// SPDX-License-Identifier: GPL-2.0 //! Crate for all kernel procedural macros. // When fixdep scans this, it will find this string `CONFIG_RUSTC_VERSION_TEXT` // and thus add a dependency on `include/config/RUSTC_VERSION_TEXT`, which is // touched by Kconfig when the version string from the compiler changes. #[macro_use] mod quote; mod concat_idents; mod export; mod helpers; mod kunit; mod module; mod paste; mod vtable; use proc_macro::TokenStream; /// Declares a kernel module. /// /// The `type` argument should be a type which implements the [`Module`] /// trait. Also accepts various forms of kernel metadata. /// /// C header: [`include/linux/moduleparam.h`](srctree/include/linux/moduleparam.h) /// /// [`Module`]: ../kernel/trait.Module.html /// /// # Examples /// /// ``` /// use kernel::prelude::*; /// /// module!{ /// type: MyModule, /// name: "my_kernel_module", /// authors: ["Rust for Linux Contributors"], /// description: "My very own kernel module!", /// license: "GPL", /// alias: ["alternate_module_name"], /// } /// /// struct MyModule(i32); /// /// impl kernel::Module for MyModule { /// fn init(_module: &'static ThisModule) -> Result { /// let foo: i32 = 42; /// pr_info!("I contain: {}\n", foo); /// Ok(Self(foo)) /// } /// } /// # fn main() {} /// ``` /// /// ## Firmware /// /// The following example shows how to declare a kernel module that needs /// to load binary firmware files. You need to specify the file names of /// the firmware in the `firmware` field. The information is embedded /// in the `modinfo` section of the kernel module. For example, a tool to /// build an initramfs uses this information to put the firmware files into /// the initramfs image. /// /// ``` /// use kernel::prelude::*; /// /// module!{ /// type: MyDeviceDriverModule, /// name: "my_device_driver_module", /// authors: ["Rust for Linux Contributors"], /// description: "My device driver requires firmware", /// license: "GPL", /// firmware: ["my_device_firmware1.bin", "my_device_firmware2.bin"], /// } /// /// struct MyDeviceDriverModule; /// /// impl kernel::Module for MyDeviceDriverModule { /// fn init(_module: &'static ThisModule) -> Result { /// Ok(Self) /// } /// } /// # fn main() {} /// ``` /// /// # Supported argument types /// - `type`: type which implements the [`Module`] trait (required). /// - `name`: ASCII string literal of the name of the kernel module (required). /// - `authors`: array of ASCII string literals of the authors of the kernel module. /// - `description`: string literal of the description of the kernel module. /// - `license`: ASCII string literal of the license of the kernel module (required). /// - `alias`: array of ASCII string literals of the alias names of the kernel module. /// - `firmware`: array of ASCII string literals of the firmware files of /// the kernel module. #[proc_macro] pub fn module(ts: TokenStream) -> TokenStream { module::module(ts) } /// Declares or implements a vtable trait. /// /// Linux's use of pure vtables is very close to Rust traits, but they differ /// in how unimplemented functions are represented. In Rust, traits can provide /// default implementation for all non-required methods (and the default /// implementation could just return `Error::EINVAL`); Linux typically use C /// `NULL` pointers to represent these functions. /// /// This attribute closes that gap. A trait can be annotated with the /// `#[vtable]` attribute. Implementers of the trait will then also have to /// annotate the trait with `#[vtable]`. This attribute generates a `HAS_*` /// associated constant bool for each method in the trait that is set to true if /// the implementer has overridden the associated method. /// /// For a trait method to be optional, it must have a default implementation. /// This is also the case for traits annotated with `#[vtable]`, but in this /// case the default implementation will never be executed. The reason for this /// is that the functions will be called through function pointers installed in /// C side vtables. When an optional method is not implemented on a `#[vtable]` /// trait, a NULL entry is installed in the vtable. Thus the default /// implementation is never called. Since these traits are not designed to be /// used on the Rust side, it should not be possible to call the default /// implementation. This is done to ensure that we call the vtable methods /// through the C vtable, and not through the Rust vtable. Therefore, the /// default implementation should call `build_error!`, which prevents /// calls to this function at compile time: /// /// ```compile_fail /// # // Intentionally missing `use`s to simplify `rusttest`. /// build_error!(VTABLE_DEFAULT_ERROR) /// ``` /// /// Note that you might need to import [`kernel::error::VTABLE_DEFAULT_ERROR`]. /// /// This macro should not be used when all functions are required. /// /// # Examples /// /// ``` /// use kernel::error::VTABLE_DEFAULT_ERROR; /// use kernel::prelude::*; /// /// // Declares a `#[vtable]` trait /// #[vtable] /// pub trait Operations: Send + Sync + Sized { /// fn foo(&self) -> Result<()> { /// build_error!(VTABLE_DEFAULT_ERROR) /// } /// /// fn bar(&self) -> Result<()> { /// build_error!(VTABLE_DEFAULT_ERROR) /// } /// } /// /// struct Foo; /// /// // Implements the `#[vtable]` trait /// #[vtable] /// impl Operations for Foo { /// fn foo(&self) -> Result<()> { /// # Err(EINVAL) /// // ... /// } /// } /// /// assert_eq!(::HAS_FOO, true); /// assert_eq!(::HAS_BAR, false); /// ``` /// /// [`kernel::error::VTABLE_DEFAULT_ERROR`]: ../kernel/error/constant.VTABLE_DEFAULT_ERROR.html #[proc_macro_attribute] pub fn vtable(attr: TokenStream, ts: TokenStream) -> TokenStream { vtable::vtable(attr, ts) } /// Export a function so that C code can call it via a header file. /// /// Functions exported using this macro can be called from C code using the declaration in the /// appropriate header file. It should only be used in cases where C calls the function through a /// header file; cases where C calls into Rust via a function pointer in a vtable (such as /// `file_operations`) should not use this macro. /// /// This macro has the following effect: /// /// * Disables name mangling for this function. /// * Verifies at compile-time that the function signature matches the declaration in the header /// file. /// /// You must declare the signature of the Rust function in a header file that is included by /// `rust/bindings/bindings_helper.h`. /// /// This macro is *not* the same as the C macros `EXPORT_SYMBOL_*`. All Rust symbols are currently /// automatically exported with `EXPORT_SYMBOL_GPL`. #[proc_macro_attribute] pub fn export(attr: TokenStream, ts: TokenStream) -> TokenStream { export::export(attr, ts) } /// Concatenate two identifiers. /// /// This is useful in macros that need to declare or reference items with names /// starting with a fixed prefix and ending in a user specified name. The resulting /// identifier has the span of the second argument. /// /// # Examples /// /// ``` /// # const binder_driver_return_protocol_BR_OK: u32 = 0; /// # const binder_driver_return_protocol_BR_ERROR: u32 = 1; /// # const binder_driver_return_protocol_BR_TRANSACTION: u32 = 2; /// # const binder_driver_return_protocol_BR_REPLY: u32 = 3; /// # const binder_driver_return_protocol_BR_DEAD_REPLY: u32 = 4; /// # const binder_driver_return_protocol_BR_TRANSACTION_COMPLETE: u32 = 5; /// # const binder_driver_return_protocol_BR_INCREFS: u32 = 6; /// # const binder_driver_return_protocol_BR_ACQUIRE: u32 = 7; /// # const binder_driver_return_protocol_BR_RELEASE: u32 = 8; /// # const binder_driver_return_protocol_BR_DECREFS: u32 = 9; /// # const binder_driver_return_protocol_BR_NOOP: u32 = 10; /// # const binder_driver_return_protocol_BR_SPAWN_LOOPER: u32 = 11; /// # const binder_driver_return_protocol_BR_DEAD_BINDER: u32 = 12; /// # const binder_driver_return_protocol_BR_CLEAR_DEATH_NOTIFICATION_DONE: u32 = 13; /// # const binder_driver_return_protocol_BR_FAILED_REPLY: u32 = 14; /// use kernel::macros::concat_idents; /// /// macro_rules! pub_no_prefix { /// ($prefix:ident, $($newname:ident),+) => { /// $(pub(crate) const $newname: u32 = concat_idents!($prefix, $newname);)+ /// }; /// } /// /// pub_no_prefix!( /// binder_driver_return_protocol_, /// BR_OK, /// BR_ERROR, /// BR_TRANSACTION, /// BR_REPLY, /// BR_DEAD_REPLY, /// BR_TRANSACTION_COMPLETE, /// BR_INCREFS, /// BR_ACQUIRE, /// BR_RELEASE, /// BR_DECREFS, /// BR_NOOP, /// BR_SPAWN_LOOPER, /// BR_DEAD_BINDER, /// BR_CLEAR_DEATH_NOTIFICATION_DONE, /// BR_FAILED_REPLY /// ); /// /// assert_eq!(BR_OK, binder_driver_return_protocol_BR_OK); /// ``` #[proc_macro] pub fn concat_idents(ts: TokenStream) -> TokenStream { concat_idents::concat_idents(ts) } /// Paste identifiers together. /// /// Within the `paste!` macro, identifiers inside `[<` and `>]` are concatenated together to form a /// single identifier. /// /// This is similar to the [`paste`] crate, but with pasting feature limited to identifiers and /// literals (lifetimes and documentation strings are not supported). There is a difference in /// supported modifiers as well. /// /// # Example /// /// ``` /// # const binder_driver_return_protocol_BR_OK: u32 = 0; /// # const binder_driver_return_protocol_BR_ERROR: u32 = 1; /// # const binder_driver_return_protocol_BR_TRANSACTION: u32 = 2; /// # const binder_driver_return_protocol_BR_REPLY: u32 = 3; /// # const binder_driver_return_protocol_BR_DEAD_REPLY: u32 = 4; /// # const binder_driver_return_protocol_BR_TRANSACTION_COMPLETE: u32 = 5; /// # const binder_driver_return_protocol_BR_INCREFS: u32 = 6; /// # const binder_driver_return_protocol_BR_ACQUIRE: u32 = 7; /// # const binder_driver_return_protocol_BR_RELEASE: u32 = 8; /// # const binder_driver_return_protocol_BR_DECREFS: u32 = 9; /// # const binder_driver_return_protocol_BR_NOOP: u32 = 10; /// # const binder_driver_return_protocol_BR_SPAWN_LOOPER: u32 = 11; /// # const binder_driver_return_protocol_BR_DEAD_BINDER: u32 = 12; /// # const binder_driver_return_protocol_BR_CLEAR_DEATH_NOTIFICATION_DONE: u32 = 13; /// # const binder_driver_return_protocol_BR_FAILED_REPLY: u32 = 14; /// macro_rules! pub_no_prefix { /// ($prefix:ident, $($newname:ident),+) => { /// kernel::macros::paste! { /// $(pub(crate) const $newname: u32 = [<$prefix $newname>];)+ /// } /// }; /// } /// /// pub_no_prefix!( /// binder_driver_return_protocol_, /// BR_OK, /// BR_ERROR, /// BR_TRANSACTION, /// BR_REPLY, /// BR_DEAD_REPLY, /// BR_TRANSACTION_COMPLETE, /// BR_INCREFS, /// BR_ACQUIRE, /// BR_RELEASE, /// BR_DECREFS, /// BR_NOOP, /// BR_SPAWN_LOOPER, /// BR_DEAD_BINDER, /// BR_CLEAR_DEATH_NOTIFICATION_DONE, /// BR_FAILED_REPLY /// ); /// /// assert_eq!(BR_OK, binder_driver_return_protocol_BR_OK); /// ``` /// /// # Modifiers /// /// For each identifier, it is possible to attach one or multiple modifiers to /// it. /// /// Currently supported modifiers are: /// * `span`: change the span of concatenated identifier to the span of the specified token. By /// default the span of the `[< >]` group is used. /// * `lower`: change the identifier to lower case. /// * `upper`: change the identifier to upper case. /// /// ``` /// # const binder_driver_return_protocol_BR_OK: u32 = 0; /// # const binder_driver_return_protocol_BR_ERROR: u32 = 1; /// # const binder_driver_return_protocol_BR_TRANSACTION: u32 = 2; /// # const binder_driver_return_protocol_BR_REPLY: u32 = 3; /// # const binder_driver_return_protocol_BR_DEAD_REPLY: u32 = 4; /// # const binder_driver_return_protocol_BR_TRANSACTION_COMPLETE: u32 = 5; /// # const binder_driver_return_protocol_BR_INCREFS: u32 = 6; /// # const binder_driver_return_protocol_BR_ACQUIRE: u32 = 7; /// # const binder_driver_return_protocol_BR_RELEASE: u32 = 8; /// # const binder_driver_return_protocol_BR_DECREFS: u32 = 9; /// # const binder_driver_return_protocol_BR_NOOP: u32 = 10; /// # const binder_driver_return_protocol_BR_SPAWN_LOOPER: u32 = 11; /// # const binder_driver_return_protocol_BR_DEAD_BINDER: u32 = 12; /// # const binder_driver_return_protocol_BR_CLEAR_DEATH_NOTIFICATION_DONE: u32 = 13; /// # const binder_driver_return_protocol_BR_FAILED_REPLY: u32 = 14; /// macro_rules! pub_no_prefix { /// ($prefix:ident, $($newname:ident),+) => { /// kernel::macros::paste! { /// $(pub(crate) const fn [<$newname:lower:span>]() -> u32 { [<$prefix $newname:span>] })+ /// } /// }; /// } /// /// pub_no_prefix!( /// binder_driver_return_protocol_, /// BR_OK, /// BR_ERROR, /// BR_TRANSACTION, /// BR_REPLY, /// BR_DEAD_REPLY, /// BR_TRANSACTION_COMPLETE, /// BR_INCREFS, /// BR_ACQUIRE, /// BR_RELEASE, /// BR_DECREFS, /// BR_NOOP, /// BR_SPAWN_LOOPER, /// BR_DEAD_BINDER, /// BR_CLEAR_DEATH_NOTIFICATION_DONE, /// BR_FAILED_REPLY /// ); /// /// assert_eq!(br_ok(), binder_driver_return_protocol_BR_OK); /// ``` /// /// # Literals /// /// Literals can also be concatenated with other identifiers: /// /// ``` /// macro_rules! create_numbered_fn { /// ($name:literal, $val:literal) => { /// kernel::macros::paste! { /// fn []() -> u32 { $val } /// } /// }; /// } /// /// create_numbered_fn!("foo", 100); /// /// assert_eq!(some_foo_fn100(), 100) /// ``` /// /// [`paste`]: https://docs.rs/paste/ #[proc_macro] pub fn paste(input: TokenStream) -> TokenStream { let mut tokens = input.into_iter().collect(); paste::expand(&mut tokens); tokens.into_iter().collect() } /// Registers a KUnit test suite and its test cases using a user-space like syntax. /// /// This macro should be used on modules. If `CONFIG_KUNIT` (in `.config`) is `n`, the target module /// is ignored. /// /// # Examples /// /// ```ignore /// # use macros::kunit_tests; /// #[kunit_tests(kunit_test_suit_name)] /// mod tests { /// #[test] /// fn foo() { /// assert_eq!(1, 1); /// } /// /// #[test] /// fn bar() { /// assert_eq!(2, 2); /// } /// } /// ``` #[proc_macro_attribute] pub fn kunit_tests(attr: TokenStream, ts: TokenStream) -> TokenStream { kunit::kunit_tests(attr, ts) }