/*
* Copyright 2008, 2009 Free Software Foundation, Inc.
*
* SPDX-License-Identifier: AGPL-3.0+
*
* This software is distributed under the terms of the GNU Affero Public License.
* See the COPYING file in the main directory for details.
*
* This use of this software may be subject to additional restrictions.
* See the LEGAL file in the main directory for details.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see .
*/
/*
Compilation Flags
SWLOOPBACK compile for software loopback testing
*/
#include
#include
#include
#include "Logger.h"
#include "Threads.h"
#include "USRPDevice.h"
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
using namespace std;
enum dboardConfigType {
TXA_RXB,
TXB_RXA,
TXA_RXA,
TXB_RXB
};
#ifdef SINGLEDB
const dboardConfigType dboardConfig = TXA_RXA;
#else
const dboardConfigType dboardConfig = TXA_RXB;
#endif
const double USRPDevice::masterClockRate = 52.0e6;
USRPDevice::USRPDevice(InterfaceType iface, const struct trx_cfg *cfg) : RadioDevice(iface, cfg)
{
LOGC(DDEV, INFO) << "creating USRP device...";
decimRate = (unsigned int) round(masterClockRate/((GSMRATE) * (double) tx_sps));
actualSampleRate = masterClockRate/decimRate;
rxGain = 0;
txGain = 0;
/*
* Undetermined delay b/w ping response timestamp and true
* receive timestamp. Values are empirically measured. With
* split sample rate Tx/Rx - 4/1 sps we need to need to
* compensate for advance rather than delay.
*/
if (tx_sps == 1)
pingOffset = 272;
else if (tx_sps == 4)
pingOffset = 269 - 7500;
else
pingOffset = 0;
#ifdef SWLOOPBACK
samplePeriod = 1.0e6/actualSampleRate;
loopbackBufferSize = 0;
gettimeofday(&lastReadTime,NULL);
firstRead = false;
#endif
}
int USRPDevice::open()
{
writeLock.unlock();
LOGC(DDEV, INFO) << "opening USRP device..";
#ifndef SWLOOPBACK
string rbf = "std_inband.rbf";
//string rbf = "inband_1rxhb_1tx.rbf";
m_uRx.reset();
try {
m_uRx = usrp_standard_rx_sptr(usrp_standard_rx::make(
0, decimRate * tx_sps, 1, -1,
usrp_standard_rx::FPGA_MODE_NORMAL,
1024, 16 * 8, rbf));
m_uRx->set_fpga_master_clock_freq(masterClockRate);
}
catch(...) {
LOGC(DDEV, ALERT) << "make failed on Rx";
m_uRx.reset();
return -1;
}
if (m_uRx->fpga_master_clock_freq() != masterClockRate)
{
LOGC(DDEV, ALERT) << "WRONG FPGA clock freq = " << m_uRx->fpga_master_clock_freq()
<< ", desired clock freq = " << masterClockRate;
m_uRx.reset();
return -1;
}
try {
m_uTx = usrp_standard_tx_sptr(usrp_standard_tx::make(
0, decimRate * 2, 1, -1,
1024, 16 * 8, rbf));
m_uTx->set_fpga_master_clock_freq(masterClockRate);
}
catch(...) {
LOGC(DDEV, ALERT) << "make failed on Tx";
m_uTx.reset();
return -1;
}
if (m_uTx->fpga_master_clock_freq() != masterClockRate)
{
LOGC(DDEV, ALERT) << "WRONG FPGA clock freq = " << m_uTx->fpga_master_clock_freq()
<< ", desired clock freq = " << masterClockRate;
m_uTx.reset();
return -1;
}
m_uRx->stop();
m_uTx->stop();
#endif
switch (dboardConfig) {
case TXA_RXB:
txSubdevSpec = usrp_subdev_spec(0,0);
rxSubdevSpec = usrp_subdev_spec(1,0);
break;
case TXB_RXA:
txSubdevSpec = usrp_subdev_spec(1,0);
rxSubdevSpec = usrp_subdev_spec(0,0);
break;
case TXA_RXA:
txSubdevSpec = usrp_subdev_spec(0,0);
rxSubdevSpec = usrp_subdev_spec(0,0);
break;
case TXB_RXB:
txSubdevSpec = usrp_subdev_spec(1,0);
rxSubdevSpec = usrp_subdev_spec(1,0);
break;
default:
txSubdevSpec = usrp_subdev_spec(0,0);
rxSubdevSpec = usrp_subdev_spec(1,0);
}
m_dbTx = m_uTx->selected_subdev(txSubdevSpec);
m_dbRx = m_uRx->selected_subdev(rxSubdevSpec);
started = false;
return NORMAL;
}
bool USRPDevice::start()
{
LOGC(DDEV, INFO) << "starting USRP...";
#ifndef SWLOOPBACK
if (!m_uRx) return false;
if (!m_uTx) return false;
m_uRx->stop();
m_uTx->stop();
writeLock.lock();
// power up and configure daughterboards
m_dbTx->set_enable(true);
m_uTx->set_mux(m_uTx->determine_tx_mux_value(txSubdevSpec));
m_uRx->set_mux(m_uRx->determine_rx_mux_value(rxSubdevSpec));
if (!m_dbRx->select_rx_antenna(1))
m_dbRx->select_rx_antenna(0);
writeLock.unlock();
// Set gains to midpoint
setTxGain((m_dbTx->gain_min() + m_dbTx->gain_max()) / 2);
setRxGain((m_dbTx->gain_min() + m_dbTx->gain_max()) / 2);
data = new short[currDataSize];
dataStart = 0;
dataEnd = 0;
timeStart = 0;
timeEnd = 0;
timestampOffset = 0;
latestWriteTimestamp = 0;
lastPktTimestamp = 0;
hi32Timestamp = 0;
isAligned = false;
started = (m_uRx->start() && m_uTx->start());
return started;
#else
gettimeofday(&lastReadTime,NULL);
return true;
#endif
}
bool USRPDevice::stop()
{
#ifndef SWLOOPBACK
if (!m_uRx) return false;
if (!m_uTx) return false;
delete[] currData;
started = !(m_uRx->stop() && m_uTx->stop());
return !started;
#else
return true;
#endif
}
double USRPDevice::maxRxGain()
{
return m_dbRx->gain_max();
}
double USRPDevice::minRxGain()
{
return m_dbRx->gain_min();
}
double USRPDevice::setTxGain(double dB, size_t chan)
{
if (chan) {
LOGC(DDEV, ALERT) << "Invalid channel " << chan;
return 0.0;
}
writeLock.lock();
if (dB > m_dbTx->gain_max())
dB = m_dbTx->gain_max();
if (dB < m_dbTx->gain_min())
dB = m_dbTx->gain_min();
LOGC(DDEV, NOTICE) << "Setting TX gain to " << dB << " dB.";
if (!m_dbTx->set_gain(dB))
LOGC(DDEV, ERR) << "Error setting TX gain";
else
txGain = dB;
writeLock.unlock();
return txGain;
}
double USRPDevice::setRxGain(double dB, size_t chan)
{
if (chan) {
LOGC(DDEV, ALERT) << "Invalid channel " << chan;
return 0.0;
}
dB = 47.0;
writeLock.lock();
if (dB > maxRxGain())
dB = maxRxGain();
if (dB < minRxGain())
dB = minRxGain();
LOGC(DDEV, NOTICE) << "Setting RX gain to " << dB << " dB.";
if (!m_dbRx->set_gain(dB))
LOGC(DDEV, ERR) << "Error setting RX gain";
else
rxGain = dB;
writeLock.unlock();
return rxGain;
}
double USRPDevice::setPowerAttenuation(int atten, size_t chan) {
double rfGain;
rfGain = setTxGain(m_dbTx->gain_max() - atten, chan);
return m_dbTx->gain_max() - rfGain;
}
double USRPDevice::getPowerAttenuation(size_t chan) {
return m_dbTx->gain_max() - getTxGain(chan);
}
int USRPDevice::getNominalTxPower(size_t chan)
{
/* TODO: return value based on some experimentally generated table depending on
* band/arfcn, which is known here thanks to TXTUNE
*/
return 23;
}
bool USRPDevice::setRxAntenna(const std::string &ant, size_t chan)
{
if (chan >= rx_paths.size()) {
LOGC(DDEV, ALERT) << "Requested non-existent channel " << chan;
return false;
}
LOGC(DDEV, ALERT) << "Not implemented";
return true;
}
std::string USRPDevice::getRxAntenna(size_t chan)
{
if (chan >= rx_paths.size()) {
LOGC(DDEV, ALERT) << "Requested non-existent channel " << chan;
return "";
}
LOGC(DDEV, ALERT) << "Not implemented";
return "";
}
bool USRPDevice::setTxAntenna(const std::string &ant, size_t chan)
{
if (chan >= tx_paths.size()) {
LOGC(DDEV, ALERT) << "Requested non-existent channel " << chan;
return false;
}
LOGC(DDEV, ALERT) << "Not implemented";
return true;
}
std::string USRPDevice::getTxAntenna(size_t chan)
{
if (chan >= tx_paths.size()) {
LOGC(DDEV, ALERT) << "Requested non-existent channel " << chan;
return "";
}
LOGC(DDEV, ALERT) << "Not implemented";
return "";
}
bool USRPDevice::requiresRadioAlign()
{
return true;
}
GSM::Time USRPDevice::minLatency() {
return GSM::Time(1,1);
}
// NOTE: Assumes sequential reads
int USRPDevice::readSamples(std::vector &bufs, int len, bool *overrun,
TIMESTAMP timestamp, bool *underrun)
{
#ifndef SWLOOPBACK
if (!m_uRx)
return 0;
short *buf = bufs[0];
timestamp += timestampOffset;
if (timestamp + len < timeStart) {
memset(buf,0,len*2*sizeof(short));
return len;
}
*underrun = false;
uint32_t readBuf[2000];
while (1) {
//guestimate USB read size
int readLen=0;
{
int numSamplesNeeded = timestamp + len - timeEnd;
if (numSamplesNeeded <=0) break;
readLen = 512 * ((int) ceil((float) numSamplesNeeded/126.0));
if (readLen > 8000) readLen= (8000/512)*512;
}
// read USRP packets, parse and save A/D data as needed
readLen = m_uRx->read((void *)readBuf,readLen,overrun);
for (int pktNum = 0; pktNum < (readLen/512); pktNum++) {
// tmpBuf points to start of a USB packet
uint32_t* tmpBuf = (uint32_t *) (readBuf+pktNum*512/4);
TIMESTAMP pktTimestamp = usrp_to_host_u32(tmpBuf[1]);
uint32_t word0 = usrp_to_host_u32(tmpBuf[0]);
uint32_t chan = (word0 >> 16) & 0x1f;
unsigned payloadSz = word0 & 0x1ff;
LOGC(DDEV, DEBUG) << "first two bytes: " << hex << word0 << " " << dec << pktTimestamp;
bool incrementHi32 = ((lastPktTimestamp & 0x0ffffffffll) > pktTimestamp);
if (incrementHi32 && (timeStart!=0)) {
LOGC(DDEV, DEBUG) << "high 32 increment!!!";
hi32Timestamp++;
}
pktTimestamp = (((TIMESTAMP) hi32Timestamp) << 32) | pktTimestamp;
lastPktTimestamp = pktTimestamp;
if (chan == 0x01f) {
// control reply, check to see if its ping reply
uint32_t word2 = usrp_to_host_u32(tmpBuf[2]);
if ((word2 >> 16) == ((0x01 << 8) | 0x02)) {
timestamp -= timestampOffset;
timestampOffset = pktTimestamp - pingTimestamp + pingOffset;
LOGC(DDEV, DEBUG) << "updating timestamp offset to: " << timestampOffset;
timestamp += timestampOffset;
isAligned = true;
}
continue;
}
if (chan != 0) {
LOGC(DDEV, DEBUG) << "chan: " << chan << ", timestamp: " << pktTimestamp << ", sz:" << payloadSz;
continue;
}
if ((word0 >> 28) & 0x04) {
*underrun = true;
LOGC(DDEV, DEBUG) << "UNDERRUN in TRX->USRP interface";
}
#if 0
/* FIXME: Do something with this ? */
unsigned RSSI = (word0 >> 21) & 0x3f;
#endif
if (!isAligned) continue;
unsigned cursorStart = pktTimestamp - timeStart + dataStart;
while (cursorStart*2 > currDataSize) {
cursorStart -= currDataSize/2;
}
if (cursorStart*2 + payloadSz/2 > currDataSize) {
// need to circle around buffer
memcpy(data+cursorStart*2,tmpBuf+2,(currDataSize-cursorStart*2)*sizeof(short));
memcpy(data,tmpBuf+2+(currDataSize/2-cursorStart),payloadSz-(currDataSize-cursorStart*2)*sizeof(short));
}
else {
memcpy(data+cursorStart*2,tmpBuf+2,payloadSz);
}
if (pktTimestamp + payloadSz/2/sizeof(short) > timeEnd)
timeEnd = pktTimestamp+payloadSz/2/sizeof(short);
LOGC(DDEV, DEBUG) << "timeStart: " << timeStart << ", timeEnd: " << timeEnd << ", pktTimestamp: " << pktTimestamp;
}
}
// copy desired data to buf
unsigned bufStart = dataStart+(timestamp-timeStart);
if (bufStart + len < currDataSize/2) {
LOGC(DDEV, DEBUG) << "bufStart: " << bufStart;
memcpy(buf,data+bufStart*2,len*2*sizeof(short));
memset(data+bufStart*2,0,len*2*sizeof(short));
}
else {
LOGC(DDEV, DEBUG) << "len: " << len << ", currDataSize/2: " << currDataSize/2 << ", bufStart: " << bufStart;
unsigned firstLength = (currDataSize/2-bufStart);
LOGC(DDEV, DEBUG) << "firstLength: " << firstLength;
memcpy(buf,data+bufStart*2,firstLength*2*sizeof(short));
memset(data+bufStart*2,0,firstLength*2*sizeof(short));
memcpy(buf+firstLength*2,data,(len-firstLength)*2*sizeof(short));
memset(data,0,(len-firstLength)*2*sizeof(short));
}
dataStart = (bufStart + len) % (currDataSize/2);
timeStart = timestamp + len;
return len;
#else
if (loopbackBufferSize < 2) return 0;
int numSamples = 0;
struct timeval currTime;
gettimeofday(&currTime,NULL);
double timeElapsed = (currTime.tv_sec - lastReadTime.tv_sec)*1.0e6 +
(currTime.tv_usec - lastReadTime.tv_usec);
if (timeElapsed < samplePeriod) {return 0;}
int numSamplesToRead = (int) floor(timeElapsed/samplePeriod);
if (numSamplesToRead < len) return 0;
if (numSamplesToRead > len) numSamplesToRead = len;
if (numSamplesToRead > loopbackBufferSize/2) {
firstRead =false;
numSamplesToRead = loopbackBufferSize/2;
}
memcpy(buf,loopbackBuffer,sizeof(short)*2*numSamplesToRead);
loopbackBufferSize -= 2*numSamplesToRead;
memcpy(loopbackBuffer,loopbackBuffer+2*numSamplesToRead,
sizeof(short)*loopbackBufferSize);
numSamples = numSamplesToRead;
if (firstRead) {
int new_usec = lastReadTime.tv_usec + (int) round((double) numSamplesToRead * samplePeriod);
lastReadTime.tv_sec = lastReadTime.tv_sec + new_usec/1000000;
lastReadTime.tv_usec = new_usec % 1000000;
}
else {
gettimeofday(&lastReadTime,NULL);
firstRead = true;
}
return numSamples;
#endif
}
int USRPDevice::writeSamplesControl(std::vector &bufs, int len,
bool *underrun, unsigned long long timestamp, bool isControl)
{
writeLock.lock();
#ifndef SWLOOPBACK
if (!m_uTx)
return 0;
short *buf = bufs[0];
static uint32_t outData[128*20];
for (int i = 0; i < len*2; i++) {
buf[i] = host_to_usrp_short(buf[i]);
}
int numWritten = 0;
unsigned isStart = 1;
unsigned RSSI = 0;
unsigned CHAN = (isControl) ? 0x01f : 0x00;
len = len*2*sizeof(short);
int numPkts = (int) ceil((float)len/(float)504);
unsigned isEnd = (numPkts < 2);
uint32_t *outPkt = outData;
int pktNum = 0;
while (numWritten < len) {
// pkt is pointer to start of a USB packet
uint32_t *pkt = outPkt + pktNum*128;
isEnd = (len - numWritten <= 504);
unsigned payloadLen = ((len - numWritten) < 504) ? (len-numWritten) : 504;
pkt[0] = (isStart << 12 | isEnd << 11 | (RSSI & 0x3f) << 5 | CHAN) << 16 | payloadLen;
pkt[1] = timestamp & 0x0ffffffffll;
memcpy(pkt+2,buf+(numWritten/sizeof(short)),payloadLen);
numWritten += payloadLen;
timestamp += payloadLen/2/sizeof(short);
isStart = 0;
pkt[0] = host_to_usrp_u32(pkt[0]);
pkt[1] = host_to_usrp_u32(pkt[1]);
pktNum++;
}
m_uTx->write((const void*) outPkt,sizeof(uint32_t)*128*numPkts,NULL);
writeLock.unlock();
return len/2/sizeof(short);
#else
int retVal = len;
memcpy(loopbackBuffer+loopbackBufferSize,buf,sizeof(short)*2*len);
loopbackBufferSize += retVal*2;
return retVal;
#endif
}
int USRPDevice::writeSamples(std::vector &bufs, int len,
bool *underrun, unsigned long long timestamp)
{
return writeSamplesControl(bufs, len, underrun, timestamp, false);
}
bool USRPDevice::updateAlignment(TIMESTAMP timestamp)
{
#ifndef SWLOOPBACK
short data[] = {0x00,0x02,0x00,0x00};
/* FIXME: big endian */
bool tmpUnderrun;
std::vector buf(1, data);
if (writeSamplesControl(buf, 1, &tmpUnderrun, timestamp & 0x0ffffffffll, true)) {
pingTimestamp = timestamp;
return true;
}
return false;
#else
return true;
#endif
}
#ifndef SWLOOPBACK
bool USRPDevice::setTxFreq(double wFreq, size_t chan)
{
usrp_tune_result result;
if (chan) {
LOGC(DDEV, ALERT) << "Invalid channel " << chan;
return false;
}
if (m_uTx->tune(txSubdevSpec.side, m_dbTx, wFreq, &result)) {
LOGC(DDEV, INFO) << "set TX: " << wFreq << std::endl
<< " baseband freq: " << result.baseband_freq << std::endl
<< " DDC freq: " << result.dxc_freq << std::endl
<< " residual freq: " << result.residual_freq;
return true;
}
else {
LOGC(DDEV, ALERT) << "set TX: " << wFreq << " failed" << std::endl
<< " baseband freq: " << result.baseband_freq << std::endl
<< " DDC freq: " << result.dxc_freq << std::endl
<< " residual freq: " << result.residual_freq;
return false;
}
}
bool USRPDevice::setRxFreq(double wFreq, size_t chan)
{
usrp_tune_result result;
if (chan) {
LOGC(DDEV, ALERT) << "Invalid channel " << chan;
return false;
}
if (m_uRx->tune(0, m_dbRx, wFreq, &result)) {
LOGC(DDEV, INFO) << "set RX: " << wFreq << std::endl
<< " baseband freq: " << result.baseband_freq << std::endl
<< " DDC freq: " << result.dxc_freq << std::endl
<< " residual freq: " << result.residual_freq;
return true;
}
else {
LOGC(DDEV, ALERT) << "set RX: " << wFreq << " failed" << std::endl
<< " baseband freq: " << result.baseband_freq << std::endl
<< " DDC freq: " << result.dxc_freq << std::endl
<< " residual freq: " << result.residual_freq;
return false;
}
}
#else
bool USRPDevice::setTxFreq(double wFreq) { return true;};
bool USRPDevice::setRxFreq(double wFreq) { return true;};
#endif
RadioDevice *RadioDevice::make(InterfaceType type, const struct trx_cfg *cfg)
{
if (cfg->tx_sps != cfg->rx_sps) {
LOGC(DDEV, ERROR) << "USRP1 requires tx_sps == rx_sps";
return NULL;
}
if (cfg->num_chans != 1) {
LOGC(DDEV, ERROR) << "USRP1 supports only 1 channel";
return NULL;
}
if (cfg->offset != 0.0) {
LOGC(DDEV, ERROR) << "USRP1 doesn't support lo_offset";
return NULL;
}
return new USRPDevice(type, cfg);
}