/* SPDX-License-Identifier: GPL-2.0 */ /* * A central FIFO sched_ext scheduler which demonstrates the followings: * * a. Making all scheduling decisions from one CPU: * * The central CPU is the only one making scheduling decisions. All other * CPUs kick the central CPU when they run out of tasks to run. * * There is one global BPF queue and the central CPU schedules all CPUs by * dispatching from the global queue to each CPU's local dsq from dispatch(). * This isn't the most straightforward. e.g. It'd be easier to bounce * through per-CPU BPF queues. The current design is chosen to maximally * utilize and verify various SCX mechanisms such as LOCAL_ON dispatching. * * b. Tickless operation * * All tasks are dispatched with the infinite slice which allows stopping the * ticks on CONFIG_NO_HZ_FULL kernels running with the proper nohz_full * parameter. The tickless operation can be observed through * /proc/interrupts. * * Periodic switching is enforced by a periodic timer checking all CPUs and * preempting them as necessary. Unfortunately, BPF timer currently doesn't * have a way to pin to a specific CPU, so the periodic timer isn't pinned to * the central CPU. * * c. Preemption * * Kthreads are unconditionally queued to the head of a matching local dsq * and dispatched with SCX_DSQ_PREEMPT. This ensures that a kthread is always * prioritized over user threads, which is required for ensuring forward * progress as e.g. the periodic timer may run on a ksoftirqd and if the * ksoftirqd gets starved by a user thread, there may not be anything else to * vacate that user thread. * * SCX_KICK_PREEMPT is used to trigger scheduling and CPUs to move to the * next tasks. * * This scheduler is designed to maximize usage of various SCX mechanisms. A * more practical implementation would likely put the scheduling loop outside * the central CPU's dispatch() path and add some form of priority mechanism. * * Copyright (c) 2022 Meta Platforms, Inc. and affiliates. * Copyright (c) 2022 Tejun Heo * Copyright (c) 2022 David Vernet */ #include char _license[] SEC("license") = "GPL"; enum { FALLBACK_DSQ_ID = 0, MS_TO_NS = 1000LLU * 1000, TIMER_INTERVAL_NS = 1 * MS_TO_NS, }; const volatile s32 central_cpu; const volatile u32 nr_cpu_ids = 1; /* !0 for veristat, set during init */ const volatile u64 slice_ns = SCX_SLICE_DFL; bool timer_pinned = true; u64 nr_total, nr_locals, nr_queued, nr_lost_pids; u64 nr_timers, nr_dispatches, nr_mismatches, nr_retries; u64 nr_overflows; UEI_DEFINE(uei); struct { __uint(type, BPF_MAP_TYPE_QUEUE); __uint(max_entries, 4096); __type(value, s32); } central_q SEC(".maps"); /* can't use percpu map due to bad lookups */ bool RESIZABLE_ARRAY(data, cpu_gimme_task); u64 RESIZABLE_ARRAY(data, cpu_started_at); struct central_timer { struct bpf_timer timer; }; struct { __uint(type, BPF_MAP_TYPE_ARRAY); __uint(max_entries, 1); __type(key, u32); __type(value, struct central_timer); } central_timer SEC(".maps"); static bool vtime_before(u64 a, u64 b) { return (s64)(a - b) < 0; } s32 BPF_STRUCT_OPS(central_select_cpu, struct task_struct *p, s32 prev_cpu, u64 wake_flags) { /* * Steer wakeups to the central CPU as much as possible to avoid * disturbing other CPUs. It's safe to blindly return the central cpu as * select_cpu() is a hint and if @p can't be on it, the kernel will * automatically pick a fallback CPU. */ return central_cpu; } void BPF_STRUCT_OPS(central_enqueue, struct task_struct *p, u64 enq_flags) { s32 pid = p->pid; __sync_fetch_and_add(&nr_total, 1); /* * Push per-cpu kthreads at the head of local dsq's and preempt the * corresponding CPU. This ensures that e.g. ksoftirqd isn't blocked * behind other threads which is necessary for forward progress * guarantee as we depend on the BPF timer which may run from ksoftirqd. */ if ((p->flags & PF_KTHREAD) && p->nr_cpus_allowed == 1) { __sync_fetch_and_add(&nr_locals, 1); scx_bpf_dsq_insert(p, SCX_DSQ_LOCAL, SCX_SLICE_INF, enq_flags | SCX_ENQ_PREEMPT); return; } if (bpf_map_push_elem(¢ral_q, &pid, 0)) { __sync_fetch_and_add(&nr_overflows, 1); scx_bpf_dsq_insert(p, FALLBACK_DSQ_ID, SCX_SLICE_INF, enq_flags); return; } __sync_fetch_and_add(&nr_queued, 1); if (!scx_bpf_task_running(p)) scx_bpf_kick_cpu(central_cpu, SCX_KICK_PREEMPT); } static bool dispatch_to_cpu(s32 cpu) { struct task_struct *p; s32 pid; bpf_repeat(BPF_MAX_LOOPS) { if (bpf_map_pop_elem(¢ral_q, &pid)) break; __sync_fetch_and_sub(&nr_queued, 1); p = bpf_task_from_pid(pid); if (!p) { __sync_fetch_and_add(&nr_lost_pids, 1); continue; } /* * If we can't run the task at the top, do the dumb thing and * bounce it to the fallback dsq. */ if (!bpf_cpumask_test_cpu(cpu, p->cpus_ptr)) { __sync_fetch_and_add(&nr_mismatches, 1); scx_bpf_dsq_insert(p, FALLBACK_DSQ_ID, SCX_SLICE_INF, 0); bpf_task_release(p); /* * We might run out of dispatch buffer slots if we continue dispatching * to the fallback DSQ, without dispatching to the local DSQ of the * target CPU. In such a case, break the loop now as will fail the * next dispatch operation. */ if (!scx_bpf_dispatch_nr_slots()) break; continue; } /* dispatch to local and mark that @cpu doesn't need more */ scx_bpf_dsq_insert(p, SCX_DSQ_LOCAL_ON | cpu, SCX_SLICE_INF, 0); if (cpu != central_cpu) scx_bpf_kick_cpu(cpu, SCX_KICK_IDLE); bpf_task_release(p); return true; } return false; } void BPF_STRUCT_OPS(central_dispatch, s32 cpu, struct task_struct *prev) { if (cpu == central_cpu) { /* dispatch for all other CPUs first */ __sync_fetch_and_add(&nr_dispatches, 1); bpf_for(cpu, 0, nr_cpu_ids) { bool *gimme; if (!scx_bpf_dispatch_nr_slots()) break; /* central's gimme is never set */ gimme = ARRAY_ELEM_PTR(cpu_gimme_task, cpu, nr_cpu_ids); if (!gimme || !*gimme) continue; if (dispatch_to_cpu(cpu)) *gimme = false; } /* * Retry if we ran out of dispatch buffer slots as we might have * skipped some CPUs and also need to dispatch for self. The ext * core automatically retries if the local dsq is empty but we * can't rely on that as we're dispatching for other CPUs too. * Kick self explicitly to retry. */ if (!scx_bpf_dispatch_nr_slots()) { __sync_fetch_and_add(&nr_retries, 1); scx_bpf_kick_cpu(central_cpu, SCX_KICK_PREEMPT); return; } /* look for a task to run on the central CPU */ if (scx_bpf_dsq_move_to_local(FALLBACK_DSQ_ID)) return; dispatch_to_cpu(central_cpu); } else { bool *gimme; if (scx_bpf_dsq_move_to_local(FALLBACK_DSQ_ID)) return; gimme = ARRAY_ELEM_PTR(cpu_gimme_task, cpu, nr_cpu_ids); if (gimme) *gimme = true; /* * Force dispatch on the scheduling CPU so that it finds a task * to run for us. */ scx_bpf_kick_cpu(central_cpu, SCX_KICK_PREEMPT); } } void BPF_STRUCT_OPS(central_running, struct task_struct *p) { s32 cpu = scx_bpf_task_cpu(p); u64 *started_at = ARRAY_ELEM_PTR(cpu_started_at, cpu, nr_cpu_ids); if (started_at) *started_at = bpf_ktime_get_ns() ?: 1; /* 0 indicates idle */ } void BPF_STRUCT_OPS(central_stopping, struct task_struct *p, bool runnable) { s32 cpu = scx_bpf_task_cpu(p); u64 *started_at = ARRAY_ELEM_PTR(cpu_started_at, cpu, nr_cpu_ids); if (started_at) *started_at = 0; } static int central_timerfn(void *map, int *key, struct bpf_timer *timer) { u64 now = bpf_ktime_get_ns(); u64 nr_to_kick = nr_queued; s32 i, curr_cpu; curr_cpu = bpf_get_smp_processor_id(); if (timer_pinned && (curr_cpu != central_cpu)) { scx_bpf_error("Central timer ran on CPU %d, not central CPU %d", curr_cpu, central_cpu); return 0; } bpf_for(i, 0, nr_cpu_ids) { s32 cpu = (nr_timers + i) % nr_cpu_ids; u64 *started_at; if (cpu == central_cpu) continue; /* kick iff the current one exhausted its slice */ started_at = ARRAY_ELEM_PTR(cpu_started_at, cpu, nr_cpu_ids); if (started_at && *started_at && vtime_before(now, *started_at + slice_ns)) continue; /* and there's something pending */ if (scx_bpf_dsq_nr_queued(FALLBACK_DSQ_ID) || scx_bpf_dsq_nr_queued(SCX_DSQ_LOCAL_ON | cpu)) ; else if (nr_to_kick) nr_to_kick--; else continue; scx_bpf_kick_cpu(cpu, SCX_KICK_PREEMPT); } bpf_timer_start(timer, TIMER_INTERVAL_NS, BPF_F_TIMER_CPU_PIN); __sync_fetch_and_add(&nr_timers, 1); return 0; } int BPF_STRUCT_OPS_SLEEPABLE(central_init) { u32 key = 0; struct bpf_timer *timer; int ret; ret = scx_bpf_create_dsq(FALLBACK_DSQ_ID, -1); if (ret) return ret; timer = bpf_map_lookup_elem(¢ral_timer, &key); if (!timer) return -ESRCH; if (bpf_get_smp_processor_id() != central_cpu) { scx_bpf_error("init from non-central CPU"); return -EINVAL; } bpf_timer_init(timer, ¢ral_timer, CLOCK_MONOTONIC); bpf_timer_set_callback(timer, central_timerfn); ret = bpf_timer_start(timer, TIMER_INTERVAL_NS, BPF_F_TIMER_CPU_PIN); /* * BPF_F_TIMER_CPU_PIN is pretty new (>=6.7). If we're running in a * kernel which doesn't have it, bpf_timer_start() will return -EINVAL. * Retry without the PIN. This would be the perfect use case for * bpf_core_enum_value_exists() but the enum type doesn't have a name * and can't be used with bpf_core_enum_value_exists(). Oh well... */ if (ret == -EINVAL) { timer_pinned = false; ret = bpf_timer_start(timer, TIMER_INTERVAL_NS, 0); } if (ret) scx_bpf_error("bpf_timer_start failed (%d)", ret); return ret; } void BPF_STRUCT_OPS(central_exit, struct scx_exit_info *ei) { UEI_RECORD(uei, ei); } SCX_OPS_DEFINE(central_ops, /* * We are offloading all scheduling decisions to the central CPU * and thus being the last task on a given CPU doesn't mean * anything special. Enqueue the last tasks like any other tasks. */ .flags = SCX_OPS_ENQ_LAST, .select_cpu = (void *)central_select_cpu, .enqueue = (void *)central_enqueue, .dispatch = (void *)central_dispatch, .running = (void *)central_running, .stopping = (void *)central_stopping, .init = (void *)central_init, .exit = (void *)central_exit, .name = "central");