/* * Copyright (C) 2013 DENX Software Engineering * * Gerhard Sittig, * * common clock driver support for the MPC512x platform * * This is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include "mpc512x.h" /* our public mpc5121_clk_init() API */ /* helpers to keep the MCLK intermediates "somewhere" in our table */ enum { MCLK_IDX_MUX0, MCLK_IDX_EN0, MCLK_IDX_DIV0, MCLK_MAX_IDX, }; #define NR_PSCS 12 #define NR_MSCANS 4 #define NR_SPDIFS 1 #define NR_OUTCLK 4 #define NR_MCLKS (NR_PSCS + NR_MSCANS + NR_SPDIFS + NR_OUTCLK) /* extend the public set of clocks by adding internal slots for management */ enum { /* arrange for adjacent numbers after the public set */ MPC512x_CLK_START_PRIVATE = MPC512x_CLK_LAST_PUBLIC, /* clocks which aren't announced to the public */ MPC512x_CLK_DDR, MPC512x_CLK_MEM, MPC512x_CLK_IIM, /* intermediates in div+gate combos or fractional dividers */ MPC512x_CLK_DDR_UG, MPC512x_CLK_SDHC_x4, MPC512x_CLK_SDHC_UG, MPC512x_CLK_SDHC2_UG, MPC512x_CLK_DIU_x4, MPC512x_CLK_DIU_UG, MPC512x_CLK_MBX_BUS_UG, MPC512x_CLK_MBX_UG, MPC512x_CLK_MBX_3D_UG, MPC512x_CLK_PCI_UG, MPC512x_CLK_NFC_UG, MPC512x_CLK_LPC_UG, MPC512x_CLK_SPDIF_TX_IN, /* intermediates for the mux+gate+div+mux MCLK generation */ MPC512x_CLK_MCLKS_FIRST, MPC512x_CLK_MCLKS_LAST = MPC512x_CLK_MCLKS_FIRST + NR_MCLKS * MCLK_MAX_IDX, /* internal, symbolic spec for the number of slots */ MPC512x_CLK_LAST_PRIVATE, }; /* data required for the OF clock provider registration */ static struct clk *clks[MPC512x_CLK_LAST_PRIVATE]; static struct clk_onecell_data clk_data; /* CCM register access */ static struct mpc512x_ccm __iomem *clkregs; static DEFINE_SPINLOCK(clklock); /* SoC variants {{{ */ /* * tell SoC variants apart as they are rather similar yet not identical, * cache the result in an enum to not repeatedly run the expensive OF test * * MPC5123 is an MPC5121 without the MBX graphics accelerator * * MPC5125 has many more differences: no MBX, no AXE, no VIU, no SPDIF, * no PATA, no SATA, no PCI, two FECs (of different compatibility name), * only 10 PSCs (of different compatibility name), two SDHCs, different * NFC IP block, output clocks, system PLL status query, different CPMF * interpretation, no CFM, different fourth PSC/CAN mux0 input -- yet * those differences can get folded into this clock provider support * code and don't warrant a separate highly redundant implementation */ static enum soc_type { MPC512x_SOC_MPC5121, MPC512x_SOC_MPC5123, MPC512x_SOC_MPC5125, } soc; static void mpc512x_clk_determine_soc(void) { if (of_machine_is_compatible("fsl,mpc5121")) { soc = MPC512x_SOC_MPC5121; return; } if (of_machine_is_compatible("fsl,mpc5123")) { soc = MPC512x_SOC_MPC5123; return; } if (of_machine_is_compatible("fsl,mpc5125")) { soc = MPC512x_SOC_MPC5125; return; } } static bool soc_has_mbx(void) { if (soc == MPC512x_SOC_MPC5121) return true; return false; } static bool soc_has_axe(void) { if (soc == MPC512x_SOC_MPC5125) return false; return true; } static bool soc_has_viu(void) { if (soc == MPC512x_SOC_MPC5125) return false; return true; } static bool soc_has_spdif(void) { if (soc == MPC512x_SOC_MPC5125) return false; return true; } static bool soc_has_pata(void) { if (soc == MPC512x_SOC_MPC5125) return false; return true; } static bool soc_has_sata(void) { if (soc == MPC512x_SOC_MPC5125) return false; return true; } static bool soc_has_pci(void) { if (soc == MPC512x_SOC_MPC5125) return false; return true; } static bool soc_has_fec2(void) { if (soc == MPC512x_SOC_MPC5125) return true; return false; } static int soc_max_pscnum(void) { if (soc == MPC512x_SOC_MPC5125) return 10; return 12; } static bool soc_has_sdhc2(void) { if (soc == MPC512x_SOC_MPC5125) return true; return false; } static bool soc_has_nfc_5125(void) { if (soc == MPC512x_SOC_MPC5125) return true; return false; } static bool soc_has_outclk(void) { if (soc == MPC512x_SOC_MPC5125) return true; return false; } static bool soc_has_cpmf_0_bypass(void) { if (soc == MPC512x_SOC_MPC5125) return true; return false; } static bool soc_has_mclk_mux0_canin(void) { if (soc == MPC512x_SOC_MPC5125) return true; return false; } /* }}} SoC variants */ /* common clk API wrappers {{{ */ /* convenience wrappers around the common clk API */ static inline struct clk *mpc512x_clk_fixed(const char *name, int rate) { return clk_register_fixed_rate(NULL, name, NULL, 0, rate); } static inline struct clk *mpc512x_clk_factor( const char *name, const char *parent_name, int mul, int div) { int clkflags; clkflags = CLK_SET_RATE_PARENT; return clk_register_fixed_factor(NULL, name, parent_name, clkflags, mul, div); } static inline struct clk *mpc512x_clk_divider( const char *name, const char *parent_name, u8 clkflags, u32 __iomem *reg, u8 pos, u8 len, int divflags) { return clk_register_divider(NULL, name, parent_name, clkflags, reg, pos, len, divflags, &clklock); } static inline struct clk *mpc512x_clk_divtable( const char *name, const char *parent_name, u32 __iomem *reg, u8 pos, u8 len, const struct clk_div_table *divtab) { u8 divflags; divflags = 0; return clk_register_divider_table(NULL, name, parent_name, 0, reg, pos, len, divflags, divtab, &clklock); } static inline struct clk *mpc512x_clk_gated( const char *name, const char *parent_name, u32 __iomem *reg, u8 pos) { int clkflags; clkflags = CLK_SET_RATE_PARENT; return clk_register_gate(NULL, name, parent_name, clkflags, reg, pos, 0, &clklock); } static inline struct clk *mpc512x_clk_muxed(const char *name, const char **parent_names, int parent_count, u32 __iomem *reg, u8 pos, u8 len) { int clkflags; u8 muxflags; clkflags = CLK_SET_RATE_PARENT; muxflags = 0; return clk_register_mux(NULL, name, parent_names, parent_count, clkflags, reg, pos, len, muxflags, &clklock); } /* }}} common clk API wrappers */ /* helper to isolate a bit field from a register */ static inline int get_bit_field(uint32_t __iomem *reg, uint8_t pos, uint8_t len) { uint32_t val; val = in_be32(reg); val >>= pos; val &= (1 << len) - 1; return val; } /* get the SPMF and translate it into the "sys pll" multiplier */ static int get_spmf_mult(void) { static int spmf_to_mult[] = { 68, 1, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, }; int spmf; spmf = get_bit_field(&clkregs->spmr, 24, 4); return spmf_to_mult[spmf]; } /* * get the SYS_DIV value and translate it into a divide factor * * values returned from here are a multiple of the real factor since the * divide ratio is fractional */ static int get_sys_div_x2(void) { static int sysdiv_code_to_x2[] = { 4, 5, 6, 7, 8, 9, 10, 14, 12, 16, 18, 22, 20, 24, 26, 30, 28, 32, 34, 38, 36, 40, 42, 46, 44, 48, 50, 54, 52, 56, 58, 62, 60, 64, 66, }; int divcode; divcode = get_bit_field(&clkregs->scfr2, 26, 6); return sysdiv_code_to_x2[divcode]; } /* * get the CPMF value and translate it into a multiplier factor * * values returned from here are a multiple of the real factor since the * multiplier ratio is fractional */ static int get_cpmf_mult_x2(void) { static int cpmf_to_mult_x36[] = { /* 0b000 is "times 36" */ 72, 2, 2, 3, 4, 5, 6, 7, }; static int cpmf_to_mult_0by[] = { /* 0b000 is "bypass" */ 2, 2, 2, 3, 4, 5, 6, 7, }; int *cpmf_to_mult; int cpmf; cpmf = get_bit_field(&clkregs->spmr, 16, 4); if (soc_has_cpmf_0_bypass()) cpmf_to_mult = cpmf_to_mult_0by; else cpmf_to_mult = cpmf_to_mult_x36; return cpmf_to_mult[cpmf]; } /* * some of the clock dividers do scale in a linear way, yet not all of * their bit combinations are legal; use a divider table to get a * resulting set of applicable divider values */ /* applies to the IPS_DIV, and PCI_DIV values */ static const struct clk_div_table divtab_2346[] = { { .val = 2, .div = 2, }, { .val = 3, .div = 3, }, { .val = 4, .div = 4, }, { .val = 6, .div = 6, }, { .div = 0, }, }; /* applies to the MBX_DIV, LPC_DIV, and NFC_DIV values */ static const struct clk_div_table divtab_1234[] = { { .val = 1, .div = 1, }, { .val = 2, .div = 2, }, { .val = 3, .div = 3, }, { .val = 4, .div = 4, }, { .div = 0, }, }; static int get_freq_from_dt(char *propname) { struct device_node *np; const unsigned int *prop; int val; val = 0; np = of_find_compatible_node(NULL, NULL, "fsl,mpc5121-immr"); if (np) { prop = of_get_property(np, propname, NULL); if (prop) val = *prop; of_node_put(np); } return val; } static void mpc512x_clk_preset_data(void) { size_t i; for (i = 0; i < ARRAY_SIZE(clks); i++) clks[i] = ERR_PTR(-ENODEV); } /* * - receives the "bus frequency" from the caller (that's the IPS clock * rate, the historical source of clock information) * - fetches the system PLL multiplier and divider values as well as the * IPS divider value from hardware * - determines the REF clock rate either from the XTAL/OSC spec (if * there is a device tree node describing the oscillator) or from the * IPS bus clock (supported for backwards compatibility, such that * setups without XTAL/OSC specs keep working) * - creates the "ref" clock item in the clock tree, such that * subsequent code can create the remainder of the hierarchy (REF -> * SYS -> CSB -> IPS) from the REF clock rate and the returned mul/div * values */ static void mpc512x_clk_setup_ref_clock(struct device_node *np, int bus_freq, int *sys_mul, int *sys_div, int *ips_div) { struct clk *osc_clk; int calc_freq; /* fetch mul/div factors from the hardware */ *sys_mul = get_spmf_mult(); *sys_mul *= 2; /* compensate for the fractional divider */ *sys_div = get_sys_div_x2(); *ips_div = get_bit_field(&clkregs->scfr1, 23, 3); /* lookup the oscillator clock for its rate */ osc_clk = of_clk_get_by_name(np, "osc"); /* * either descend from OSC to REF (and in bypassing verify the * IPS rate), or backtrack from IPS and multiplier values that * were fetched from hardware to REF and thus to the OSC value * * in either case the REF clock gets created here and the * remainder of the clock tree can get spanned from there */ if (!IS_ERR(osc_clk)) { clks[MPC512x_CLK_REF] = mpc512x_clk_factor("ref", "osc", 1, 1); calc_freq = clk_get_rate(clks[MPC512x_CLK_REF]); calc_freq *= *sys_mul; calc_freq /= *sys_div; calc_freq /= 2; calc_freq /= *ips_div; if (bus_freq && calc_freq != bus_freq) pr_warn("calc rate %d != OF spec %d\n", calc_freq, bus_freq); } else { calc_freq = bus_freq; /* start with IPS */ calc_freq *= *ips_div; /* IPS -> CSB */ calc_freq *= 2; /* CSB -> SYS */ calc_freq *= *sys_div; /* SYS -> PLL out */ calc_freq /= *sys_mul; /* PLL out -> REF == OSC */ clks[MPC512x_CLK_REF] = mpc512x_clk_fixed("ref", calc_freq); } } /* MCLK helpers {{{ */ /* * helper code for the MCLK subtree setup * * the overview in section 5.2.4 of the MPC5121e Reference Manual rev4 * suggests that all instances of the "PSC clock generation" are equal, * and that one might re-use the PSC setup for MSCAN clock generation * (section 5.2.5) as well, at least the logic if not the data for * description * * the details (starting at page 5-20) show differences in the specific * inputs of the first mux stage ("can clk in", "spdif tx"), and the * factual non-availability of the second mux stage (it's present yet * only one input is valid) * * the MSCAN clock related registers (starting at page 5-35) all * reference "spdif clk" at the first mux stage and don't mention any * "can clk" at all, which somehow is unexpected * * TODO re-check the document, and clarify whether the RM is correct in * the overview or in the details, and whether the difference is a * clipboard induced error or results from chip revisions * * it turns out that the RM rev4 as of 2012-06 talks about "can" for the * PSCs while RM rev3 as of 2008-10 talks about "spdif", so I guess that * first a doc update is required which better reflects reality in the * SoC before the implementation should follow while no questions remain */ /* * note that this declaration raises a checkpatch warning, but * it's the very data type dictated by , * "fixing" this warning will break compilation */ static const char *parent_names_mux0_spdif[] = { "sys", "ref", "psc-mclk-in", "spdif-tx", }; static const char *parent_names_mux0_canin[] = { "sys", "ref", "psc-mclk-in", "can-clk-in", }; enum mclk_type { MCLK_TYPE_PSC, MCLK_TYPE_MSCAN, MCLK_TYPE_SPDIF, MCLK_TYPE_OUTCLK, }; struct mclk_setup_data { enum mclk_type type; bool has_mclk1; const char *name_mux0; const char *name_en0; const char *name_div0; const char *parent_names_mux1[2]; const char *name_mclk; }; #define MCLK_SETUP_DATA_PSC(id) { \ MCLK_TYPE_PSC, 0, \ "psc" #id "-mux0", \ "psc" #id "-en0", \ "psc" #id "_mclk_div", \ { "psc" #id "_mclk_div", "dummy", }, \ "psc" #id "_mclk", \ } #define MCLK_SETUP_DATA_MSCAN(id) { \ MCLK_TYPE_MSCAN, 0, \ "mscan" #id "-mux0", \ "mscan" #id "-en0", \ "mscan" #id "_mclk_div", \ { "mscan" #id "_mclk_div", "dummy", }, \ "mscan" #id "_mclk", \ } #define MCLK_SETUP_DATA_SPDIF { \ MCLK_TYPE_SPDIF, 1, \ "spdif-mux0", \ "spdif-en0", \ "spdif_mclk_div", \ { "spdif_mclk_div", "spdif-rx", }, \ "spdif_mclk", \ } #define MCLK_SETUP_DATA_OUTCLK(id) { \ MCLK_TYPE_OUTCLK, 0, \ "out" #id "-mux0", \ "out" #id "-en0", \ "out" #id "_mclk_div", \ { "out" #id "_mclk_div", "dummy", }, \ "out" #id "_clk", \ } static struct mclk_setup_data mclk_psc_data[] = { MCLK_SETUP_DATA_PSC(0), MCLK_SETUP_DATA_PSC(1), MCLK_SETUP_DATA_PSC(2), MCLK_SETUP_DATA_PSC(3), MCLK_SETUP_DATA_PSC(4), MCLK_SETUP_DATA_PSC(5), MCLK_SETUP_DATA_PSC(6), MCLK_SETUP_DATA_PSC(7), MCLK_SETUP_DATA_PSC(8), MCLK_SETUP_DATA_PSC(9), MCLK_SETUP_DATA_PSC(10), MCLK_SETUP_DATA_PSC(11), }; static struct mclk_setup_data mclk_mscan_data[] = { MCLK_SETUP_DATA_MSCAN(0), MCLK_SETUP_DATA_MSCAN(1), MCLK_SETUP_DATA_MSCAN(2), MCLK_SETUP_DATA_MSCAN(3), }; static struct mclk_setup_data mclk_spdif_data[] = { MCLK_SETUP_DATA_SPDIF, }; static struct mclk_setup_data mclk_outclk_data[] = { MCLK_SETUP_DATA_OUTCLK(0), MCLK_SETUP_DATA_OUTCLK(1), MCLK_SETUP_DATA_OUTCLK(2), MCLK_SETUP_DATA_OUTCLK(3), }; /* setup the MCLK clock subtree of an individual PSC/MSCAN/SPDIF */ static void mpc512x_clk_setup_mclk(struct mclk_setup_data *entry, size_t idx) { size_t clks_idx_pub, clks_idx_int; u32 __iomem *mccr_reg; /* MCLK control register (mux, en, div) */ int div; /* derive a few parameters from the component type and index */ switch (entry->type) { case MCLK_TYPE_PSC: clks_idx_pub = MPC512x_CLK_PSC0_MCLK + idx; clks_idx_int = MPC512x_CLK_MCLKS_FIRST + (idx) * MCLK_MAX_IDX; mccr_reg = &clkregs->psc_ccr[idx]; break; case MCLK_TYPE_MSCAN: clks_idx_pub = MPC512x_CLK_MSCAN0_MCLK + idx; clks_idx_int = MPC512x_CLK_MCLKS_FIRST + (NR_PSCS + idx) * MCLK_MAX_IDX; mccr_reg = &clkregs->mscan_ccr[idx]; break; case MCLK_TYPE_SPDIF: clks_idx_pub = MPC512x_CLK_SPDIF_MCLK; clks_idx_int = MPC512x_CLK_MCLKS_FIRST + (NR_PSCS + NR_MSCANS) * MCLK_MAX_IDX; mccr_reg = &clkregs->spccr; break; case MCLK_TYPE_OUTCLK: clks_idx_pub = MPC512x_CLK_OUT0_CLK + idx; clks_idx_int = MPC512x_CLK_MCLKS_FIRST + (NR_PSCS + NR_MSCANS + NR_SPDIFS + idx) * MCLK_MAX_IDX; mccr_reg = &clkregs->out_ccr[idx]; break; default: return; } /* * this was grabbed from the PPC_CLOCK implementation, which * enforced a specific MCLK divider while the clock was gated * during setup (that's a documented hardware requirement) * * the PPC_CLOCK implementation might even have violated the * "MCLK <= IPS" constraint, the fixed divider value of 1 * results in a divider of 2 and thus MCLK = SYS/2 which equals * CSB which is greater than IPS; the serial port setup may have * adjusted the divider which the clock setup might have left in * an undesirable state * * initial setup is: * - MCLK 0 from SYS * - MCLK DIV such to not exceed the IPS clock * - MCLK 0 enabled * - MCLK 1 from MCLK DIV */ div = clk_get_rate(clks[MPC512x_CLK_SYS]); div /= clk_get_rate(clks[MPC512x_CLK_IPS]); out_be32(mccr_reg, (0 << 16)); out_be32(mccr_reg, (0 << 16) | ((div - 1) << 17)); out_be32(mccr_reg, (1 << 16) | ((div - 1) << 17)); /* * create the 'struct clk' items of the MCLK's clock subtree * * note that by design we always create all nodes and won't take * shortcuts here, because * - the "internal" MCLK_DIV and MCLK_OUT signal in turn are * selectable inputs to the CFM while those who "actually use" * the PSC/MSCAN/SPDIF (serial drivers et al) need the MCLK * for their bitrate * - in the absence of "aliases" for clocks we need to create * individial 'struct clk' items for whatever might get * referenced or looked up, even if several of those items are * identical from the logical POV (their rate value) * - for easier future maintenance and for better reflection of * the SoC's documentation, it appears appropriate to generate * clock items even for those muxers which actually are NOPs * (those with two inputs of which one is reserved) */ clks[clks_idx_int + MCLK_IDX_MUX0] = mpc512x_clk_muxed( entry->name_mux0, soc_has_mclk_mux0_canin() ? &parent_names_mux0_canin[0] : &parent_names_mux0_spdif[0], ARRAY_SIZE(parent_names_mux0_spdif), mccr_reg, 14, 2); clks[clks_idx_int + MCLK_IDX_EN0] = mpc512x_clk_gated( entry->name_en0, entry->name_mux0, mccr_reg, 16); clks[clks_idx_int + MCLK_IDX_DIV0] = mpc512x_clk_divider( entry->name_div0, entry->name_en0, CLK_SET_RATE_GATE, mccr_reg, 17, 15, 0); if (entry->has_mclk1) { clks[clks_idx_pub] = mpc512x_clk_muxed( entry->name_mclk, &entry->parent_names_mux1[0], ARRAY_SIZE(entry->parent_names_mux1), mccr_reg, 7, 1); } else { clks[clks_idx_pub] = mpc512x_clk_factor( entry->name_mclk, entry->parent_names_mux1[0], 1, 1); } } /* }}} MCLK helpers */ static void mpc512x_clk_setup_clock_tree(struct device_node *np, int busfreq) { int sys_mul, sys_div, ips_div; int mul, div; size_t mclk_idx; int freq; /* * developer's notes: * - consider whether to handle clocks which have both gates and * dividers via intermediates or by means of composites * - fractional dividers appear to not map well to composites * since they can be seen as a fixed multiplier and an * adjustable divider, while composites can only combine at * most one of a mux, div, and gate each into one 'struct clk' * item * - PSC/MSCAN/SPDIF clock generation OTOH already is very * specific and cannot get mapped to composites (at least not * a single one, maybe two of them, but then some of these * intermediate clock signals get referenced elsewhere (e.g. * in the clock frequency measurement, CFM) and thus need * publicly available names * - the current source layout appropriately reflects the * hardware setup, and it works, so it's questionable whether * further changes will result in big enough a benefit */ /* regardless of whether XTAL/OSC exists, have REF created */ mpc512x_clk_setup_ref_clock(np, busfreq, &sys_mul, &sys_div, &ips_div); /* now setup the REF -> SYS -> CSB -> IPS hierarchy */ clks[MPC512x_CLK_SYS] = mpc512x_clk_factor("sys", "ref", sys_mul, sys_div); clks[MPC512x_CLK_CSB] = mpc512x_clk_factor("csb", "sys", 1, 2); clks[MPC512x_CLK_IPS] = mpc512x_clk_divtable("ips", "csb", &clkregs->scfr1, 23, 3, divtab_2346); /* now setup anything below SYS and CSB and IPS */ clks[MPC512x_CLK_DDR_UG] = mpc512x_clk_factor("ddr-ug", "sys", 1, 2); /* * the Reference Manual discusses that for SDHC only even divide * ratios are supported because clock domain synchronization * between 'per' and 'ipg' is broken; * keep the divider's bit 0 cleared (per reset value), and only * allow to setup the divider's bits 7:1, which results in that * only even divide ratios can get configured upon rate changes; * keep the "x4" name because this bit shift hack is an internal * implementation detail, the "fractional divider with quarters" * semantics remains */ clks[MPC512x_CLK_SDHC_x4] = mpc512x_clk_factor("sdhc-x4", "csb", 2, 1); clks[MPC512x_CLK_SDHC_UG] = mpc512x_clk_divider("sdhc-ug", "sdhc-x4", 0, &clkregs->scfr2, 1, 7, CLK_DIVIDER_ONE_BASED); if (soc_has_sdhc2()) { clks[MPC512x_CLK_SDHC2_UG] = mpc512x_clk_divider( "sdhc2-ug", "sdhc-x4", 0, &clkregs->scfr2, 9, 7, CLK_DIVIDER_ONE_BASED); } clks[MPC512x_CLK_DIU_x4] = mpc512x_clk_factor("diu-x4", "csb", 4, 1); clks[MPC512x_CLK_DIU_UG] = mpc512x_clk_divider("diu-ug", "diu-x4", 0, &clkregs->scfr1, 0, 8, CLK_DIVIDER_ONE_BASED); /* * the "power architecture PLL" was setup from data which was * sampled from the reset config word, at this point in time the * configuration can be considered fixed and read only (i.e. no * longer adjustable, or no longer in need of adjustment), which * is why we don't register a PLL here but assume fixed factors */ mul = get_cpmf_mult_x2(); div = 2; /* compensate for the fractional factor */ clks[MPC512x_CLK_E300] = mpc512x_clk_factor("e300", "csb", mul, div); if (soc_has_mbx()) { clks[MPC512x_CLK_MBX_BUS_UG] = mpc512x_clk_factor( "mbx-bus-ug", "csb", 1, 2); clks[MPC512x_CLK_MBX_UG] = mpc512x_clk_divtable( "mbx-ug", "mbx-bus-ug", &clkregs->scfr1, 14, 3, divtab_1234); clks[MPC512x_CLK_MBX_3D_UG] = mpc512x_clk_factor( "mbx-3d-ug", "mbx-ug", 1, 1); } if (soc_has_pci()) { clks[MPC512x_CLK_PCI_UG] = mpc512x_clk_divtable( "pci-ug", "csb", &clkregs->scfr1, 20, 3, divtab_2346); } if (soc_has_nfc_5125()) { /* * XXX TODO implement 5125 NFC clock setup logic, * with high/low period counters in clkregs->scfr3, * currently there are no users so it's ENOIMPL */ clks[MPC512x_CLK_NFC_UG] = ERR_PTR(-ENOTSUPP); } else { clks[MPC512x_CLK_NFC_UG] = mpc512x_clk_divtable( "nfc-ug", "ips", &clkregs->scfr1, 8, 3, divtab_1234); } clks[MPC512x_CLK_LPC_UG] = mpc512x_clk_divtable("lpc-ug", "ips", &clkregs->scfr1, 11, 3, divtab_1234); clks[MPC512x_CLK_LPC] = mpc512x_clk_gated("lpc", "lpc-ug", &clkregs->sccr1, 30); clks[MPC512x_CLK_NFC] = mpc512x_clk_gated("nfc", "nfc-ug", &clkregs->sccr1, 29); if (soc_has_pata()) { clks[MPC512x_CLK_PATA] = mpc512x_clk_gated( "pata", "ips", &clkregs->sccr1, 28); } /* for PSCs there is a "registers" gate and a bitrate MCLK subtree */ for (mclk_idx = 0; mclk_idx < soc_max_pscnum(); mclk_idx++) { char name[12]; snprintf(name, sizeof(name), "psc%d", mclk_idx); clks[MPC512x_CLK_PSC0 + mclk_idx] = mpc512x_clk_gated( name, "ips", &clkregs->sccr1, 27 - mclk_idx); mpc512x_clk_setup_mclk(&mclk_psc_data[mclk_idx], mclk_idx); } clks[MPC512x_CLK_PSC_FIFO] = mpc512x_clk_gated("psc-fifo", "ips", &clkregs->sccr1, 15); if (soc_has_sata()) { clks[MPC512x_CLK_SATA] = mpc512x_clk_gated( "sata", "ips", &clkregs->sccr1, 14); } clks[MPC512x_CLK_FEC] = mpc512x_clk_gated("fec", "ips", &clkregs->sccr1, 13); if (soc_has_pci()) { clks[MPC512x_CLK_PCI] = mpc512x_clk_gated( "pci", "pci-ug", &clkregs->sccr1, 11); } clks[MPC512x_CLK_DDR] = mpc512x_clk_gated("ddr", "ddr-ug", &clkregs->sccr1, 10); if (soc_has_fec2()) { clks[MPC512x_CLK_FEC2] = mpc512x_clk_gated( "fec2", "ips", &clkregs->sccr1, 9); } clks[MPC512x_CLK_DIU] = mpc512x_clk_gated("diu", "diu-ug", &clkregs->sccr2, 31); if (soc_has_axe()) { clks[MPC512x_CLK_AXE] = mpc512x_clk_gated( "axe", "csb", &clkregs->sccr2, 30); } clks[MPC512x_CLK_MEM] = mpc512x_clk_gated("mem", "ips", &clkregs->sccr2, 29); clks[MPC512x_CLK_USB1] = mpc512x_clk_gated("usb1", "csb", &clkregs->sccr2, 28); clks[MPC512x_CLK_USB2] = mpc512x_clk_gated("usb2", "csb", &clkregs->sccr2, 27); clks[MPC512x_CLK_I2C] = mpc512x_clk_gated("i2c", "ips", &clkregs->sccr2, 26); /* MSCAN differs from PSC with just one gate for multiple components */ clks[MPC512x_CLK_BDLC] = mpc512x_clk_gated("bdlc", "ips", &clkregs->sccr2, 25); for (mclk_idx = 0; mclk_idx < ARRAY_SIZE(mclk_mscan_data); mclk_idx++) mpc512x_clk_setup_mclk(&mclk_mscan_data[mclk_idx], mclk_idx); clks[MPC512x_CLK_SDHC] = mpc512x_clk_gated("sdhc", "sdhc-ug", &clkregs->sccr2, 24); /* there is only one SPDIF component, which shares MCLK support code */ if (soc_has_spdif()) { clks[MPC512x_CLK_SPDIF] = mpc512x_clk_gated( "spdif", "ips", &clkregs->sccr2, 23); mpc512x_clk_setup_mclk(&mclk_spdif_data[0], 0); } if (soc_has_mbx()) { clks[MPC512x_CLK_MBX_BUS] = mpc512x_clk_gated( "mbx-bus", "mbx-bus-ug", &clkregs->sccr2, 22); clks[MPC512x_CLK_MBX] = mpc512x_clk_gated( "mbx", "mbx-ug", &clkregs->sccr2, 21); clks[MPC512x_CLK_MBX_3D] = mpc512x_clk_gated( "mbx-3d", "mbx-3d-ug", &clkregs->sccr2, 20); } clks[MPC512x_CLK_IIM] = mpc512x_clk_gated("iim", "csb", &clkregs->sccr2, 19); if (soc_has_viu()) { clks[MPC512x_CLK_VIU] = mpc512x_clk_gated( "viu", "csb", &clkregs->sccr2, 18); } if (soc_has_sdhc2()) { clks[MPC512x_CLK_SDHC2] = mpc512x_clk_gated( "sdhc-2", "sdhc2-ug", &clkregs->sccr2, 17); } if (soc_has_outclk()) { size_t idx; /* used as mclk_idx, just to trim line length */ for (idx = 0; idx < ARRAY_SIZE(mclk_outclk_data); idx++) mpc512x_clk_setup_mclk(&mclk_outclk_data[idx], idx); } /* * externally provided clocks (when implemented in hardware, * device tree may specify values which otherwise were unknown) */ freq = get_freq_from_dt("psc_mclk_in"); if (!freq) freq = 25000000; clks[MPC512x_CLK_PSC_MCLK_IN] = mpc512x_clk_fixed("psc_mclk_in", freq); if (soc_has_mclk_mux0_canin()) { freq = get_freq_from_dt("can_clk_in"); clks[MPC512x_CLK_CAN_CLK_IN] = mpc512x_clk_fixed( "can_clk_in", freq); } else { freq = get_freq_from_dt("spdif_tx_in"); clks[MPC512x_CLK_SPDIF_TX_IN] = mpc512x_clk_fixed( "spdif_tx_in", freq); freq = get_freq_from_dt("spdif_rx_in"); clks[MPC512x_CLK_SPDIF_TX_IN] = mpc512x_clk_fixed( "spdif_rx_in", freq); } /* fixed frequency for AC97, always 24.567MHz */ clks[MPC512x_CLK_AC97] = mpc512x_clk_fixed("ac97", 24567000); /* * pre-enable those "internal" clock items which never get * claimed by any peripheral driver, to not have the clock * subsystem disable them late at startup */ clk_prepare_enable(clks[MPC512x_CLK_DUMMY]); clk_prepare_enable(clks[MPC512x_CLK_E300]); /* PowerPC CPU */ clk_prepare_enable(clks[MPC512x_CLK_DDR]); /* DRAM */ clk_prepare_enable(clks[MPC512x_CLK_MEM]); /* SRAM */ clk_prepare_enable(clks[MPC512x_CLK_IPS]); /* SoC periph */ clk_prepare_enable(clks[MPC512x_CLK_LPC]); /* boot media */ } /* * registers the set of public clocks (those listed in the dt-bindings/ * header file) for OF lookups, keeps the intermediates private to us */ static void mpc5121_clk_register_of_provider(struct device_node *np) { clk_data.clks = clks; clk_data.clk_num = MPC512x_CLK_LAST_PUBLIC + 1; /* _not_ ARRAY_SIZE() */ of_clk_add_provider(np, of_clk_src_onecell_get, &clk_data); } /* * temporary support for the period of time between introduction of CCF * support and the adjustment of peripheral drivers to OF based lookups */ static void mpc5121_clk_provide_migration_support(void) { /* * pre-enable those clock items which are not yet appropriately * acquired by their peripheral driver * * the PCI clock cannot get acquired by its peripheral driver, * because for this platform the driver won't probe(), instead * initialization is done from within the .setup_arch() routine * at a point in time where the clock provider has not been * setup yet and thus isn't available yet * * so we "pre-enable" the clock here, to not have the clock * subsystem automatically disable this item in a late init call * * this PCI clock pre-enable workaround only applies when there * are device tree nodes for PCI and thus the peripheral driver * has attached to bridges, otherwise the PCI clock remains * unused and so it gets disabled */ clk_prepare_enable(clks[MPC512x_CLK_PSC3_MCLK]);/* serial console */ if (of_find_compatible_node(NULL, "pci", "fsl,mpc5121-pci")) clk_prepare_enable(clks[MPC512x_CLK_PCI]); } /* * those macros are not exactly pretty, but they encapsulate a lot * of copy'n'paste heavy code which is even more ugly, and reduce * the potential for inconsistencies in those many code copies */ #define FOR_NODES(compatname) \ for_each_compatible_node(np, NULL, compatname) #define NODE_PREP do { \ of_address_to_resource(np, 0, &res); \ snprintf(devname, sizeof(devname), "%pa.%s", &res.start, np->name); \ } while (0) #define NODE_CHK(clkname, clkitem, regnode, regflag) do { \ struct clk *clk; \ clk = of_clk_get_by_name(np, clkname); \ if (IS_ERR(clk)) { \ clk = clkitem; \ clk_register_clkdev(clk, clkname, devname); \ if (regnode) \ clk_register_clkdev(clk, clkname, np->name); \ did_register |= DID_REG_ ## regflag; \ pr_debug("clock alias name '%s' for dev '%s' pointer %p\n", \ clkname, devname, clk); \ } else { \ clk_put(clk); \ } \ } while (0) /* * register source code provided fallback results for clock lookups, * these get consulted when OF based clock lookup fails (that is in the * case of not yet adjusted device tree data, where clock related specs * are missing) */ static void mpc5121_clk_provide_backwards_compat(void) { enum did_reg_flags { DID_REG_PSC = BIT(0), DID_REG_PSCFIFO = BIT(1), DID_REG_NFC = BIT(2), DID_REG_CAN = BIT(3), DID_REG_I2C = BIT(4), DID_REG_DIU = BIT(5), DID_REG_VIU = BIT(6), DID_REG_FEC = BIT(7), DID_REG_USB = BIT(8), DID_REG_PATA = BIT(9), }; int did_register; struct device_node *np; struct resource res; int idx; char devname[32]; did_register = 0; FOR_NODES(mpc512x_select_psc_compat()) { NODE_PREP; idx = (res.start >> 8) & 0xf; NODE_CHK("ipg", clks[MPC512x_CLK_PSC0 + idx], 0, PSC); NODE_CHK("mclk", clks[MPC512x_CLK_PSC0_MCLK + idx], 0, PSC); } FOR_NODES("fsl,mpc5121-psc-fifo") { NODE_PREP; NODE_CHK("ipg", clks[MPC512x_CLK_PSC_FIFO], 1, PSCFIFO); } FOR_NODES("fsl,mpc5121-nfc") { NODE_PREP; NODE_CHK("ipg", clks[MPC512x_CLK_NFC], 0, NFC); } FOR_NODES("fsl,mpc5121-mscan") { NODE_PREP; idx = 0; idx += (res.start & 0x2000) ? 2 : 0; idx += (res.start & 0x0080) ? 1 : 0; NODE_CHK("ipg", clks[MPC512x_CLK_BDLC], 0, CAN); NODE_CHK("mclk", clks[MPC512x_CLK_MSCAN0_MCLK + idx], 0, CAN); } /* * do register the 'ips', 'sys', and 'ref' names globally * instead of inside each individual CAN node, as there is no * potential for a name conflict (in contrast to 'ipg' and 'mclk') */ if (did_register & DID_REG_CAN) { clk_register_clkdev(clks[MPC512x_CLK_IPS], "ips", NULL); clk_register_clkdev(clks[MPC512x_CLK_SYS], "sys", NULL); clk_register_clkdev(clks[MPC512x_CLK_REF], "ref", NULL); } FOR_NODES("fsl,mpc5121-i2c") { NODE_PREP; NODE_CHK("ipg", clks[MPC512x_CLK_I2C], 0, I2C); } /* * workaround for the fact that the I2C driver does an "anonymous" * lookup (NULL name spec, which yields the first clock spec) for * which we cannot register an alias -- a _global_ 'ipg' alias that * is not bound to any device name and returns the I2C clock item * is not a good idea * * so we have the lookup in the peripheral driver fail, which is * silent and non-fatal, and pre-enable the clock item here such * that register access is possible * * see commit b3bfce2b "i2c: mpc: cleanup clock API use" for * details, adjusting s/NULL/"ipg"/ in i2c-mpc.c would make this * workaround obsolete */ if (did_register & DID_REG_I2C) clk_prepare_enable(clks[MPC512x_CLK_I2C]); FOR_NODES("fsl,mpc5121-diu") { NODE_PREP; NODE_CHK("ipg", clks[MPC512x_CLK_DIU], 1, DIU); } FOR_NODES("fsl,mpc5121-viu") { NODE_PREP; NODE_CHK("ipg", clks[MPC512x_CLK_VIU], 0, VIU); } /* * note that 2771399a "fs_enet: cleanup clock API use" did use the * "per" string for the clock lookup in contrast to the "ipg" name * which most other nodes are using -- this is not a fatal thing * but just something to keep in mind when doing compatibility * registration, it's a non-issue with up-to-date device tree data */ FOR_NODES("fsl,mpc5121-fec") { NODE_PREP; NODE_CHK("per", clks[MPC512x_CLK_FEC], 0, FEC); } FOR_NODES("fsl,mpc5121-fec-mdio") { NODE_PREP; NODE_CHK("per", clks[MPC512x_CLK_FEC], 0, FEC); } /* * MPC5125 has two FECs: FEC1 at 0x2800, FEC2 at 0x4800; * the clock items don't "form an array" since FEC2 was * added only later and was not allowed to shift all other * clock item indices, so the numbers aren't adjacent */ FOR_NODES("fsl,mpc5125-fec") { NODE_PREP; if (res.start & 0x4000) idx = MPC512x_CLK_FEC2; else idx = MPC512x_CLK_FEC; NODE_CHK("per", clks[idx], 0, FEC); } FOR_NODES("fsl,mpc5121-usb2-dr") { NODE_PREP; idx = (res.start & 0x4000) ? 1 : 0; NODE_CHK("ipg", clks[MPC512x_CLK_USB1 + idx], 0, USB); } FOR_NODES("fsl,mpc5121-pata") { NODE_PREP; NODE_CHK("ipg", clks[MPC512x_CLK_PATA], 0, PATA); } /* * try to collapse diagnostics into a single line of output yet * provide a full list of what is missing, to avoid noise in the * absence of up-to-date device tree data -- backwards * compatibility to old DTBs is a requirement, updates may be * desirable or preferrable but are not at all mandatory */ if (did_register) { pr_notice("device tree lacks clock specs, adding fallbacks (0x%x,%s%s%s%s%s%s%s%s%s%s)\n", did_register, (did_register & DID_REG_PSC) ? " PSC" : "", (did_register & DID_REG_PSCFIFO) ? " PSCFIFO" : "", (did_register & DID_REG_NFC) ? " NFC" : "", (did_register & DID_REG_CAN) ? " CAN" : "", (did_register & DID_REG_I2C) ? " I2C" : "", (did_register & DID_REG_DIU) ? " DIU" : "", (did_register & DID_REG_VIU) ? " VIU" : "", (did_register & DID_REG_FEC) ? " FEC" : "", (did_register & DID_REG_USB) ? " USB" : "", (did_register & DID_REG_PATA) ? " PATA" : ""); } else { pr_debug("device tree has clock specs, no fallbacks added\n"); } } /* * The "fixed-clock" nodes (which includes the oscillator node if the board's * DT provides one) has already been scanned by the of_clk_init() in * time_init(). */ int __init mpc5121_clk_init(void) { struct device_node *clk_np; int busfreq; /* map the clock control registers */ clk_np = of_find_compatible_node(NULL, NULL, "fsl,mpc5121-clock"); if (!clk_np) return -ENODEV; clkregs = of_iomap(clk_np, 0); WARN_ON(!clkregs); /* determine the SoC variant we run on */ mpc512x_clk_determine_soc(); /* invalidate all not yet registered clock slots */ mpc512x_clk_preset_data(); /* * add a dummy clock for those situations where a clock spec is * required yet no real clock is involved */ clks[MPC512x_CLK_DUMMY] = mpc512x_clk_fixed("dummy", 0); /* * have all the real nodes in the clock tree populated from REF * down to all leaves, either starting from the OSC node or from * a REF root that was created from the IPS bus clock input */ busfreq = get_freq_from_dt("bus-frequency"); mpc512x_clk_setup_clock_tree(clk_np, busfreq); /* register as an OF clock provider */ mpc5121_clk_register_of_provider(clk_np); /* * unbreak not yet adjusted peripheral drivers during migration * towards fully operational common clock support, and allow * operation in the absence of clock related device tree specs */ mpc5121_clk_provide_migration_support(); mpc5121_clk_provide_backwards_compat(); return 0; }