// SPDX-License-Identifier: GPL-2.0-or-later /* * Rockchip USBDP Combo PHY with Samsung IP block driver * * Copyright (C) 2021-2024 Rockchip Electronics Co., Ltd * Copyright (C) 2024 Collabora Ltd */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* USBDP PHY Register Definitions */ #define UDPHY_PCS 0x4000 #define UDPHY_PMA 0x8000 /* VO0 GRF Registers */ #define DP_SINK_HPD_CFG BIT(11) #define DP_SINK_HPD_SEL BIT(10) #define DP_AUX_DIN_SEL BIT(9) #define DP_AUX_DOUT_SEL BIT(8) #define DP_LANE_SEL_N(n) GENMASK(2 * (n) + 1, 2 * (n)) #define DP_LANE_SEL_ALL GENMASK(7, 0) /* PMA CMN Registers */ #define CMN_LANE_MUX_AND_EN_OFFSET 0x0288 /* cmn_reg00A2 */ #define CMN_DP_LANE_MUX_N(n) BIT((n) + 4) #define CMN_DP_LANE_EN_N(n) BIT(n) #define CMN_DP_LANE_MUX_ALL GENMASK(7, 4) #define CMN_DP_LANE_EN_ALL GENMASK(3, 0) #define CMN_DP_LINK_OFFSET 0x28c /* cmn_reg00A3 */ #define CMN_DP_TX_LINK_BW GENMASK(6, 5) #define CMN_DP_TX_LANE_SWAP_EN BIT(2) #define CMN_SSC_EN_OFFSET 0x2d0 /* cmn_reg00B4 */ #define CMN_ROPLL_SSC_EN BIT(1) #define CMN_LCPLL_SSC_EN BIT(0) #define CMN_ANA_LCPLL_DONE_OFFSET 0x0350 /* cmn_reg00D4 */ #define CMN_ANA_LCPLL_LOCK_DONE BIT(7) #define CMN_ANA_LCPLL_AFC_DONE BIT(6) #define CMN_ANA_ROPLL_DONE_OFFSET 0x0354 /* cmn_reg00D5 */ #define CMN_ANA_ROPLL_LOCK_DONE BIT(1) #define CMN_ANA_ROPLL_AFC_DONE BIT(0) #define CMN_DP_RSTN_OFFSET 0x038c /* cmn_reg00E3 */ #define CMN_DP_INIT_RSTN BIT(3) #define CMN_DP_CMN_RSTN BIT(2) #define CMN_CDR_WTCHDG_EN BIT(1) #define CMN_CDR_WTCHDG_MSK_CDR_EN BIT(0) #define TRSV_ANA_TX_CLK_OFFSET_N(n) (0x854 + (n) * 0x800) /* trsv_reg0215 */ #define LN_ANA_TX_SER_TXCLK_INV BIT(1) #define TRSV_LN0_MON_RX_CDR_DONE_OFFSET 0x0b84 /* trsv_reg02E1 */ #define TRSV_LN0_MON_RX_CDR_LOCK_DONE BIT(0) #define TRSV_LN2_MON_RX_CDR_DONE_OFFSET 0x1b84 /* trsv_reg06E1 */ #define TRSV_LN2_MON_RX_CDR_LOCK_DONE BIT(0) #define BIT_WRITEABLE_SHIFT 16 #define PHY_AUX_DP_DATA_POL_NORMAL 0 #define PHY_AUX_DP_DATA_POL_INVERT 1 #define PHY_LANE_MUX_USB 0 #define PHY_LANE_MUX_DP 1 enum { DP_BW_RBR, DP_BW_HBR, DP_BW_HBR2, DP_BW_HBR3, }; enum { UDPHY_MODE_NONE = 0, UDPHY_MODE_USB = BIT(0), UDPHY_MODE_DP = BIT(1), UDPHY_MODE_DP_USB = BIT(1) | BIT(0), }; struct rk_udphy_grf_reg { unsigned int offset; unsigned int disable; unsigned int enable; }; #define _RK_UDPHY_GEN_GRF_REG(offset, mask, disable, enable) \ {\ offset, \ FIELD_PREP_CONST(mask, disable) | (mask << BIT_WRITEABLE_SHIFT), \ FIELD_PREP_CONST(mask, enable) | (mask << BIT_WRITEABLE_SHIFT), \ } #define RK_UDPHY_GEN_GRF_REG(offset, bitend, bitstart, disable, enable) \ _RK_UDPHY_GEN_GRF_REG(offset, GENMASK(bitend, bitstart), disable, enable) struct rk_udphy_grf_cfg { /* u2phy-grf */ struct rk_udphy_grf_reg bvalid_phy_con; struct rk_udphy_grf_reg bvalid_grf_con; /* usb-grf */ struct rk_udphy_grf_reg usb3otg0_cfg; struct rk_udphy_grf_reg usb3otg1_cfg; /* usbdpphy-grf */ struct rk_udphy_grf_reg low_pwrn; struct rk_udphy_grf_reg rx_lfps; }; struct rk_udphy_vogrf_cfg { /* vo-grf */ struct rk_udphy_grf_reg hpd_trigger; u32 dp_lane_reg; }; struct rk_udphy_dp_tx_drv_ctrl { u32 trsv_reg0204; u32 trsv_reg0205; u32 trsv_reg0206; u32 trsv_reg0207; }; struct rk_udphy_cfg { unsigned int num_phys; unsigned int phy_ids[2]; /* resets to be requested */ const char * const *rst_list; int num_rsts; struct rk_udphy_grf_cfg grfcfg; struct rk_udphy_vogrf_cfg vogrfcfg[2]; const struct rk_udphy_dp_tx_drv_ctrl (*dp_tx_ctrl_cfg[4])[4]; const struct rk_udphy_dp_tx_drv_ctrl (*dp_tx_ctrl_cfg_typec[4])[4]; }; struct rk_udphy { struct device *dev; struct regmap *pma_regmap; struct regmap *u2phygrf; struct regmap *udphygrf; struct regmap *usbgrf; struct regmap *vogrf; struct typec_switch_dev *sw; struct typec_mux_dev *mux; struct mutex mutex; /* mutex to protect access to individual PHYs */ /* clocks and rests */ int num_clks; struct clk_bulk_data *clks; struct clk *refclk; int num_rsts; struct reset_control_bulk_data *rsts; /* PHY status management */ bool flip; bool mode_change; u8 mode; u8 status; /* utilized for USB */ bool hs; /* flag for high-speed */ /* utilized for DP */ struct gpio_desc *sbu1_dc_gpio; struct gpio_desc *sbu2_dc_gpio; u32 lane_mux_sel[4]; u32 dp_lane_sel[4]; u32 dp_aux_dout_sel; u32 dp_aux_din_sel; bool dp_sink_hpd_sel; bool dp_sink_hpd_cfg; u8 bw; int id; bool dp_in_use; /* PHY const config */ const struct rk_udphy_cfg *cfgs; /* PHY devices */ struct phy *phy_dp; struct phy *phy_u3; }; static const struct rk_udphy_dp_tx_drv_ctrl rk3588_dp_tx_drv_ctrl_rbr_hbr[4][4] = { /* voltage swing 0, pre-emphasis 0->3 */ { { 0x20, 0x10, 0x42, 0xe5 }, { 0x26, 0x14, 0x42, 0xe5 }, { 0x29, 0x18, 0x42, 0xe5 }, { 0x2b, 0x1c, 0x43, 0xe7 }, }, /* voltage swing 1, pre-emphasis 0->2 */ { { 0x23, 0x10, 0x42, 0xe7 }, { 0x2a, 0x17, 0x43, 0xe7 }, { 0x2b, 0x1a, 0x43, 0xe7 }, }, /* voltage swing 2, pre-emphasis 0->1 */ { { 0x27, 0x10, 0x42, 0xe7 }, { 0x2b, 0x17, 0x43, 0xe7 }, }, /* voltage swing 3, pre-emphasis 0 */ { { 0x29, 0x10, 0x43, 0xe7 }, }, }; static const struct rk_udphy_dp_tx_drv_ctrl rk3588_dp_tx_drv_ctrl_rbr_hbr_typec[4][4] = { /* voltage swing 0, pre-emphasis 0->3 */ { { 0x20, 0x10, 0x42, 0xe5 }, { 0x26, 0x14, 0x42, 0xe5 }, { 0x29, 0x18, 0x42, 0xe5 }, { 0x2b, 0x1c, 0x43, 0xe7 }, }, /* voltage swing 1, pre-emphasis 0->2 */ { { 0x23, 0x10, 0x42, 0xe7 }, { 0x2a, 0x17, 0x43, 0xe7 }, { 0x2b, 0x1a, 0x43, 0xe7 }, }, /* voltage swing 2, pre-emphasis 0->1 */ { { 0x27, 0x10, 0x43, 0x67 }, { 0x2b, 0x17, 0x43, 0xe7 }, }, /* voltage swing 3, pre-emphasis 0 */ { { 0x29, 0x10, 0x43, 0xe7 }, }, }; static const struct rk_udphy_dp_tx_drv_ctrl rk3588_dp_tx_drv_ctrl_hbr2[4][4] = { /* voltage swing 0, pre-emphasis 0->3 */ { { 0x21, 0x10, 0x42, 0xe5 }, { 0x26, 0x14, 0x42, 0xe5 }, { 0x26, 0x16, 0x43, 0xe5 }, { 0x2a, 0x19, 0x43, 0xe7 }, }, /* voltage swing 1, pre-emphasis 0->2 */ { { 0x24, 0x10, 0x42, 0xe7 }, { 0x2a, 0x17, 0x43, 0xe7 }, { 0x2b, 0x1a, 0x43, 0xe7 }, }, /* voltage swing 2, pre-emphasis 0->1 */ { { 0x28, 0x10, 0x42, 0xe7 }, { 0x2b, 0x17, 0x43, 0xe7 }, }, /* voltage swing 3, pre-emphasis 0 */ { { 0x28, 0x10, 0x43, 0xe7 }, }, }; static const struct rk_udphy_dp_tx_drv_ctrl rk3588_dp_tx_drv_ctrl_hbr3[4][4] = { /* voltage swing 0, pre-emphasis 0->3 */ { { 0x21, 0x10, 0x42, 0xe5 }, { 0x26, 0x14, 0x42, 0xe5 }, { 0x26, 0x16, 0x43, 0xe5 }, { 0x29, 0x18, 0x43, 0xe7 }, }, /* voltage swing 1, pre-emphasis 0->2 */ { { 0x24, 0x10, 0x42, 0xe7 }, { 0x2a, 0x18, 0x43, 0xe7 }, { 0x2b, 0x1b, 0x43, 0xe7 } }, /* voltage swing 2, pre-emphasis 0->1 */ { { 0x27, 0x10, 0x42, 0xe7 }, { 0x2b, 0x18, 0x43, 0xe7 } }, /* voltage swing 3, pre-emphasis 0 */ { { 0x28, 0x10, 0x43, 0xe7 }, }, }; static const struct reg_sequence rk_udphy_24m_refclk_cfg[] = { {0x0090, 0x68}, {0x0094, 0x68}, {0x0128, 0x24}, {0x012c, 0x44}, {0x0130, 0x3f}, {0x0134, 0x44}, {0x015c, 0xa9}, {0x0160, 0x71}, {0x0164, 0x71}, {0x0168, 0xa9}, {0x0174, 0xa9}, {0x0178, 0x71}, {0x017c, 0x71}, {0x0180, 0xa9}, {0x018c, 0x41}, {0x0190, 0x00}, {0x0194, 0x05}, {0x01ac, 0x2a}, {0x01b0, 0x17}, {0x01b4, 0x17}, {0x01b8, 0x2a}, {0x01c8, 0x04}, {0x01cc, 0x08}, {0x01d0, 0x08}, {0x01d4, 0x04}, {0x01d8, 0x20}, {0x01dc, 0x01}, {0x01e0, 0x09}, {0x01e4, 0x03}, {0x01f0, 0x29}, {0x01f4, 0x02}, {0x01f8, 0x02}, {0x01fc, 0x29}, {0x0208, 0x2a}, {0x020c, 0x17}, {0x0210, 0x17}, {0x0214, 0x2a}, {0x0224, 0x20}, {0x03f0, 0x0a}, {0x03f4, 0x07}, {0x03f8, 0x07}, {0x03fc, 0x0c}, {0x0404, 0x12}, {0x0408, 0x1a}, {0x040c, 0x1a}, {0x0410, 0x3f}, {0x0ce0, 0x68}, {0x0ce8, 0xd0}, {0x0cf0, 0x87}, {0x0cf8, 0x70}, {0x0d00, 0x70}, {0x0d08, 0xa9}, {0x1ce0, 0x68}, {0x1ce8, 0xd0}, {0x1cf0, 0x87}, {0x1cf8, 0x70}, {0x1d00, 0x70}, {0x1d08, 0xa9}, {0x0a3c, 0xd0}, {0x0a44, 0xd0}, {0x0a48, 0x01}, {0x0a4c, 0x0d}, {0x0a54, 0xe0}, {0x0a5c, 0xe0}, {0x0a64, 0xa8}, {0x1a3c, 0xd0}, {0x1a44, 0xd0}, {0x1a48, 0x01}, {0x1a4c, 0x0d}, {0x1a54, 0xe0}, {0x1a5c, 0xe0}, {0x1a64, 0xa8} }; static const struct reg_sequence rk_udphy_26m_refclk_cfg[] = { {0x0830, 0x07}, {0x085c, 0x80}, {0x1030, 0x07}, {0x105c, 0x80}, {0x1830, 0x07}, {0x185c, 0x80}, {0x2030, 0x07}, {0x205c, 0x80}, {0x0228, 0x38}, {0x0104, 0x44}, {0x0248, 0x44}, {0x038c, 0x02}, {0x0878, 0x04}, {0x1878, 0x04}, {0x0898, 0x77}, {0x1898, 0x77}, {0x0054, 0x01}, {0x00e0, 0x38}, {0x0060, 0x24}, {0x0064, 0x77}, {0x0070, 0x76}, {0x0234, 0xe8}, {0x0af4, 0x15}, {0x1af4, 0x15}, {0x081c, 0xe5}, {0x181c, 0xe5}, {0x099c, 0x48}, {0x199c, 0x48}, {0x09a4, 0x07}, {0x09a8, 0x22}, {0x19a4, 0x07}, {0x19a8, 0x22}, {0x09b8, 0x3e}, {0x19b8, 0x3e}, {0x09e4, 0x02}, {0x19e4, 0x02}, {0x0a34, 0x1e}, {0x1a34, 0x1e}, {0x0a98, 0x2f}, {0x1a98, 0x2f}, {0x0c30, 0x0e}, {0x0c48, 0x06}, {0x1c30, 0x0e}, {0x1c48, 0x06}, {0x028c, 0x18}, {0x0af0, 0x00}, {0x1af0, 0x00} }; static const struct reg_sequence rk_udphy_init_sequence[] = { {0x0104, 0x44}, {0x0234, 0xe8}, {0x0248, 0x44}, {0x028c, 0x18}, {0x081c, 0xe5}, {0x0878, 0x00}, {0x0994, 0x1c}, {0x0af0, 0x00}, {0x181c, 0xe5}, {0x1878, 0x00}, {0x1994, 0x1c}, {0x1af0, 0x00}, {0x0428, 0x60}, {0x0d58, 0x33}, {0x1d58, 0x33}, {0x0990, 0x74}, {0x0d64, 0x17}, {0x08c8, 0x13}, {0x1990, 0x74}, {0x1d64, 0x17}, {0x18c8, 0x13}, {0x0d90, 0x40}, {0x0da8, 0x40}, {0x0dc0, 0x40}, {0x0dd8, 0x40}, {0x1d90, 0x40}, {0x1da8, 0x40}, {0x1dc0, 0x40}, {0x1dd8, 0x40}, {0x03c0, 0x30}, {0x03c4, 0x06}, {0x0e10, 0x00}, {0x1e10, 0x00}, {0x043c, 0x0f}, {0x0d2c, 0xff}, {0x1d2c, 0xff}, {0x0d34, 0x0f}, {0x1d34, 0x0f}, {0x08fc, 0x2a}, {0x0914, 0x28}, {0x0a30, 0x03}, {0x0e38, 0x03}, {0x0ecc, 0x27}, {0x0ed0, 0x22}, {0x0ed4, 0x26}, {0x18fc, 0x2a}, {0x1914, 0x28}, {0x1a30, 0x03}, {0x1e38, 0x03}, {0x1ecc, 0x27}, {0x1ed0, 0x22}, {0x1ed4, 0x26}, {0x0048, 0x0f}, {0x0060, 0x3c}, {0x0064, 0xf7}, {0x006c, 0x20}, {0x0070, 0x7d}, {0x0074, 0x68}, {0x0af4, 0x1a}, {0x1af4, 0x1a}, {0x0440, 0x3f}, {0x10d4, 0x08}, {0x20d4, 0x08}, {0x00d4, 0x30}, {0x0024, 0x6e}, }; static inline int rk_udphy_grfreg_write(struct regmap *base, const struct rk_udphy_grf_reg *reg, bool en) { return regmap_write(base, reg->offset, en ? reg->enable : reg->disable); } static int rk_udphy_clk_init(struct rk_udphy *udphy, struct device *dev) { int i; udphy->num_clks = devm_clk_bulk_get_all(dev, &udphy->clks); if (udphy->num_clks < 1) return -ENODEV; /* used for configure phy reference clock frequency */ for (i = 0; i < udphy->num_clks; i++) { if (!strncmp(udphy->clks[i].id, "refclk", 6)) { udphy->refclk = udphy->clks[i].clk; break; } } if (!udphy->refclk) return dev_err_probe(udphy->dev, -EINVAL, "no refclk found\n"); return 0; } static int rk_udphy_reset_assert_all(struct rk_udphy *udphy) { return reset_control_bulk_assert(udphy->num_rsts, udphy->rsts); } static int rk_udphy_reset_deassert_all(struct rk_udphy *udphy) { return reset_control_bulk_deassert(udphy->num_rsts, udphy->rsts); } static int rk_udphy_reset_deassert(struct rk_udphy *udphy, char *name) { struct reset_control_bulk_data *list = udphy->rsts; int idx; for (idx = 0; idx < udphy->num_rsts; idx++) { if (!strcmp(list[idx].id, name)) return reset_control_deassert(list[idx].rstc); } return -EINVAL; } static int rk_udphy_reset_init(struct rk_udphy *udphy, struct device *dev) { const struct rk_udphy_cfg *cfg = udphy->cfgs; int idx; udphy->num_rsts = cfg->num_rsts; udphy->rsts = devm_kcalloc(dev, udphy->num_rsts, sizeof(*udphy->rsts), GFP_KERNEL); if (!udphy->rsts) return -ENOMEM; for (idx = 0; idx < cfg->num_rsts; idx++) udphy->rsts[idx].id = cfg->rst_list[idx]; return devm_reset_control_bulk_get_exclusive(dev, cfg->num_rsts, udphy->rsts); } static void rk_udphy_u3_port_disable(struct rk_udphy *udphy, u8 disable) { const struct rk_udphy_cfg *cfg = udphy->cfgs; const struct rk_udphy_grf_reg *preg; preg = udphy->id ? &cfg->grfcfg.usb3otg1_cfg : &cfg->grfcfg.usb3otg0_cfg; rk_udphy_grfreg_write(udphy->usbgrf, preg, disable); } static void rk_udphy_usb_bvalid_enable(struct rk_udphy *udphy, u8 enable) { const struct rk_udphy_cfg *cfg = udphy->cfgs; rk_udphy_grfreg_write(udphy->u2phygrf, &cfg->grfcfg.bvalid_phy_con, enable); rk_udphy_grfreg_write(udphy->u2phygrf, &cfg->grfcfg.bvalid_grf_con, enable); } /* * In usb/dp combo phy driver, here are 2 ways to mapping lanes. * * 1 Type-C Mapping table (DP_Alt_Mode V1.0b remove ABF pin mapping) * --------------------------------------------------------------------------- * Type-C Pin B11-B10 A2-A3 A11-A10 B2-B3 * PHY Pad ln0(tx/rx) ln1(tx) ln2(tx/rx) ln3(tx) * C/E(Normal) dpln3 dpln2 dpln0 dpln1 * C/E(Flip ) dpln0 dpln1 dpln3 dpln2 * D/F(Normal) usbrx usbtx dpln0 dpln1 * D/F(Flip ) dpln0 dpln1 usbrx usbtx * A(Normal ) dpln3 dpln1 dpln2 dpln0 * A(Flip ) dpln2 dpln0 dpln3 dpln1 * B(Normal ) usbrx usbtx dpln1 dpln0 * B(Flip ) dpln1 dpln0 usbrx usbtx * --------------------------------------------------------------------------- * * 2 Mapping the lanes in dtsi * if all 4 lane assignment for dp function, define rockchip,dp-lane-mux = ; * sample as follow: * --------------------------------------------------------------------------- * B11-B10 A2-A3 A11-A10 B2-B3 * rockchip,dp-lane-mux ln0(tx/rx) ln1(tx) ln2(tx/rx) ln3(tx) * <0 1 2 3> dpln0 dpln1 dpln2 dpln3 * <2 3 0 1> dpln2 dpln3 dpln0 dpln1 * --------------------------------------------------------------------------- * if 2 lane for dp function, 2 lane for usb function, define rockchip,dp-lane-mux = ; * sample as follow: * --------------------------------------------------------------------------- * B11-B10 A2-A3 A11-A10 B2-B3 * rockchip,dp-lane-mux ln0(tx/rx) ln1(tx) ln2(tx/rx) ln3(tx) * <0 1> dpln0 dpln1 usbrx usbtx * <2 3> usbrx usbtx dpln0 dpln1 * --------------------------------------------------------------------------- */ static void rk_udphy_dplane_select(struct rk_udphy *udphy) { const struct rk_udphy_cfg *cfg = udphy->cfgs; u32 value = 0; switch (udphy->mode) { case UDPHY_MODE_DP: value |= 2 << udphy->dp_lane_sel[2] * 2; value |= 3 << udphy->dp_lane_sel[3] * 2; fallthrough; case UDPHY_MODE_DP_USB: value |= 0 << udphy->dp_lane_sel[0] * 2; value |= 1 << udphy->dp_lane_sel[1] * 2; break; case UDPHY_MODE_USB: break; default: break; } regmap_write(udphy->vogrf, cfg->vogrfcfg[udphy->id].dp_lane_reg, ((DP_AUX_DIN_SEL | DP_AUX_DOUT_SEL | DP_LANE_SEL_ALL) << 16) | FIELD_PREP(DP_AUX_DIN_SEL, udphy->dp_aux_din_sel) | FIELD_PREP(DP_AUX_DOUT_SEL, udphy->dp_aux_dout_sel) | value); } static int rk_udphy_dplane_get(struct rk_udphy *udphy) { int dp_lanes; switch (udphy->mode) { case UDPHY_MODE_DP: dp_lanes = 4; break; case UDPHY_MODE_DP_USB: dp_lanes = 2; break; case UDPHY_MODE_USB: default: dp_lanes = 0; break; } return dp_lanes; } static void rk_udphy_dplane_enable(struct rk_udphy *udphy, int dp_lanes) { u32 val = 0; int i; for (i = 0; i < dp_lanes; i++) val |= BIT(udphy->dp_lane_sel[i]); regmap_update_bits(udphy->pma_regmap, CMN_LANE_MUX_AND_EN_OFFSET, CMN_DP_LANE_EN_ALL, FIELD_PREP(CMN_DP_LANE_EN_ALL, val)); if (!dp_lanes) regmap_update_bits(udphy->pma_regmap, CMN_DP_RSTN_OFFSET, CMN_DP_CMN_RSTN, FIELD_PREP(CMN_DP_CMN_RSTN, 0x0)); } static void rk_udphy_dp_hpd_event_trigger(struct rk_udphy *udphy, bool hpd) { const struct rk_udphy_cfg *cfg = udphy->cfgs; udphy->dp_sink_hpd_sel = true; udphy->dp_sink_hpd_cfg = hpd; if (!udphy->dp_in_use) return; rk_udphy_grfreg_write(udphy->vogrf, &cfg->vogrfcfg[udphy->id].hpd_trigger, hpd); } static void rk_udphy_set_typec_default_mapping(struct rk_udphy *udphy) { if (udphy->flip) { udphy->dp_lane_sel[0] = 0; udphy->dp_lane_sel[1] = 1; udphy->dp_lane_sel[2] = 3; udphy->dp_lane_sel[3] = 2; udphy->lane_mux_sel[0] = PHY_LANE_MUX_DP; udphy->lane_mux_sel[1] = PHY_LANE_MUX_DP; udphy->lane_mux_sel[2] = PHY_LANE_MUX_USB; udphy->lane_mux_sel[3] = PHY_LANE_MUX_USB; udphy->dp_aux_dout_sel = PHY_AUX_DP_DATA_POL_INVERT; udphy->dp_aux_din_sel = PHY_AUX_DP_DATA_POL_INVERT; gpiod_set_value_cansleep(udphy->sbu1_dc_gpio, 1); gpiod_set_value_cansleep(udphy->sbu2_dc_gpio, 0); } else { udphy->dp_lane_sel[0] = 2; udphy->dp_lane_sel[1] = 3; udphy->dp_lane_sel[2] = 1; udphy->dp_lane_sel[3] = 0; udphy->lane_mux_sel[0] = PHY_LANE_MUX_USB; udphy->lane_mux_sel[1] = PHY_LANE_MUX_USB; udphy->lane_mux_sel[2] = PHY_LANE_MUX_DP; udphy->lane_mux_sel[3] = PHY_LANE_MUX_DP; udphy->dp_aux_dout_sel = PHY_AUX_DP_DATA_POL_NORMAL; udphy->dp_aux_din_sel = PHY_AUX_DP_DATA_POL_NORMAL; gpiod_set_value_cansleep(udphy->sbu1_dc_gpio, 0); gpiod_set_value_cansleep(udphy->sbu2_dc_gpio, 1); } udphy->mode = UDPHY_MODE_DP_USB; } static int rk_udphy_orien_sw_set(struct typec_switch_dev *sw, enum typec_orientation orien) { struct rk_udphy *udphy = typec_switch_get_drvdata(sw); mutex_lock(&udphy->mutex); if (orien == TYPEC_ORIENTATION_NONE) { gpiod_set_value_cansleep(udphy->sbu1_dc_gpio, 0); gpiod_set_value_cansleep(udphy->sbu2_dc_gpio, 0); /* unattached */ rk_udphy_usb_bvalid_enable(udphy, false); goto unlock_ret; } udphy->flip = (orien == TYPEC_ORIENTATION_REVERSE) ? true : false; rk_udphy_set_typec_default_mapping(udphy); rk_udphy_usb_bvalid_enable(udphy, true); unlock_ret: mutex_unlock(&udphy->mutex); return 0; } static void rk_udphy_orien_switch_unregister(void *data) { struct rk_udphy *udphy = data; typec_switch_unregister(udphy->sw); } static int rk_udphy_setup_orien_switch(struct rk_udphy *udphy) { struct typec_switch_desc sw_desc = { }; sw_desc.drvdata = udphy; sw_desc.fwnode = dev_fwnode(udphy->dev); sw_desc.set = rk_udphy_orien_sw_set; udphy->sw = typec_switch_register(udphy->dev, &sw_desc); if (IS_ERR(udphy->sw)) { dev_err(udphy->dev, "Error register typec orientation switch: %ld\n", PTR_ERR(udphy->sw)); return PTR_ERR(udphy->sw); } return devm_add_action_or_reset(udphy->dev, rk_udphy_orien_switch_unregister, udphy); } static int rk_udphy_refclk_set(struct rk_udphy *udphy) { unsigned long rate; int ret; /* configure phy reference clock */ rate = clk_get_rate(udphy->refclk); dev_dbg(udphy->dev, "refclk freq %ld\n", rate); switch (rate) { case 24000000: ret = regmap_multi_reg_write(udphy->pma_regmap, rk_udphy_24m_refclk_cfg, ARRAY_SIZE(rk_udphy_24m_refclk_cfg)); if (ret) return ret; break; case 26000000: /* register default is 26MHz */ ret = regmap_multi_reg_write(udphy->pma_regmap, rk_udphy_26m_refclk_cfg, ARRAY_SIZE(rk_udphy_26m_refclk_cfg)); if (ret) return ret; break; default: dev_err(udphy->dev, "unsupported refclk freq %ld\n", rate); return -EINVAL; } return 0; } static int rk_udphy_status_check(struct rk_udphy *udphy) { unsigned int val; int ret; /* LCPLL check */ if (udphy->mode & UDPHY_MODE_USB) { ret = regmap_read_poll_timeout(udphy->pma_regmap, CMN_ANA_LCPLL_DONE_OFFSET, val, (val & CMN_ANA_LCPLL_AFC_DONE) && (val & CMN_ANA_LCPLL_LOCK_DONE), 200, 100000); if (ret) { dev_err(udphy->dev, "cmn ana lcpll lock timeout\n"); /* * If earlier software (U-Boot) enabled USB once already * the PLL may have problems locking on the first try. * It will be successful on the second try, so for the * time being a -EPROBE_DEFER will solve the issue. * * This requires further investigation to understand the * root cause, especially considering that the driver is * asserting all reset lines at probe time. */ return -EPROBE_DEFER; } if (!udphy->flip) { ret = regmap_read_poll_timeout(udphy->pma_regmap, TRSV_LN0_MON_RX_CDR_DONE_OFFSET, val, val & TRSV_LN0_MON_RX_CDR_LOCK_DONE, 200, 100000); if (ret) dev_err(udphy->dev, "trsv ln0 mon rx cdr lock timeout\n"); } else { ret = regmap_read_poll_timeout(udphy->pma_regmap, TRSV_LN2_MON_RX_CDR_DONE_OFFSET, val, val & TRSV_LN2_MON_RX_CDR_LOCK_DONE, 200, 100000); if (ret) dev_err(udphy->dev, "trsv ln2 mon rx cdr lock timeout\n"); } } return 0; } static int rk_udphy_init(struct rk_udphy *udphy) { const struct rk_udphy_cfg *cfg = udphy->cfgs; int ret; rk_udphy_reset_assert_all(udphy); usleep_range(10000, 11000); /* enable rx lfps for usb */ if (udphy->mode & UDPHY_MODE_USB) rk_udphy_grfreg_write(udphy->udphygrf, &cfg->grfcfg.rx_lfps, true); /* Step 1: power on pma and deassert apb rstn */ rk_udphy_grfreg_write(udphy->udphygrf, &cfg->grfcfg.low_pwrn, true); rk_udphy_reset_deassert(udphy, "pma_apb"); rk_udphy_reset_deassert(udphy, "pcs_apb"); /* Step 2: set init sequence and phy refclk */ ret = regmap_multi_reg_write(udphy->pma_regmap, rk_udphy_init_sequence, ARRAY_SIZE(rk_udphy_init_sequence)); if (ret) { dev_err(udphy->dev, "init sequence set error %d\n", ret); goto assert_resets; } ret = rk_udphy_refclk_set(udphy); if (ret) { dev_err(udphy->dev, "refclk set error %d\n", ret); goto assert_resets; } /* Step 3: configure lane mux */ regmap_update_bits(udphy->pma_regmap, CMN_LANE_MUX_AND_EN_OFFSET, CMN_DP_LANE_MUX_ALL | CMN_DP_LANE_EN_ALL, FIELD_PREP(CMN_DP_LANE_MUX_N(3), udphy->lane_mux_sel[3]) | FIELD_PREP(CMN_DP_LANE_MUX_N(2), udphy->lane_mux_sel[2]) | FIELD_PREP(CMN_DP_LANE_MUX_N(1), udphy->lane_mux_sel[1]) | FIELD_PREP(CMN_DP_LANE_MUX_N(0), udphy->lane_mux_sel[0]) | FIELD_PREP(CMN_DP_LANE_EN_ALL, 0)); /* Step 4: deassert init rstn and wait for 200ns from datasheet */ if (udphy->mode & UDPHY_MODE_USB) rk_udphy_reset_deassert(udphy, "init"); if (udphy->mode & UDPHY_MODE_DP) { regmap_update_bits(udphy->pma_regmap, CMN_DP_RSTN_OFFSET, CMN_DP_INIT_RSTN, FIELD_PREP(CMN_DP_INIT_RSTN, 0x1)); } udelay(1); /* Step 5: deassert cmn/lane rstn */ if (udphy->mode & UDPHY_MODE_USB) { rk_udphy_reset_deassert(udphy, "cmn"); rk_udphy_reset_deassert(udphy, "lane"); } /* Step 6: wait for lock done of pll */ ret = rk_udphy_status_check(udphy); if (ret) goto assert_resets; return 0; assert_resets: rk_udphy_reset_assert_all(udphy); return ret; } static int rk_udphy_setup(struct rk_udphy *udphy) { int ret; ret = clk_bulk_prepare_enable(udphy->num_clks, udphy->clks); if (ret) { dev_err(udphy->dev, "failed to enable clk\n"); return ret; } ret = rk_udphy_init(udphy); if (ret) { dev_err(udphy->dev, "failed to init combophy\n"); clk_bulk_disable_unprepare(udphy->num_clks, udphy->clks); return ret; } return 0; } static void rk_udphy_disable(struct rk_udphy *udphy) { clk_bulk_disable_unprepare(udphy->num_clks, udphy->clks); rk_udphy_reset_assert_all(udphy); } static int rk_udphy_parse_lane_mux_data(struct rk_udphy *udphy) { int ret, i, num_lanes; num_lanes = device_property_count_u32(udphy->dev, "rockchip,dp-lane-mux"); if (num_lanes < 0) { dev_dbg(udphy->dev, "no dp-lane-mux, following dp alt mode\n"); udphy->mode = UDPHY_MODE_USB; return 0; } if (num_lanes != 2 && num_lanes != 4) return dev_err_probe(udphy->dev, -EINVAL, "invalid number of lane mux\n"); ret = device_property_read_u32_array(udphy->dev, "rockchip,dp-lane-mux", udphy->dp_lane_sel, num_lanes); if (ret) return dev_err_probe(udphy->dev, ret, "get dp lane mux failed\n"); for (i = 0; i < num_lanes; i++) { int j; if (udphy->dp_lane_sel[i] > 3) return dev_err_probe(udphy->dev, -EINVAL, "lane mux between 0 and 3, exceeding the range\n"); udphy->lane_mux_sel[udphy->dp_lane_sel[i]] = PHY_LANE_MUX_DP; for (j = i + 1; j < num_lanes; j++) { if (udphy->dp_lane_sel[i] == udphy->dp_lane_sel[j]) return dev_err_probe(udphy->dev, -EINVAL, "set repeat lane mux value\n"); } } udphy->mode = UDPHY_MODE_DP; if (num_lanes == 2) { udphy->mode |= UDPHY_MODE_USB; udphy->flip = (udphy->lane_mux_sel[0] == PHY_LANE_MUX_DP); } return 0; } static int rk_udphy_get_initial_status(struct rk_udphy *udphy) { int ret; u32 value; ret = clk_bulk_prepare_enable(udphy->num_clks, udphy->clks); if (ret) { dev_err(udphy->dev, "failed to enable clk\n"); return ret; } rk_udphy_reset_deassert_all(udphy); regmap_read(udphy->pma_regmap, CMN_LANE_MUX_AND_EN_OFFSET, &value); if (FIELD_GET(CMN_DP_LANE_MUX_ALL, value) && FIELD_GET(CMN_DP_LANE_EN_ALL, value)) udphy->status = UDPHY_MODE_DP; else rk_udphy_disable(udphy); return 0; } static int rk_udphy_parse_dt(struct rk_udphy *udphy) { struct device *dev = udphy->dev; struct device_node *np = dev_of_node(dev); enum usb_device_speed maximum_speed; int ret; udphy->u2phygrf = syscon_regmap_lookup_by_phandle(np, "rockchip,u2phy-grf"); if (IS_ERR(udphy->u2phygrf)) return dev_err_probe(dev, PTR_ERR(udphy->u2phygrf), "failed to get u2phy-grf\n"); udphy->udphygrf = syscon_regmap_lookup_by_phandle(np, "rockchip,usbdpphy-grf"); if (IS_ERR(udphy->udphygrf)) return dev_err_probe(dev, PTR_ERR(udphy->udphygrf), "failed to get usbdpphy-grf\n"); udphy->usbgrf = syscon_regmap_lookup_by_phandle(np, "rockchip,usb-grf"); if (IS_ERR(udphy->usbgrf)) return dev_err_probe(dev, PTR_ERR(udphy->usbgrf), "failed to get usb-grf\n"); udphy->vogrf = syscon_regmap_lookup_by_phandle(np, "rockchip,vo-grf"); if (IS_ERR(udphy->vogrf)) return dev_err_probe(dev, PTR_ERR(udphy->vogrf), "failed to get vo-grf\n"); ret = rk_udphy_parse_lane_mux_data(udphy); if (ret) return ret; udphy->sbu1_dc_gpio = devm_gpiod_get_optional(dev, "sbu1-dc", GPIOD_OUT_LOW); if (IS_ERR(udphy->sbu1_dc_gpio)) return PTR_ERR(udphy->sbu1_dc_gpio); udphy->sbu2_dc_gpio = devm_gpiod_get_optional(dev, "sbu2-dc", GPIOD_OUT_LOW); if (IS_ERR(udphy->sbu2_dc_gpio)) return PTR_ERR(udphy->sbu2_dc_gpio); if (device_property_present(dev, "maximum-speed")) { maximum_speed = usb_get_maximum_speed(dev); udphy->hs = maximum_speed <= USB_SPEED_HIGH ? true : false; } ret = rk_udphy_clk_init(udphy, dev); if (ret) return ret; return rk_udphy_reset_init(udphy, dev); } static int rk_udphy_power_on(struct rk_udphy *udphy, u8 mode) { int ret; if (!(udphy->mode & mode)) { dev_info(udphy->dev, "mode 0x%02x is not support\n", mode); return 0; } if (udphy->status == UDPHY_MODE_NONE) { udphy->mode_change = false; ret = rk_udphy_setup(udphy); if (ret) return ret; if (udphy->mode & UDPHY_MODE_USB) rk_udphy_u3_port_disable(udphy, false); } else if (udphy->mode_change) { udphy->mode_change = false; udphy->status = UDPHY_MODE_NONE; if (udphy->mode == UDPHY_MODE_DP) rk_udphy_u3_port_disable(udphy, true); rk_udphy_disable(udphy); ret = rk_udphy_setup(udphy); if (ret) return ret; } udphy->status |= mode; return 0; } static void rk_udphy_power_off(struct rk_udphy *udphy, u8 mode) { if (!(udphy->mode & mode)) { dev_info(udphy->dev, "mode 0x%02x is not support\n", mode); return; } if (!udphy->status) return; udphy->status &= ~mode; if (udphy->status == UDPHY_MODE_NONE) rk_udphy_disable(udphy); } static int rk_udphy_dp_phy_init(struct phy *phy) { struct rk_udphy *udphy = phy_get_drvdata(phy); mutex_lock(&udphy->mutex); udphy->dp_in_use = true; rk_udphy_dp_hpd_event_trigger(udphy, udphy->dp_sink_hpd_cfg); mutex_unlock(&udphy->mutex); return 0; } static int rk_udphy_dp_phy_exit(struct phy *phy) { struct rk_udphy *udphy = phy_get_drvdata(phy); mutex_lock(&udphy->mutex); udphy->dp_in_use = false; mutex_unlock(&udphy->mutex); return 0; } static int rk_udphy_dp_phy_power_on(struct phy *phy) { struct rk_udphy *udphy = phy_get_drvdata(phy); int ret, dp_lanes; mutex_lock(&udphy->mutex); dp_lanes = rk_udphy_dplane_get(udphy); phy_set_bus_width(phy, dp_lanes); ret = rk_udphy_power_on(udphy, UDPHY_MODE_DP); if (ret) goto unlock; rk_udphy_dplane_enable(udphy, dp_lanes); rk_udphy_dplane_select(udphy); unlock: mutex_unlock(&udphy->mutex); /* * If data send by aux channel too fast after phy power on, * the aux may be not ready which will cause aux error. Adding * delay to avoid this issue. */ usleep_range(10000, 11000); return ret; } static int rk_udphy_dp_phy_power_off(struct phy *phy) { struct rk_udphy *udphy = phy_get_drvdata(phy); mutex_lock(&udphy->mutex); rk_udphy_dplane_enable(udphy, 0); rk_udphy_power_off(udphy, UDPHY_MODE_DP); mutex_unlock(&udphy->mutex); return 0; } static int rk_udphy_dp_phy_verify_link_rate(unsigned int link_rate) { switch (link_rate) { case 1620: case 2700: case 5400: case 8100: break; default: return -EINVAL; } return 0; } static int rk_udphy_dp_phy_verify_config(struct rk_udphy *udphy, struct phy_configure_opts_dp *dp) { int i, ret; /* If changing link rate was required, verify it's supported. */ ret = rk_udphy_dp_phy_verify_link_rate(dp->link_rate); if (ret) return ret; /* Verify lane count. */ switch (dp->lanes) { case 1: case 2: case 4: /* valid lane count. */ break; default: return -EINVAL; } /* * If changing voltages is required, check swing and pre-emphasis * levels, per-lane. */ if (dp->set_voltages) { /* Lane count verified previously. */ for (i = 0; i < dp->lanes; i++) { if (dp->voltage[i] > 3 || dp->pre[i] > 3) return -EINVAL; /* * Sum of voltage swing and pre-emphasis levels cannot * exceed 3. */ if (dp->voltage[i] + dp->pre[i] > 3) return -EINVAL; } } return 0; } static void rk_udphy_dp_set_voltage(struct rk_udphy *udphy, u8 bw, u32 voltage, u32 pre, u32 lane) { const struct rk_udphy_cfg *cfg = udphy->cfgs; const struct rk_udphy_dp_tx_drv_ctrl (*dp_ctrl)[4]; u32 offset = 0x800 * lane; u32 val; if (udphy->mux) dp_ctrl = cfg->dp_tx_ctrl_cfg_typec[bw]; else dp_ctrl = cfg->dp_tx_ctrl_cfg[bw]; val = dp_ctrl[voltage][pre].trsv_reg0204; regmap_write(udphy->pma_regmap, 0x0810 + offset, val); val = dp_ctrl[voltage][pre].trsv_reg0205; regmap_write(udphy->pma_regmap, 0x0814 + offset, val); val = dp_ctrl[voltage][pre].trsv_reg0206; regmap_write(udphy->pma_regmap, 0x0818 + offset, val); val = dp_ctrl[voltage][pre].trsv_reg0207; regmap_write(udphy->pma_regmap, 0x081c + offset, val); } static int rk_udphy_dp_phy_configure(struct phy *phy, union phy_configure_opts *opts) { struct rk_udphy *udphy = phy_get_drvdata(phy); struct phy_configure_opts_dp *dp = &opts->dp; u32 i, val, lane; int ret; ret = rk_udphy_dp_phy_verify_config(udphy, dp); if (ret) return ret; if (dp->set_rate) { regmap_update_bits(udphy->pma_regmap, CMN_DP_RSTN_OFFSET, CMN_DP_CMN_RSTN, FIELD_PREP(CMN_DP_CMN_RSTN, 0x0)); switch (dp->link_rate) { case 1620: udphy->bw = DP_BW_RBR; break; case 2700: udphy->bw = DP_BW_HBR; break; case 5400: udphy->bw = DP_BW_HBR2; break; case 8100: udphy->bw = DP_BW_HBR3; break; default: return -EINVAL; } regmap_update_bits(udphy->pma_regmap, CMN_DP_LINK_OFFSET, CMN_DP_TX_LINK_BW, FIELD_PREP(CMN_DP_TX_LINK_BW, udphy->bw)); regmap_update_bits(udphy->pma_regmap, CMN_SSC_EN_OFFSET, CMN_ROPLL_SSC_EN, FIELD_PREP(CMN_ROPLL_SSC_EN, dp->ssc)); regmap_update_bits(udphy->pma_regmap, CMN_DP_RSTN_OFFSET, CMN_DP_CMN_RSTN, FIELD_PREP(CMN_DP_CMN_RSTN, 0x1)); ret = regmap_read_poll_timeout(udphy->pma_regmap, CMN_ANA_ROPLL_DONE_OFFSET, val, FIELD_GET(CMN_ANA_ROPLL_LOCK_DONE, val) && FIELD_GET(CMN_ANA_ROPLL_AFC_DONE, val), 0, 1000); if (ret) { dev_err(udphy->dev, "ROPLL is not lock, set_rate failed\n"); return ret; } } if (dp->set_voltages) { for (i = 0; i < dp->lanes; i++) { lane = udphy->dp_lane_sel[i]; switch (dp->link_rate) { case 1620: case 2700: regmap_update_bits(udphy->pma_regmap, TRSV_ANA_TX_CLK_OFFSET_N(lane), LN_ANA_TX_SER_TXCLK_INV, FIELD_PREP(LN_ANA_TX_SER_TXCLK_INV, udphy->lane_mux_sel[lane])); break; case 5400: case 8100: regmap_update_bits(udphy->pma_regmap, TRSV_ANA_TX_CLK_OFFSET_N(lane), LN_ANA_TX_SER_TXCLK_INV, FIELD_PREP(LN_ANA_TX_SER_TXCLK_INV, 0x0)); break; } rk_udphy_dp_set_voltage(udphy, udphy->bw, dp->voltage[i], dp->pre[i], lane); } } return 0; } static const struct phy_ops rk_udphy_dp_phy_ops = { .init = rk_udphy_dp_phy_init, .exit = rk_udphy_dp_phy_exit, .power_on = rk_udphy_dp_phy_power_on, .power_off = rk_udphy_dp_phy_power_off, .configure = rk_udphy_dp_phy_configure, .owner = THIS_MODULE, }; static int rk_udphy_usb3_phy_init(struct phy *phy) { struct rk_udphy *udphy = phy_get_drvdata(phy); int ret = 0; mutex_lock(&udphy->mutex); /* DP only or high-speed, disable U3 port */ if (!(udphy->mode & UDPHY_MODE_USB) || udphy->hs) { rk_udphy_u3_port_disable(udphy, true); goto unlock; } ret = rk_udphy_power_on(udphy, UDPHY_MODE_USB); unlock: mutex_unlock(&udphy->mutex); return ret; } static int rk_udphy_usb3_phy_exit(struct phy *phy) { struct rk_udphy *udphy = phy_get_drvdata(phy); mutex_lock(&udphy->mutex); /* DP only or high-speed */ if (!(udphy->mode & UDPHY_MODE_USB) || udphy->hs) goto unlock; rk_udphy_power_off(udphy, UDPHY_MODE_USB); unlock: mutex_unlock(&udphy->mutex); return 0; } static const struct phy_ops rk_udphy_usb3_phy_ops = { .init = rk_udphy_usb3_phy_init, .exit = rk_udphy_usb3_phy_exit, .owner = THIS_MODULE, }; static int rk_udphy_typec_mux_set(struct typec_mux_dev *mux, struct typec_mux_state *state) { struct rk_udphy *udphy = typec_mux_get_drvdata(mux); u8 mode; mutex_lock(&udphy->mutex); switch (state->mode) { case TYPEC_DP_STATE_C: case TYPEC_DP_STATE_E: udphy->lane_mux_sel[0] = PHY_LANE_MUX_DP; udphy->lane_mux_sel[1] = PHY_LANE_MUX_DP; udphy->lane_mux_sel[2] = PHY_LANE_MUX_DP; udphy->lane_mux_sel[3] = PHY_LANE_MUX_DP; mode = UDPHY_MODE_DP; break; case TYPEC_DP_STATE_D: default: if (udphy->flip) { udphy->lane_mux_sel[0] = PHY_LANE_MUX_DP; udphy->lane_mux_sel[1] = PHY_LANE_MUX_DP; udphy->lane_mux_sel[2] = PHY_LANE_MUX_USB; udphy->lane_mux_sel[3] = PHY_LANE_MUX_USB; } else { udphy->lane_mux_sel[0] = PHY_LANE_MUX_USB; udphy->lane_mux_sel[1] = PHY_LANE_MUX_USB; udphy->lane_mux_sel[2] = PHY_LANE_MUX_DP; udphy->lane_mux_sel[3] = PHY_LANE_MUX_DP; } mode = UDPHY_MODE_DP_USB; break; } if (state->alt && state->alt->svid == USB_TYPEC_DP_SID) { struct typec_displayport_data *data = state->data; if (!data) { rk_udphy_dp_hpd_event_trigger(udphy, false); } else if (data->status & DP_STATUS_IRQ_HPD) { rk_udphy_dp_hpd_event_trigger(udphy, false); usleep_range(750, 800); rk_udphy_dp_hpd_event_trigger(udphy, true); } else if (data->status & DP_STATUS_HPD_STATE) { if (udphy->mode != mode) { udphy->mode = mode; udphy->mode_change = true; } rk_udphy_dp_hpd_event_trigger(udphy, true); } else { rk_udphy_dp_hpd_event_trigger(udphy, false); } } mutex_unlock(&udphy->mutex); return 0; } static void rk_udphy_typec_mux_unregister(void *data) { struct rk_udphy *udphy = data; typec_mux_unregister(udphy->mux); } static int rk_udphy_setup_typec_mux(struct rk_udphy *udphy) { struct typec_mux_desc mux_desc = {}; mux_desc.drvdata = udphy; mux_desc.fwnode = dev_fwnode(udphy->dev); mux_desc.set = rk_udphy_typec_mux_set; udphy->mux = typec_mux_register(udphy->dev, &mux_desc); if (IS_ERR(udphy->mux)) { dev_err(udphy->dev, "Error register typec mux: %ld\n", PTR_ERR(udphy->mux)); return PTR_ERR(udphy->mux); } return devm_add_action_or_reset(udphy->dev, rk_udphy_typec_mux_unregister, udphy); } static const struct regmap_config rk_udphy_pma_regmap_cfg = { .reg_bits = 32, .reg_stride = 4, .val_bits = 32, .fast_io = true, .max_register = 0x20dc, }; static struct phy *rk_udphy_phy_xlate(struct device *dev, const struct of_phandle_args *args) { struct rk_udphy *udphy = dev_get_drvdata(dev); if (args->args_count == 0) return ERR_PTR(-EINVAL); switch (args->args[0]) { case PHY_TYPE_USB3: return udphy->phy_u3; case PHY_TYPE_DP: return udphy->phy_dp; } return ERR_PTR(-EINVAL); } static int rk_udphy_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct phy_provider *phy_provider; struct resource *res; struct rk_udphy *udphy; void __iomem *base; int id, ret; udphy = devm_kzalloc(dev, sizeof(*udphy), GFP_KERNEL); if (!udphy) return -ENOMEM; udphy->cfgs = device_get_match_data(dev); if (!udphy->cfgs) return dev_err_probe(dev, -EINVAL, "missing match data\n"); base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); if (IS_ERR(base)) return PTR_ERR(base); /* find the phy-id from the io address */ udphy->id = -ENODEV; for (id = 0; id < udphy->cfgs->num_phys; id++) { if (res->start == udphy->cfgs->phy_ids[id]) { udphy->id = id; break; } } if (udphy->id < 0) return dev_err_probe(dev, -ENODEV, "no matching device found\n"); udphy->pma_regmap = devm_regmap_init_mmio(dev, base + UDPHY_PMA, &rk_udphy_pma_regmap_cfg); if (IS_ERR(udphy->pma_regmap)) return PTR_ERR(udphy->pma_regmap); udphy->dev = dev; ret = rk_udphy_parse_dt(udphy); if (ret) return ret; ret = rk_udphy_get_initial_status(udphy); if (ret) return ret; mutex_init(&udphy->mutex); platform_set_drvdata(pdev, udphy); if (device_property_present(dev, "orientation-switch")) { ret = rk_udphy_setup_orien_switch(udphy); if (ret) return ret; } if (device_property_present(dev, "mode-switch")) { ret = rk_udphy_setup_typec_mux(udphy); if (ret) return ret; } udphy->phy_u3 = devm_phy_create(dev, dev->of_node, &rk_udphy_usb3_phy_ops); if (IS_ERR(udphy->phy_u3)) { ret = PTR_ERR(udphy->phy_u3); return dev_err_probe(dev, ret, "failed to create USB3 phy\n"); } phy_set_drvdata(udphy->phy_u3, udphy); udphy->phy_dp = devm_phy_create(dev, dev->of_node, &rk_udphy_dp_phy_ops); if (IS_ERR(udphy->phy_dp)) { ret = PTR_ERR(udphy->phy_dp); return dev_err_probe(dev, ret, "failed to create DP phy\n"); } phy_set_bus_width(udphy->phy_dp, rk_udphy_dplane_get(udphy)); udphy->phy_dp->attrs.max_link_rate = 8100; phy_set_drvdata(udphy->phy_dp, udphy); phy_provider = devm_of_phy_provider_register(dev, rk_udphy_phy_xlate); if (IS_ERR(phy_provider)) { ret = PTR_ERR(phy_provider); return dev_err_probe(dev, ret, "failed to register phy provider\n"); } return 0; } static int __maybe_unused rk_udphy_resume(struct device *dev) { struct rk_udphy *udphy = dev_get_drvdata(dev); if (udphy->dp_sink_hpd_sel) rk_udphy_dp_hpd_event_trigger(udphy, udphy->dp_sink_hpd_cfg); return 0; } static const struct dev_pm_ops rk_udphy_pm_ops = { SET_LATE_SYSTEM_SLEEP_PM_OPS(NULL, rk_udphy_resume) }; static const char * const rk_udphy_rst_list[] = { "init", "cmn", "lane", "pcs_apb", "pma_apb" }; static const struct rk_udphy_cfg rk3588_udphy_cfgs = { .num_phys = 2, .phy_ids = { 0xfed80000, 0xfed90000, }, .num_rsts = ARRAY_SIZE(rk_udphy_rst_list), .rst_list = rk_udphy_rst_list, .grfcfg = { /* u2phy-grf */ .bvalid_phy_con = RK_UDPHY_GEN_GRF_REG(0x0008, 1, 0, 0x2, 0x3), .bvalid_grf_con = RK_UDPHY_GEN_GRF_REG(0x0010, 3, 2, 0x2, 0x3), /* usb-grf */ .usb3otg0_cfg = RK_UDPHY_GEN_GRF_REG(0x001c, 15, 0, 0x1100, 0x0188), .usb3otg1_cfg = RK_UDPHY_GEN_GRF_REG(0x0034, 15, 0, 0x1100, 0x0188), /* usbdpphy-grf */ .low_pwrn = RK_UDPHY_GEN_GRF_REG(0x0004, 13, 13, 0, 1), .rx_lfps = RK_UDPHY_GEN_GRF_REG(0x0004, 14, 14, 0, 1), }, .vogrfcfg = { { .hpd_trigger = RK_UDPHY_GEN_GRF_REG(0x0000, 11, 10, 1, 3), .dp_lane_reg = 0x0000, }, { .hpd_trigger = RK_UDPHY_GEN_GRF_REG(0x0008, 11, 10, 1, 3), .dp_lane_reg = 0x0008, }, }, .dp_tx_ctrl_cfg = { rk3588_dp_tx_drv_ctrl_rbr_hbr, rk3588_dp_tx_drv_ctrl_rbr_hbr, rk3588_dp_tx_drv_ctrl_hbr2, rk3588_dp_tx_drv_ctrl_hbr3, }, .dp_tx_ctrl_cfg_typec = { rk3588_dp_tx_drv_ctrl_rbr_hbr_typec, rk3588_dp_tx_drv_ctrl_rbr_hbr_typec, rk3588_dp_tx_drv_ctrl_hbr2, rk3588_dp_tx_drv_ctrl_hbr3, }, }; static const struct of_device_id rk_udphy_dt_match[] = { { .compatible = "rockchip,rk3588-usbdp-phy", .data = &rk3588_udphy_cfgs }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, rk_udphy_dt_match); static struct platform_driver rk_udphy_driver = { .probe = rk_udphy_probe, .driver = { .name = "rockchip-usbdp-phy", .of_match_table = rk_udphy_dt_match, .pm = &rk_udphy_pm_ops, }, }; module_platform_driver(rk_udphy_driver); MODULE_AUTHOR("Frank Wang "); MODULE_AUTHOR("Zhang Yubing "); MODULE_DESCRIPTION("Rockchip USBDP Combo PHY driver"); MODULE_LICENSE("GPL");