistics accordingly and * indicate so to the caller. */ static unsigned long expand_vma_in_place(struct vma_remap_struct *vrm) { struct mm_struct *mm = current->mm; struct vm_area_struct *vma = vrm->vma; VMA_ITERATOR(vmi, mm, vma->vm_end); if (!vrm_charge(vrm)) return -ENOMEM; /* * Function vma_merge_extend() is called on the * extension we are adding to the already existing vma, * vma_merge_extend() will merge this extension with the * already existing vma (expand operation itself) and * possibly also with the next vma if it becomes * adjacent to the expanded vma and otherwise * compatible. */ vma = vma_merge_extend(&vmi, vma, vrm->delta); if (!vma) { vrm_uncharge(vrm); return -ENOMEM; } vrm->vma = vma; vrm_stat_account(vrm, vrm->delta); return 0; } static bool align_hugetlb(struct vma_remap_struct *vrm) { struct hstate *h __maybe_unused = hstate_vma(vrm->vma); vrm->old_len = ALIGN(vrm->old_len, huge_page_size(h)); vrm->new_len = ALIGN(vrm->new_len, huge_page_size(h)); /* addrs must be huge page aligned */ if (vrm->addr & ~huge_page_mask(h)) return false; if (vrm->new_addr & ~huge_page_mask(h)) return false; /* * Don't allow remap expansion, because the underlying hugetlb * reservation is not yet capable to handle split reservation. */ if (vrm->new_len > vrm->old_len) return false; vrm_set_delta(vrm); return true; } /* * We are mremap()'ing without specifying a fixed address to move to, but are * requesting that the VMA's size be increased. * * Try to do so in-place, if this fails, then move the VMA to a new location to * action the change. */ static unsigned long expand_vma(struct vma_remap_struct *vrm) { unsigned long err; unsigned long addr = vrm->addr; err = resize_is_valid(vrm); if (err) return err; /* * [addr, old_len) spans precisely to the end of the VMA, so try to * expand it in-place. */ if (vrm_can_expand_in_place(vrm)) { err = expand_vma_in_place(vrm); if (err) return err; /* * We want to populate the newly expanded portion of the VMA to * satisfy the expectation that mlock()'ing a VMA maintains all * of its pages in memory. */ if (vrm->mlocked) vrm->new_addr = addr; /* OK we're done! */ return addr; } /* * We weren't able to just expand or shrink the area, * we need to create a new one and move it. */ /* We're not allowed to move the VMA, so error out. */ if (!(vrm->flags & MREMAP_MAYMOVE)) return -ENOMEM; /* Find a new location to move the VMA to. */ err = vrm_set_new_addr(vrm); if (err) return err; return move_vma(vrm); } /* * Attempt to resize the VMA in-place, if we cannot, then move the VMA to the * first available address to perform the operation. */ static unsigned long mremap_at(struct vma_remap_struct *vrm) { unsigned long res; switch (vrm->remap_type) { case MREMAP_INVALID: break; case MREMAP_NO_RESIZE: /* NO-OP CASE - resizing to the same size. */ return vrm->addr; case MREMAP_SHRINK: /* * SHRINK CASE. Can always be done in-place. * * Simply unmap the shrunken portion of the VMA. This does all * the needed commit accounting, and we indicate that the mmap * lock should be dropped. */ res = shrink_vma(vrm, /* drop_lock= */true); if (res) return res; return vrm->addr; case MREMAP_EXPAND: return expand_vma(vrm); } BUG(); } static unsigned long do_mremap(struct vma_remap_struct *vrm) { struct mm_struct *mm = current->mm; struct vm_area_struct *vma; unsigned long ret; ret = check_mremap_params(vrm); if (ret) return ret; vrm->old_len = PAGE_ALIGN(vrm->old_len); vrm->new_len = PAGE_ALIGN(vrm->new_len); vrm_set_delta(vrm); if (mmap_write_lock_killable(mm)) return -EINTR; vrm->mmap_locked = true; vma = vrm->vma = vma_lookup(mm, vrm->addr); if (!vma) { ret = -EFAULT; goto out; } /* If mseal()'d, mremap() is prohibited. */ if (!can_modify_vma(vma)) { ret = -EPERM; goto out; } /* Align to hugetlb page size, if required. */ if (is_vm_hugetlb_page(vma) && !align_hugetlb(vrm)) { ret = -EINVAL; goto out; } vrm->remap_type = vrm_remap_type(vrm); /* Actually execute mremap. */ ret = vrm_implies_new_addr(vrm) ? mremap_to(vrm) : mremap_at(vrm); out: if (vrm->mmap_locked) { mmap_write_unlock(mm); vrm->mmap_locked = false; if (!offset_in_page(ret) && vrm->mlocked && vrm->new_len > vrm->old_len) mm_populate(vrm->new_addr + vrm->old_len, vrm->delta); } userfaultfd_unmap_complete(mm, vrm->uf_unmap_early); mremap_userfaultfd_complete(vrm->uf, vrm->addr, ret, vrm->old_len); userfaultfd_unmap_complete(mm, vrm->uf_unmap); return ret; } /* * Expand (or shrink) an existing mapping, potentially moving it at the * same time (controlled by the MREMAP_MAYMOVE flag and available VM space) * * MREMAP_FIXED option added 5-Dec-1999 by Benjamin LaHaise * This option implies MREMAP_MAYMOVE. */ SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, unsigned long, new_len, unsigned long, flags, unsigned long, new_addr) { struct vm_userfaultfd_ctx uf = NULL_VM_UFFD_CTX; LIST_HEAD(uf_unmap_early); LIST_HEAD(uf_unmap); /* * There is a deliberate asymmetry here: we strip the pointer tag * from the old address but leave the new address alone. This is * for consistency with mmap(), where we prevent the creation of * aliasing mappings in userspace by leaving the tag bits of the * mapping address intact. A non-zero tag will cause the subsequent * range checks to reject the address as invalid. * * See Documentation/arch/arm64/tagged-address-abi.rst for more * information. */ struct vma_remap_struct vrm = { .addr = untagged_addr(addr), .old_len = old_len, .new_len = new_len, .flags = flags, .new_addr = new_addr, .uf = &uf, .uf_unmap_early = &uf_unmap_early, .uf_unmap = &uf_unmap, .remap_type = MREMAP_INVALID, /* We set later. */ }; return do_mremap(&vrm); }