// SPDX-License-Identifier: GPL-2.0 #include #include #include #include #include #include #include #include #include #include "cpumap.h" #include "map_symbol.h" #include "mem-events.h" #include "mem-info.h" #include "debug.h" #include "evsel.h" #include "symbol.h" #include "pmu.h" #include "pmus.h" unsigned int perf_mem_events__loads_ldlat = 30; #define E(t, n, s, l, a) { .tag = t, .name = n, .event_name = s, .ldlat = l, .aux_event = a } struct perf_mem_event perf_mem_events[PERF_MEM_EVENTS__MAX] = { E("ldlat-loads", "%s/mem-loads,ldlat=%u/P", "mem-loads", true, 0), E("ldlat-stores", "%s/mem-stores/P", "mem-stores", false, 0), E(NULL, NULL, NULL, false, 0), }; #undef E bool perf_mem_record[PERF_MEM_EVENTS__MAX] = { 0 }; static char mem_loads_name[100]; static char mem_stores_name[100]; struct perf_mem_event *perf_pmu__mem_events_ptr(struct perf_pmu *pmu, int i) { if (i >= PERF_MEM_EVENTS__MAX || !pmu) return NULL; return &pmu->mem_events[i]; } static struct perf_pmu *perf_pmus__scan_mem(struct perf_pmu *pmu) { while ((pmu = perf_pmus__scan(pmu)) != NULL) { if (pmu->mem_events) return pmu; } return NULL; } struct perf_pmu *perf_mem_events_find_pmu(void) { /* * The current perf mem doesn't support per-PMU configuration. * The exact same configuration is applied to all the * mem_events supported PMUs. * Return the first mem_events supported PMU. * * Notes: The only case which may support multiple mem_events * supported PMUs is Intel hybrid. The exact same mem_events * is shared among the PMUs. Only configure the first PMU * is good enough as well. */ return perf_pmus__scan_mem(NULL); } /** * perf_pmu__mem_events_num_mem_pmus - Get the number of mem PMUs since the given pmu * @pmu: Start pmu. If it's NULL, search the entire PMU list. */ int perf_pmu__mem_events_num_mem_pmus(struct perf_pmu *pmu) { int num = 0; while ((pmu = perf_pmus__scan_mem(pmu)) != NULL) num++; return num; } static const char *perf_pmu__mem_events_name(int i, struct perf_pmu *pmu) { struct perf_mem_event *e; if (i >= PERF_MEM_EVENTS__MAX || !pmu) return NULL; e = &pmu->mem_events[i]; if (!e || !e->name) return NULL; if (i == PERF_MEM_EVENTS__LOAD || i == PERF_MEM_EVENTS__LOAD_STORE) { if (e->ldlat) { if (!e->aux_event) { /* ARM and Most of Intel */ scnprintf(mem_loads_name, sizeof(mem_loads_name), e->name, pmu->name, perf_mem_events__loads_ldlat); } else { /* Intel with mem-loads-aux event */ scnprintf(mem_loads_name, sizeof(mem_loads_name), e->name, pmu->name, pmu->name, perf_mem_events__loads_ldlat); } } else { if (!e->aux_event) { /* AMD and POWER */ scnprintf(mem_loads_name, sizeof(mem_loads_name), e->name, pmu->name); } else return NULL; } return mem_loads_name; } if (i == PERF_MEM_EVENTS__STORE) { scnprintf(mem_stores_name, sizeof(mem_stores_name), e->name, pmu->name); return mem_stores_name; } return NULL; } bool is_mem_loads_aux_event(struct evsel *leader) { struct perf_pmu *pmu = leader->pmu; struct perf_mem_event *e; if (!pmu || !pmu->mem_events) return false; e = &pmu->mem_events[PERF_MEM_EVENTS__LOAD]; if (!e->aux_event) return false; return leader->core.attr.config == e->aux_event; } int perf_pmu__mem_events_parse(struct perf_pmu *pmu, const char *str) { char *tok, *saveptr = NULL; bool found = false; char *buf; int j; /* We need buffer that we know we can write to. */ buf = malloc(strlen(str) + 1); if (!buf) return -ENOMEM; strcpy(buf, str); tok = strtok_r((char *)buf, ",", &saveptr); while (tok) { for (j = 0; j < PERF_MEM_EVENTS__MAX; j++) { struct perf_mem_event *e = perf_pmu__mem_events_ptr(pmu, j); if (!e->tag) continue; if (strstr(e->tag, tok)) perf_mem_record[j] = found = true; } tok = strtok_r(NULL, ",", &saveptr); } free(buf); if (found) return 0; pr_err("failed: event '%s' not found, use '-e list' to get list of available events\n", str); return -1; } static bool perf_pmu__mem_events_supported(const char *mnt, struct perf_pmu *pmu, struct perf_mem_event *e) { char path[PATH_MAX]; struct stat st; if (!e->event_name) return true; scnprintf(path, PATH_MAX, "%s/devices/%s/events/%s", mnt, pmu->name, e->event_name); return !stat(path, &st); } static int __perf_pmu__mem_events_init(struct perf_pmu *pmu) { const char *mnt = sysfs__mount(); bool found = false; int j; if (!mnt) return -ENOENT; for (j = 0; j < PERF_MEM_EVENTS__MAX; j++) { struct perf_mem_event *e = perf_pmu__mem_events_ptr(pmu, j); /* * If the event entry isn't valid, skip initialization * and "e->supported" will keep false. */ if (!e->tag) continue; e->supported |= perf_pmu__mem_events_supported(mnt, pmu, e); if (e->supported) found = true; } return found ? 0 : -ENOENT; } int perf_pmu__mem_events_init(void) { struct perf_pmu *pmu = NULL; while ((pmu = perf_pmus__scan_mem(pmu)) != NULL) { if (__perf_pmu__mem_events_init(pmu)) return -ENOENT; } return 0; } void perf_pmu__mem_events_list(struct perf_pmu *pmu) { int j; for (j = 0; j < PERF_MEM_EVENTS__MAX; j++) { struct perf_mem_event *e = perf_pmu__mem_events_ptr(pmu, j); fprintf(stderr, "%-*s%-*s%s", e->tag ? 13 : 0, e->tag ? : "", e->tag && verbose > 0 ? 25 : 0, e->tag && verbose > 0 ? perf_pmu__mem_events_name(j, pmu) : "", e->supported ? ": available\n" : ""); } } int perf_mem_events__record_args(const char **rec_argv, int *argv_nr) { const char *mnt = sysfs__mount(); struct perf_pmu *pmu = NULL; struct perf_mem_event *e; int i = *argv_nr; const char *s; char *copy; struct perf_cpu_map *cpu_map = NULL; while ((pmu = perf_pmus__scan_mem(pmu)) != NULL) { for (int j = 0; j < PERF_MEM_EVENTS__MAX; j++) { e = perf_pmu__mem_events_ptr(pmu, j); if (!perf_mem_record[j]) continue; if (!e->supported) { pr_err("failed: event '%s' not supported\n", perf_pmu__mem_events_name(j, pmu)); return -1; } s = perf_pmu__mem_events_name(j, pmu); if (!s || !perf_pmu__mem_events_supported(mnt, pmu, e)) continue; copy = strdup(s); if (!copy) return -1; rec_argv[i++] = "-e"; rec_argv[i++] = copy; cpu_map = perf_cpu_map__merge(cpu_map, pmu->cpus); } } if (cpu_map) { if (!perf_cpu_map__equal(cpu_map, cpu_map__online())) { char buf[200]; cpu_map__snprint(cpu_map, buf, sizeof(buf)); pr_warning("Memory events are enabled on a subset of CPUs: %s\n", buf); } perf_cpu_map__put(cpu_map); } *argv_nr = i; return 0; } static const char * const tlb_access[] = { "N/A", "HIT", "MISS", "L1", "L2", "Walker", "Fault", }; int perf_mem__tlb_scnprintf(char *out, size_t sz, const struct mem_info *mem_info) { size_t l = 0, i; u64 m = PERF_MEM_TLB_NA; u64 hit, miss; sz -= 1; /* -1 for null termination */ out[0] = '\0'; if (mem_info) m = mem_info__const_data_src(mem_info)->mem_dtlb; hit = m & PERF_MEM_TLB_HIT; miss = m & PERF_MEM_TLB_MISS; /* already taken care of */ m &= ~(PERF_MEM_TLB_HIT|PERF_MEM_TLB_MISS); for (i = 0; m && i < ARRAY_SIZE(tlb_access); i++, m >>= 1) { if (!(m & 0x1)) continue; if (l) { strcat(out, " or "); l += 4; } l += scnprintf(out + l, sz - l, tlb_access[i]); } if (*out == '\0') l += scnprintf(out, sz - l, "N/A"); if (hit) l += scnprintf(out + l, sz - l, " hit"); if (miss) l += scnprintf(out + l, sz - l, " miss"); return l; } static const char * const mem_lvl[] = { "N/A", "HIT", "MISS", "L1", "LFB/MAB", "L2", "L3", "Local RAM", "Remote RAM (1 hop)", "Remote RAM (2 hops)", "Remote Cache (1 hop)", "Remote Cache (2 hops)", "I/O", "Uncached", }; static const char * const mem_lvlnum[] = { [PERF_MEM_LVLNUM_L1] = "L1", [PERF_MEM_LVLNUM_L2] = "L2", [PERF_MEM_LVLNUM_L3] = "L3", [PERF_MEM_LVLNUM_L4] = "L4", [PERF_MEM_LVLNUM_L2_MHB] = "L2 MHB", [PERF_MEM_LVLNUM_MSC] = "Memory-side Cache", [PERF_MEM_LVLNUM_UNC] = "Uncached", [PERF_MEM_LVLNUM_CXL] = "CXL", [PERF_MEM_LVLNUM_IO] = "I/O", [PERF_MEM_LVLNUM_ANY_CACHE] = "Any cache", [PERF_MEM_LVLNUM_LFB] = "LFB/MAB", [PERF_MEM_LVLNUM_RAM] = "RAM", [PERF_MEM_LVLNUM_PMEM] = "PMEM", [PERF_MEM_LVLNUM_NA] = "N/A", }; static const char * const mem_hops[] = { "N/A", /* * While printing, 'Remote' will be added to represent * 'Remote core, same node' accesses as remote field need * to be set with mem_hops field. */ "core, same node", "node, same socket", "socket, same board", "board", }; static int perf_mem__op_scnprintf(char *out, size_t sz, const struct mem_info *mem_info) { u64 op = PERF_MEM_LOCK_NA; int l; if (mem_info) op = mem_info__const_data_src(mem_info)->mem_op; if (op & PERF_MEM_OP_NA) l = scnprintf(out, sz, "N/A"); else if (op & PERF_MEM_OP_LOAD) l = scnprintf(out, sz, "LOAD"); else if (op & PERF_MEM_OP_STORE) l = scnprintf(out, sz, "STORE"); else if (op & PERF_MEM_OP_PFETCH) l = scnprintf(out, sz, "PFETCH"); else if (op & PERF_MEM_OP_EXEC) l = scnprintf(out, sz, "EXEC"); else l = scnprintf(out, sz, "No"); return l; } int perf_mem__lvl_scnprintf(char *out, size_t sz, const struct mem_info *mem_info) { union perf_mem_data_src data_src; int printed = 0; size_t l = 0; size_t i; int lvl; char hit_miss[5] = {0}; sz -= 1; /* -1 for null termination */ out[0] = '\0'; if (!mem_info) goto na; data_src = *mem_info__const_data_src(mem_info); if (data_src.mem_lvl & PERF_MEM_LVL_HIT) memcpy(hit_miss, "hit", 3); else if (data_src.mem_lvl & PERF_MEM_LVL_MISS) memcpy(hit_miss, "miss", 4); lvl = data_src.mem_lvl_num; if (lvl && lvl != PERF_MEM_LVLNUM_NA) { if (data_src.mem_remote) { strcat(out, "Remote "); l += 7; } if (data_src.mem_hops) l += scnprintf(out + l, sz - l, "%s ", mem_hops[data_src.mem_hops]); if (mem_lvlnum[lvl]) l += scnprintf(out + l, sz - l, mem_lvlnum[lvl]); else l += scnprintf(out + l, sz - l, "Unknown level %d", lvl); l += scnprintf(out + l, sz - l, " %s", hit_miss); return l; } lvl = data_src.mem_lvl; if (!lvl) goto na; lvl &= ~(PERF_MEM_LVL_NA | PERF_MEM_LVL_HIT | PERF_MEM_LVL_MISS); if (!lvl) goto na; for (i = 0; lvl && i < ARRAY_SIZE(mem_lvl); i++, lvl >>= 1) { if (!(lvl & 0x1)) continue; if (printed++) { strcat(out, " or "); l += 4; } l += scnprintf(out + l, sz - l, mem_lvl[i]); } if (printed) { l += scnprintf(out + l, sz - l, " %s", hit_miss); return l; } na: strcat(out, "N/A"); return 3; } static const char * const snoop_access[] = { "N/A", "None", "Hit", "Miss", "HitM", }; static const char * const snoopx_access[] = { "Fwd", "Peer", }; int perf_mem__snp_scnprintf(char *out, size_t sz, const struct mem_info *mem_info) { size_t i, l = 0; u64 m = PERF_MEM_SNOOP_NA; sz -= 1; /* -1 for null termination */ out[0] = '\0'; if (mem_info) m = mem_info__const_data_src(mem_info)->mem_snoop; for (i = 0; m && i < ARRAY_SIZE(snoop_access); i++, m >>= 1) { if (!(m & 0x1)) continue; if (l) { strcat(out, " or "); l += 4; } l += scnprintf(out + l, sz - l, snoop_access[i]); } m = 0; if (mem_info) m = mem_info__const_data_src(mem_info)->mem_snoopx; for (i = 0; m && i < ARRAY_SIZE(snoopx_access); i++, m >>= 1) { if (!(m & 0x1)) continue; if (l) { strcat(out, " or "); l += 4; } l += scnprintf(out + l, sz - l, snoopx_access[i]); } if (*out == '\0') l += scnprintf(out, sz - l, "N/A"); return l; } int perf_mem__lck_scnprintf(char *out, size_t sz, const struct mem_info *mem_info) { u64 mask = PERF_MEM_LOCK_NA; int l; if (mem_info) mask = mem_info__const_data_src(mem_info)->mem_lock; if (mask & PERF_MEM_LOCK_NA) l = scnprintf(out, sz, "N/A"); else if (mask & PERF_MEM_LOCK_LOCKED) l = scnprintf(out, sz, "Yes"); else l = scnprintf(out, sz, "No"); return l; } int perf_mem__blk_scnprintf(char *out, size_t sz, const struct mem_info *mem_info) { size_t l = 0; u64 mask = PERF_MEM_BLK_NA; sz -= 1; /* -1 for null termination */ out[0] = '\0'; if (mem_info) mask = mem_info__const_data_src(mem_info)->mem_blk; if (!mask || (mask & PERF_MEM_BLK_NA)) { l += scnprintf(out + l, sz - l, " N/A"); return l; } if (mask & PERF_MEM_BLK_DATA) l += scnprintf(out + l, sz - l, " Data"); if (mask & PERF_MEM_BLK_ADDR) l += scnprintf(out + l, sz - l, " Addr"); return l; } int perf_script__meminfo_scnprintf(char *out, size_t sz, const struct mem_info *mem_info) { int i = 0; i += scnprintf(out, sz, "|OP "); i += perf_mem__op_scnprintf(out + i, sz - i, mem_info); i += scnprintf(out + i, sz - i, "|LVL "); i += perf_mem__lvl_scnprintf(out + i, sz, mem_info); i += scnprintf(out + i, sz - i, "|SNP "); i += perf_mem__snp_scnprintf(out + i, sz - i, mem_info); i += scnprintf(out + i, sz - i, "|TLB "); i += perf_mem__tlb_scnprintf(out + i, sz - i, mem_info); i += scnprintf(out + i, sz - i, "|LCK "); i += perf_mem__lck_scnprintf(out + i, sz - i, mem_info); i += scnprintf(out + i, sz - i, "|BLK "); i += perf_mem__blk_scnprintf(out + i, sz - i, mem_info); return i; } int c2c_decode_stats(struct c2c_stats *stats, struct mem_info *mi) { union perf_mem_data_src *data_src = mem_info__data_src(mi); u64 daddr = mem_info__daddr(mi)->addr; u64 op = data_src->mem_op; u64 lvl = data_src->mem_lvl; u64 snoop = data_src->mem_snoop; u64 snoopx = data_src->mem_snoopx; u64 lock = data_src->mem_lock; u64 blk = data_src->mem_blk; /* * Skylake might report unknown remote level via this * bit, consider it when evaluating remote HITMs. * * Incase of power, remote field can also be used to denote cache * accesses from the another core of same node. Hence, setting * mrem only when HOPS is zero along with set remote field. */ bool mrem = (data_src->mem_remote && !data_src->mem_hops); int err = 0; #define HITM_INC(__f) \ do { \ stats->__f++; \ stats->tot_hitm++; \ } while (0) #define PEER_INC(__f) \ do { \ stats->__f++; \ stats->tot_peer++; \ } while (0) #define P(a, b) PERF_MEM_##a##_##b stats->nr_entries++; if (lock & P(LOCK, LOCKED)) stats->locks++; if (blk & P(BLK, DATA)) stats->blk_data++; if (blk & P(BLK, ADDR)) stats->blk_addr++; if (op & P(OP, LOAD)) { /* load */ stats->load++; if (!daddr) { stats->ld_noadrs++; return -1; } if (lvl & P(LVL, HIT)) { if (lvl & P(LVL, UNC)) stats->ld_uncache++; if (lvl & P(LVL, IO)) stats->ld_io++; if (lvl & P(LVL, LFB)) stats->ld_fbhit++; if (lvl & P(LVL, L1 )) stats->ld_l1hit++; if (lvl & P(LVL, L2)) { stats->ld_l2hit++; if (snoopx & P(SNOOPX, PEER)) PEER_INC(lcl_peer); } if (lvl & P(LVL, L3 )) { if (snoop & P(SNOOP, HITM)) HITM_INC(lcl_hitm); else stats->ld_llchit++; if (snoopx & P(SNOOPX, PEER)) PEER_INC(lcl_peer); } if (lvl & P(LVL, LOC_RAM)) { stats->lcl_dram++; if (snoop & P(SNOOP, HIT)) stats->ld_shared++; else stats->ld_excl++; } if ((lvl & P(LVL, REM_RAM1)) || (lvl & P(LVL, REM_RAM2)) || mrem) { stats->rmt_dram++; if (snoop & P(SNOOP, HIT)) stats->ld_shared++; else stats->ld_excl++; } } if ((lvl & P(LVL, REM_CCE1)) || (lvl & P(LVL, REM_CCE2)) || mrem) { if (snoop & P(SNOOP, HIT)) { stats->rmt_hit++; } else if (snoop & P(SNOOP, HITM)) { HITM_INC(rmt_hitm); } else if (snoopx & P(SNOOPX, PEER)) { stats->rmt_hit++; PEER_INC(rmt_peer); } } if ((lvl & P(LVL, MISS))) stats->ld_miss++; } else if (op & P(OP, STORE)) { /* store */ stats->store++; if (!daddr) { stats->st_noadrs++; return -1; } if (lvl & P(LVL, HIT)) { if (lvl & P(LVL, UNC)) stats->st_uncache++; if (lvl & P(LVL, L1 )) stats->st_l1hit++; } if (lvl & P(LVL, MISS)) if (lvl & P(LVL, L1)) stats->st_l1miss++; if (lvl & P(LVL, NA)) stats->st_na++; } else { /* unparsable data_src? */ stats->noparse++; return -1; } if (!mem_info__daddr(mi)->ms.map || !mem_info__iaddr(mi)->ms.map) { stats->nomap++; return -1; } #undef P #undef HITM_INC return err; } void c2c_add_stats(struct c2c_stats *stats, struct c2c_stats *add) { stats->nr_entries += add->nr_entries; stats->locks += add->locks; stats->store += add->store; stats->st_uncache += add->st_uncache; stats->st_noadrs += add->st_noadrs; stats->st_l1hit += add->st_l1hit; stats->st_l1miss += add->st_l1miss; stats->st_na += add->st_na; stats->load += add->load; stats->ld_excl += add->ld_excl; stats->ld_shared += add->ld_shared; stats->ld_uncache += add->ld_uncache; stats->ld_io += add->ld_io; stats->ld_miss += add->ld_miss; stats->ld_noadrs += add->ld_noadrs; stats->ld_fbhit += add->ld_fbhit; stats->ld_l1hit += add->ld_l1hit; stats->ld_l2hit += add->ld_l2hit; stats->ld_llchit += add->ld_llchit; stats->lcl_hitm += add->lcl_hitm; stats->rmt_hitm += add->rmt_hitm; stats->tot_hitm += add->tot_hitm; stats->lcl_peer += add->lcl_peer; stats->rmt_peer += add->rmt_peer; stats->tot_peer += add->tot_peer; stats->rmt_hit += add->rmt_hit; stats->lcl_dram += add->lcl_dram; stats->rmt_dram += add->rmt_dram; stats->blk_data += add->blk_data; stats->blk_addr += add->blk_addr; stats->nomap += add->nomap; stats->noparse += add->noparse; }