/** * inode.c - NTFS kernel inode handling. * * Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc. * * This program/include file is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as published * by the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program/include file is distributed in the hope that it will be * useful, but WITHOUT ANY WARRANTY; without even the implied warranty * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program (in the main directory of the Linux-NTFS * distribution in the file COPYING); if not, write to the Free Software * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include #include #include #include #include #include "aops.h" #include "attrib.h" #include "bitmap.h" #include "dir.h" #include "debug.h" #include "inode.h" #include "lcnalloc.h" #include "malloc.h" #include "mft.h" #include "time.h" #include "ntfs.h" /** * ntfs_test_inode - compare two (possibly fake) inodes for equality * @vi: vfs inode which to test * @na: ntfs attribute which is being tested with * * Compare the ntfs attribute embedded in the ntfs specific part of the vfs * inode @vi for equality with the ntfs attribute @na. * * If searching for the normal file/directory inode, set @na->type to AT_UNUSED. * @na->name and @na->name_len are then ignored. * * Return 1 if the attributes match and 0 if not. * * NOTE: This function runs with the inode_hash_lock spin lock held so it is not * allowed to sleep. */ int ntfs_test_inode(struct inode *vi, ntfs_attr *na) { ntfs_inode *ni; if (vi->i_ino != na->mft_no) return 0; ni = NTFS_I(vi); /* If !NInoAttr(ni), @vi is a normal file or directory inode. */ if (likely(!NInoAttr(ni))) { /* If not looking for a normal inode this is a mismatch. */ if (unlikely(na->type != AT_UNUSED)) return 0; } else { /* A fake inode describing an attribute. */ if (ni->type != na->type) return 0; if (ni->name_len != na->name_len) return 0; if (na->name_len && memcmp(ni->name, na->name, na->name_len * sizeof(ntfschar))) return 0; } /* Match! */ return 1; } /** * ntfs_init_locked_inode - initialize an inode * @vi: vfs inode to initialize * @na: ntfs attribute which to initialize @vi to * * Initialize the vfs inode @vi with the values from the ntfs attribute @na in * order to enable ntfs_test_inode() to do its work. * * If initializing the normal file/directory inode, set @na->type to AT_UNUSED. * In that case, @na->name and @na->name_len should be set to NULL and 0, * respectively. Although that is not strictly necessary as * ntfs_read_locked_inode() will fill them in later. * * Return 0 on success and -errno on error. * * NOTE: This function runs with the inode->i_lock spin lock held so it is not * allowed to sleep. (Hence the GFP_ATOMIC allocation.) */ static int ntfs_init_locked_inode(struct inode *vi, ntfs_attr *na) { ntfs_inode *ni = NTFS_I(vi); vi->i_ino = na->mft_no; ni->type = na->type; if (na->type == AT_INDEX_ALLOCATION) NInoSetMstProtected(ni); ni->name = na->name; ni->name_len = na->name_len; /* If initializing a normal inode, we are done. */ if (likely(na->type == AT_UNUSED)) { BUG_ON(na->name); BUG_ON(na->name_len); return 0; } /* It is a fake inode. */ NInoSetAttr(ni); /* * We have I30 global constant as an optimization as it is the name * in >99.9% of named attributes! The other <0.1% incur a GFP_ATOMIC * allocation but that is ok. And most attributes are unnamed anyway, * thus the fraction of named attributes with name != I30 is actually * absolutely tiny. */ if (na->name_len && na->name != I30) { unsigned int i; BUG_ON(!na->name); i = na->name_len * sizeof(ntfschar); ni->name = kmalloc(i + sizeof(ntfschar), GFP_ATOMIC); if (!ni->name) return -ENOMEM; memcpy(ni->name, na->name, i); ni->name[na->name_len] = 0; } return 0; } typedef int (*set_t)(struct inode *, void *); static int ntfs_read_locked_inode(struct inode *vi); static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi); static int ntfs_read_locked_index_inode(struct inode *base_vi, struct inode *vi); /** * ntfs_iget - obtain a struct inode corresponding to a specific normal inode * @sb: super block of mounted volume * @mft_no: mft record number / inode number to obtain * * Obtain the struct inode corresponding to a specific normal inode (i.e. a * file or directory). * * If the inode is in the cache, it is just returned with an increased * reference count. Otherwise, a new struct inode is allocated and initialized, * and finally ntfs_read_locked_inode() is called to read in the inode and * fill in the remainder of the inode structure. * * Return the struct inode on success. Check the return value with IS_ERR() and * if true, the function failed and the error code is obtained from PTR_ERR(). */ struct inode *ntfs_iget(struct super_block *sb, unsigned long mft_no) { struct inode *vi; int err; ntfs_attr na; na.mft_no = mft_no; na.type = AT_UNUSED; na.name = NULL; na.name_len = 0; vi = iget5_locked(sb, mft_no, (test_t)ntfs_test_inode, (set_t)ntfs_init_locked_inode, &na); if (unlikely(!vi)) return ERR_PTR(-ENOMEM); err = 0; /* If this is a freshly allocated inode, need to read it now. */ if (vi->i_state & I_NEW) { err = ntfs_read_locked_inode(vi); unlock_new_inode(vi); } /* * There is no point in keeping bad inodes around if the failure was * due to ENOMEM. We want to be able to retry again later. */ if (unlikely(err == -ENOMEM)) { iput(vi); vi = ERR_PTR(err); } return vi; } /** * ntfs_attr_iget - obtain a struct inode corresponding to an attribute * @base_vi: vfs base inode containing the attribute * @type: attribute type * @name: Unicode name of the attribute (NULL if unnamed) * @name_len: length of @name in Unicode characters (0 if unnamed) * * Obtain the (fake) struct inode corresponding to the attribute specified by * @type, @name, and @name_len, which is present in the base mft record * specified by the vfs inode @base_vi. * * If the attribute inode is in the cache, it is just returned with an * increased reference count. Otherwise, a new struct inode is allocated and * initialized, and finally ntfs_read_locked_attr_inode() is called to read the * attribute and fill in the inode structure. * * Note, for index allocation attributes, you need to use ntfs_index_iget() * instead of ntfs_attr_iget() as working with indices is a lot more complex. * * Return the struct inode of the attribute inode on success. Check the return * value with IS_ERR() and if true, the function failed and the error code is * obtained from PTR_ERR(). */ struct inode *ntfs_attr_iget(struct inode *base_vi, ATTR_TYPE type, ntfschar *name, u32 name_len) { struct inode *vi; int err; ntfs_attr na; /* Make sure no one calls ntfs_attr_iget() for indices. */ BUG_ON(type == AT_INDEX_ALLOCATION); na.mft_no = base_vi->i_ino; na.type = type; na.name = name; na.name_len = name_len; vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode, (set_t)ntfs_init_locked_inode, &na); if (unlikely(!vi)) return ERR_PTR(-ENOMEM); err = 0; /* If this is a freshly allocated inode, need to read it now. */ if (vi->i_state & I_NEW) { err = ntfs_read_locked_attr_inode(base_vi, vi); unlock_new_inode(vi); } /* * There is no point in keeping bad attribute inodes around. This also * simplifies things in that we never need to check for bad attribute * inodes elsewhere. */ if (unlikely(err)) { iput(vi); vi = ERR_PTR(err); } return vi; } /** * ntfs_index_iget - obtain a struct inode corresponding to an index * @base_vi: vfs base inode containing the index related attributes * @name: Unicode name of the index * @name_len: length of @name in Unicode characters * * Obtain the (fake) struct inode corresponding to the index specified by @name * and @name_len, which is present in the base mft record specified by the vfs * inode @base_vi. * * If the index inode is in the cache, it is just returned with an increased * reference count. Otherwise, a new struct inode is allocated and * initialized, and finally ntfs_read_locked_index_inode() is called to read * the index related attributes and fill in the inode structure. * * Return the struct inode of the index inode on success. Check the return * value with IS_ERR() and if true, the function failed and the error code is * obtained from PTR_ERR(). */ struct inode *ntfs_index_iget(struct inode *base_vi, ntfschar *name, u32 name_len) { struct inode *vi; int err; ntfs_attr na; na.mft_no = base_vi->i_ino; na.type = AT_INDEX_ALLOCATION; na.name = name; na.name_len = name_len; vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode, (set_t)ntfs_init_locked_inode, &na); if (unlikely(!vi)) return ERR_PTR(-ENOMEM); err = 0; /* If this is a freshly allocated inode, need to read it now. */ if (vi->i_state & I_NEW) { err = ntfs_read_locked_index_inode(base_vi, vi); unlock_new_inode(vi); } /* * There is no point in keeping bad index inodes around. This also * simplifies things in that we never need to check for bad index * inodes elsewhere. */ if (unlikely(err)) { iput(vi); vi = ERR_PTR(err); } return vi; } struct inode *ntfs_alloc_big_inode(struct super_block *sb) { ntfs_inode *ni; ntfs_debug("Entering."); ni = kmem_cache_alloc(ntfs_big_inode_cache, GFP_NOFS); if (likely(ni != NULL)) { ni->state = 0; return VFS_I(ni); } ntfs_error(sb, "Allocation of NTFS big inode structure failed."); return NULL; } static void ntfs_i_callback(struct rcu_head *head) { struct inode *inode = container_of(head, struct inode, i_rcu); kmem_cache_free(ntfs_big_inode_cache, NTFS_I(inode)); } void ntfs_destroy_big_inode(struct inode *inode) { ntfs_inode *ni = NTFS_I(inode); ntfs_debug("Entering."); BUG_ON(ni->page); if (!atomic_dec_and_test(&ni->count)) BUG(); call_rcu(&inode->i_rcu, ntfs_i_callback); } static inline ntfs_inode *ntfs_alloc_extent_inode(void) { ntfs_inode *ni; ntfs_debug("Entering."); ni = kmem_cache_alloc(ntfs_inode_cache, GFP_NOFS); if (likely(ni != NULL)) { ni->state = 0; return ni; } ntfs_error(NULL, "Allocation of NTFS inode structure failed."); return NULL; } static void ntfs_destroy_extent_inode(ntfs_inode *ni) { ntfs_debug("Entering."); BUG_ON(ni->page); if (!atomic_dec_and_test(&ni->count)) BUG(); kmem_cache_free(ntfs_inode_cache, ni); } /* * The attribute runlist lock has separate locking rules from the * normal runlist lock, so split the two lock-classes: */ static struct lock_class_key attr_list_rl_lock_class; /** * __ntfs_init_inode - initialize ntfs specific part of an inode * @sb: super block of mounted volume * @ni: freshly allocated ntfs inode which to initialize * * Initialize an ntfs inode to defaults. * * NOTE: ni->mft_no, ni->state, ni->type, ni->name, and ni->name_len are left * untouched. Make sure to initialize them elsewhere. * * Return zero on success and -ENOMEM on error. */ void __ntfs_init_inode(struct super_block *sb, ntfs_inode *ni) { ntfs_debug("Entering."); rwlock_init(&ni->size_lock); ni->initialized_size = ni->allocated_size = 0; ni->seq_no = 0; atomic_set(&ni->count, 1); ni->vol = NTFS_SB(sb); ntfs_init_runlist(&ni->runlist); mutex_init(&ni->mrec_lock); ni->page = NULL; ni->page_ofs = 0; ni->attr_list_size = 0; ni->attr_list = NULL; ntfs_init_runlist(&ni->attr_list_rl); lockdep_set_class(&ni->attr_list_rl.lock, &attr_list_rl_lock_class); ni->itype.index.block_size = 0; ni->itype.index.vcn_size = 0; ni->itype.index.collation_rule = 0; ni->itype.index.block_size_bits = 0; ni->itype.index.vcn_size_bits = 0; mutex_init(&ni->extent_lock); ni->nr_extents = 0; ni->ext.base_ntfs_ino = NULL; } /* * Extent inodes get MFT-mapped in a nested way, while the base inode * is still mapped. Teach this nesting to the lock validator by creating * a separate class for nested inode's mrec_lock's: */ static struct lock_class_key extent_inode_mrec_lock_key; inline ntfs_inode *ntfs_new_extent_inode(struct super_block *sb, unsigned long mft_no) { ntfs_inode *ni = ntfs_alloc_extent_inode(); ntfs_debug("Entering."); if (likely(ni != NULL)) { __ntfs_init_inode(sb, ni); lockdep_set_class(&ni->mrec_lock, &extent_inode_mrec_lock_key); ni->mft_no = mft_no; ni->type = AT_UNUSED; ni->name = NULL; ni->name_len = 0; } return ni; } /** * ntfs_is_extended_system_file - check if a file is in the $Extend directory * @ctx: initialized attribute search context * * Search all file name attributes in the inode described by the attribute * search context @ctx and check if any of the names are in the $Extend system * directory. * * Return values: * 1: file is in $Extend directory * 0: file is not in $Extend directory * -errno: failed to determine if the file is in the $Extend directory */ static int ntfs_is_extended_system_file(ntfs_attr_search_ctx *ctx) { int nr_links, err; /* Restart search. */ ntfs_attr_reinit_search_ctx(ctx); /* Get number of hard links. */ nr_links = le16_to_cpu(ctx->mrec->link_count); /* Loop through all hard links. */ while (!(err = ntfs_attr_lookup(AT_FILE_NAME, NULL, 0, 0, 0, NULL, 0, ctx))) { FILE_NAME_ATTR *file_name_attr; ATTR_RECORD *attr = ctx->attr; u8 *p, *p2; nr_links--; /* * Maximum sanity checking as we are called on an inode that * we suspect might be corrupt. */ p = (u8*)attr + le32_to_cpu(attr->length); if (p < (u8*)ctx->mrec || (u8*)p > (u8*)ctx->mrec + le32_to_cpu(ctx->mrec->bytes_in_use)) { err_corrupt_attr: ntfs_error(ctx->ntfs_ino->vol->sb, "Corrupt file name " "attribute. You should run chkdsk."); return -EIO; } if (attr->non_resident) { ntfs_error(ctx->ntfs_ino->vol->sb, "Non-resident file " "name. You should run chkdsk."); return -EIO; } if (attr->flags) { ntfs_error(ctx->ntfs_ino->vol->sb, "File name with " "invalid flags. You should run " "chkdsk."); return -EIO; } if (!(attr->data.resident.flags & RESIDENT_ATTR_IS_INDEXED)) { ntfs_error(ctx->ntfs_ino->vol->sb, "Unindexed file " "name. You should run chkdsk."); return -EIO; } file_name_attr = (FILE_NAME_ATTR*)((u8*)attr + le16_to_cpu(attr->data.resident.value_offset)); p2 = (u8 *)file_name_attr + le32_to_cpu(attr->data.resident.value_length); if (p2 < (u8*)attr || p2 > p) goto err_corrupt_attr; /* This attribute is ok, but is it in the $Extend directory? */ if (MREF_LE(file_name_attr->parent_directory) == FILE_Extend) return 1; /* YES, it's an extended system file. */ } if (unlikely(err != -ENOENT)) return err; if (unlikely(nr_links)) { ntfs_error(ctx->ntfs_ino->vol->sb, "Inode hard link count " "doesn't match number of name attributes. You " "should run chkdsk."); return -EIO; } return 0; /* NO, it is not an extended system file. */ } /** * ntfs_read_locked_inode - read an inode from its device * @vi: inode to read * * ntfs_read_locked_inode() is called from ntfs_iget() to read the inode * described by @vi into memory from the device. * * The only fields in @vi that we need to/can look at when the function is * called are i_sb, pointing to the mounted device's super block, and i_ino, * the number of the inode to load. * * ntfs_read_locked_inode() maps, pins and locks the mft record number i_ino * for reading and sets up the necessary @vi fields as well as initializing * the ntfs inode. * * Q: What locks are held when the function is called? * A: i_state has I_NEW set, hence the inode is locked, also * i_count is set to 1, so it is not going to go away * i_flags is set to 0 and we have no business touching it. Only an ioctl() * is allowed to write to them. We should of course be honouring them but * we need to do that using the IS_* macros defined in include/linux/fs.h. * In any case ntfs_read_locked_inode() has nothing to do with i_flags. * * Return 0 on success and -errno on error. In the error case, the inode will * have had make_bad_inode() executed on it. */ static int ntfs_read_locked_inode(struct inode *vi) { ntfs_volume *vol = NTFS_SB(vi->i_sb); ntfs_inode *ni; struct inode *bvi; MFT_RECORD *m; ATTR_RECORD *a; STANDARD_INFORMATION *si; ntfs_attr_search_ctx *ctx; int err = 0; ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino); /* Setup the generic vfs inode parts now. */ vi->i_uid = vol->uid; vi->i_gid = vol->gid; vi->i_mode = 0; /* * Initialize the ntfs specific part of @vi special casing * FILE_MFT which we need to do at mount time. */ if (vi->i_ino != FILE_MFT) ntfs_init_big_inode(vi); ni = NTFS_I(vi); m = map_mft_record(ni); if (IS_ERR(m)) { err = PTR_ERR(m); goto err_out; } ctx = ntfs_attr_get_search_ctx(ni, m); if (!ctx) { err = -ENOMEM; goto unm_err_out; } if (!(m->flags & MFT_RECORD_IN_USE)) { ntfs_error(vi->i_sb, "Inode is not in use!"); goto unm_err_out; } if (m->base_mft_record) { ntfs_error(vi->i_sb, "Inode is an extent inode!"); goto unm_err_out; } /* Transfer information from mft record into vfs and ntfs inodes. */ vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number); /* * FIXME: Keep in mind that link_count is two for files which have both * a long file name and a short file name as separate entries, so if * we are hiding short file names this will be too high. Either we need * to account for the short file names by subtracting them or we need * to make sure we delete files even though i_nlink is not zero which * might be tricky due to vfs interactions. Need to think about this * some more when implementing the unlink command. */ set_nlink(vi, le16_to_cpu(m->link_count)); /* * FIXME: Reparse points can have the directory bit set even though * they would be S_IFLNK. Need to deal with this further below when we * implement reparse points / symbolic links but it will do for now. * Also if not a directory, it could be something else, rather than * a regular file. But again, will do for now. */ /* Everyone gets all permissions. */ vi->i_mode |= S_IRWXUGO; /* If read-only, no one gets write permissions. */ if (IS_RDONLY(vi)) vi->i_mode &= ~S_IWUGO; if (m->flags & MFT_RECORD_IS_DIRECTORY) { vi->i_mode |= S_IFDIR; /* * Apply the directory permissions mask set in the mount * options. */ vi->i_mode &= ~vol->dmask; /* Things break without this kludge! */ if (vi->i_nlink > 1) set_nlink(vi, 1); } else { vi->i_mode |= S_IFREG; /* Apply the file permissions mask set in the mount options. */ vi->i_mode &= ~vol->fmask; } /* * Find the standard information attribute in the mft record. At this * stage we haven't setup the attribute list stuff yet, so this could * in fact fail if the standard information is in an extent record, but * I don't think this actually ever happens. */ err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 0, 0, NULL, 0, ctx); if (unlikely(err)) { if (err == -ENOENT) { /* * TODO: We should be performing a hot fix here (if the * recover mount option is set) by creating a new * attribute. */ ntfs_error(vi->i_sb, "$STANDARD_INFORMATION attribute " "is missing."); } goto unm_err_out; } a = ctx->attr; /* Get the standard information attribute value. */ if ((u8 *)a + le16_to_cpu(a->data.resident.value_offset) + le32_to_cpu(a->data.resident.value_length) > (u8 *)ctx->mrec + vol->mft_record_size) { ntfs_error(vi->i_sb, "Corrupt standard information attribute in inode."); goto unm_err_out; } si = (STANDARD_INFORMATION*)((u8*)a + le16_to_cpu(a->data.resident.value_offset)); /* Transfer information from the standard information into vi. */ /* * Note: The i_?times do not quite map perfectly onto the NTFS times, * but they are close enough, and in the end it doesn't really matter * that much... */ /* * mtime is the last change of the data within the file. Not changed * when only metadata is changed, e.g. a rename doesn't affect mtime. */ vi->i_mtime = ntfs2utc(si->last_data_change_time); /* * ctime is the last change of the metadata of the file. This obviously * always changes, when mtime is changed. ctime can be changed on its * own, mtime is then not changed, e.g. when a file is renamed. */ vi->i_ctime = ntfs2utc(si->last_mft_change_time); /* * Last access to the data within the file. Not changed during a rename * for example but changed whenever the file is written to. */ vi->i_atime = ntfs2utc(si->last_access_time); /* Find the attribute list attribute if present. */ ntfs_attr_reinit_search_ctx(ctx); err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx); if (err) { if (unlikely(err != -ENOENT)) { ntfs_error(vi->i_sb, "Failed to lookup attribute list " "attribute."); goto unm_err_out; } } else /* if (!err) */ { if (vi->i_ino == FILE_MFT) goto skip_attr_list_load; ntfs_debug("Attribute list found in inode 0x%lx.", vi->i_ino); NInoSetAttrList(ni); a = ctx->attr; if (a->flags & ATTR_COMPRESSION_MASK) { ntfs_error(vi->i_sb, "Attribute list attribute is " "compressed."); goto unm_err_out; } if (a->flags & ATTR_IS_ENCRYPTED || a->flags & ATTR_IS_SPARSE) { if (a->non_resident) { ntfs_error(vi->i_sb, "Non-resident attribute " "list attribute is encrypted/" "sparse."); goto unm_err_out; } ntfs_warning(vi->i_sb, "Resident attribute list " "attribute in inode 0x%lx is marked " "encrypted/sparse which is not true. " "However, Windows allows this and " "chkdsk does not detect or correct it " "so we will just ignore the invalid " "flags and pretend they are not set.", vi->i_ino); } /* Now allocate memory for the attribute list. */ ni->attr_list_size = (u32)ntfs_attr_size(a); ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size); if (!ni->attr_list) { ntfs_error(vi->i_sb, "Not enough memory to allocate " "buffer for attribute list."); err = -ENOMEM; goto unm_err_out; } if (a->non_resident) { NInoSetAttrListNonResident(ni); if (a->data.non_resident.lowest_vcn) { ntfs_error(vi->i_sb, "Attribute list has non " "zero lowest_vcn."); goto unm_err_out; } /* * Setup the runlist. No need for locking as we have * exclusive access to the inode at this time. */ ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol, a, NULL); if (IS_ERR(ni->attr_list_rl.rl)) { err = PTR_ERR(ni->attr_list_rl.rl); ni->attr_list_rl.rl = NULL; ntfs_error(vi->i_sb, "Mapping pairs " "decompression failed."); goto unm_err_out; } /* Now load the attribute list. */ if ((err = load_attribute_list(vol, &ni->attr_list_rl, ni->attr_list, ni->attr_list_size, sle64_to_cpu(a->data.non_resident. initialized_size)))) { ntfs_error(vi->i_sb, "Failed to load " "attribute list attribute."); goto unm_err_out; } } else /* if (!a->non_resident) */ { if ((u8*)a + le16_to_cpu(a->data.resident.value_offset) + le32_to_cpu( a->data.resident.value_length) > (u8*)ctx->mrec + vol->mft_record_size) { ntfs_error(vi->i_sb, "Corrupt attribute list " "in inode."); goto unm_err_out; } /* Now copy the attribute list. */ memcpy(ni->attr_list, (u8*)a + le16_to_cpu( a->data.resident.value_offset), le32_to_cpu( a->data.resident.value_length)); } } skip_attr_list_load: /* * If an attribute list is present we now have the attribute list value * in ntfs_ino->attr_list and it is ntfs_ino->attr_list_size bytes. */ if (S_ISDIR(vi->i_mode)) { loff_t bvi_size; ntfs_inode *bni; INDEX_ROOT *ir; u8 *ir_end, *index_end; /* It is a directory, find index root attribute. */ ntfs_attr_reinit_search_ctx(ctx); err = ntfs_attr_lookup(AT_INDEX_ROOT, I30, 4, CASE_SENSITIVE, 0, NULL, 0, ctx); if (unlikely(err)) { if (err == -ENOENT) { // FIXME: File is corrupt! Hot-fix with empty // index root attribute if recovery option is // set. ntfs_error(vi->i_sb, "$INDEX_ROOT attribute " "is missing."); } goto unm_err_out; } a = ctx->attr; /* Set up the state. */ if (unlikely(a->non_resident)) { ntfs_error(vol->sb, "$INDEX_ROOT attribute is not " "resident."); goto unm_err_out; } /* Ensure the attribute name is placed before the value. */ if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= le16_to_cpu(a->data.resident.value_offset)))) { ntfs_error(vol->sb, "$INDEX_ROOT attribute name is " "placed after the attribute value."); goto unm_err_out; } /* * Compressed/encrypted index root just means that the newly * created files in that directory should be created compressed/ * encrypted. However index root cannot be both compressed and * encrypted. */ if (a->flags & ATTR_COMPRESSION_MASK) NInoSetCompressed(ni); if (a->flags & ATTR_IS_ENCRYPTED) { if (a->flags & ATTR_COMPRESSION_MASK) { ntfs_error(vi->i_sb, "Found encrypted and " "compressed attribute."); goto unm_err_out; } NInoSetEncrypted(ni); } if (a->flags & ATTR_IS_SPARSE) NInoSetSparse(ni); ir = (INDEX_ROOT*)((u8*)a + le16_to_cpu(a->data.resident.value_offset)); ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length); if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) { ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is " "corrupt."); goto unm_err_out; } index_end = (u8*)&ir->index + le32_to_cpu(ir->index.index_length); if (index_end > ir_end) { ntfs_error(vi->i_sb, "Directory index is corrupt."); goto unm_err_out; } if (ir->type != AT_FILE_NAME) { ntfs_error(vi->i_sb, "Indexed attribute is not " "$FILE_NAME."); goto unm_err_out; } if (ir->collation_rule != COLLATION_FILE_NAME) { ntfs_error(vi->i_sb, "Index collation rule is not " "COLLATION_FILE_NAME."); goto unm_err_out; } ni->itype.index.collation_rule = ir->collation_rule; ni->itype.index.block_size = le32_to_cpu(ir->index_block_size); if (ni->itype.index.block_size & (ni->itype.index.block_size - 1)) { ntfs_error(vi->i_sb, "Index block size (%u) is not a " "power of two.", ni->itype.index.block_size); goto unm_err_out; } if (ni->itype.index.block_size > PAGE_SIZE) { ntfs_error(vi->i_sb, "Index block size (%u) > " "PAGE_SIZE (%ld) is not " "supported. Sorry.", ni->itype.index.block_size, PAGE_SIZE); err = -EOPNOTSUPP; goto unm_err_out; } if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) { ntfs_error(vi->i_sb, "Index block size (%u) < " "NTFS_BLOCK_SIZE (%i) is not " "supported. Sorry.", ni->itype.index.block_size, NTFS_BLOCK_SIZE); err = -EOPNOTSUPP; goto unm_err_out; } ni->itype.index.block_size_bits = ffs(ni->itype.index.block_size) - 1; /* Determine the size of a vcn in the directory index. */ if (vol->cluster_size <= ni->itype.index.block_size) { ni->itype.index.vcn_size = vol->cluster_size; ni->itype.index.vcn_size_bits = vol->cluster_size_bits; } else { ni->itype.index.vcn_size = vol->sector_size; ni->itype.index.vcn_size_bits = vol->sector_size_bits; } /* Setup the index allocation attribute, even if not present. */ NInoSetMstProtected(ni); ni->type = AT_INDEX_ALLOCATION; ni->name = I30; ni->name_len = 4; if (!(ir->index.flags & LARGE_INDEX)) { /* No index allocation. */ vi->i_size = ni->initialized_size = ni->allocated_size = 0; /* We are done with the mft record, so we release it. */ ntfs_attr_put_search_ctx(ctx); unmap_mft_record(ni); m = NULL; ctx = NULL; goto skip_large_dir_stuff; } /* LARGE_INDEX: Index allocation present. Setup state. */ NInoSetIndexAllocPresent(ni); /* Find index allocation attribute. */ ntfs_attr_reinit_search_ctx(ctx); err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, I30, 4, CASE_SENSITIVE, 0, NULL, 0, ctx); if (unlikely(err)) { if (err == -ENOENT) ntfs_error(vi->i_sb, "$INDEX_ALLOCATION " "attribute is not present but " "$INDEX_ROOT indicated it is."); else ntfs_error(vi->i_sb, "Failed to lookup " "$INDEX_ALLOCATION " "attribute."); goto unm_err_out; } a = ctx->attr; if (!a->non_resident) { ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " "is resident."); goto unm_err_out; } /* * Ensure the attribute name is placed before the mapping pairs * array. */ if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= le16_to_cpu( a->data.non_resident.mapping_pairs_offset)))) { ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name " "is placed after the mapping pairs " "array."); goto unm_err_out; } if (a->flags & ATTR_IS_ENCRYPTED) { ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " "is encrypted."); goto unm_err_out; } if (a->flags & ATTR_IS_SPARSE) { ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " "is sparse."); goto unm_err_out; } if (a->flags & ATTR_COMPRESSION_MASK) { ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " "is compressed."); goto unm_err_out; } if (a->data.non_resident.lowest_vcn) { ntfs_error(vi->i_sb, "First extent of " "$INDEX_ALLOCATION attribute has non " "zero lowest_vcn."); goto unm_err_out; } vi->i_size = sle64_to_cpu(a->data.non_resident.data_size); ni->initialized_size = sle64_to_cpu( a->data.non_resident.initialized_size); ni->allocated_size = sle64_to_cpu( a->data.non_resident.allocated_size); /* * We are done with the mft record, so we release it. Otherwise * we would deadlock in ntfs_attr_iget(). */ ntfs_attr_put_search_ctx(ctx); unmap_mft_record(ni); m = NULL; ctx = NULL; /* Get the index bitmap attribute inode. */ bvi = ntfs_attr_iget(vi, AT_BITMAP, I30, 4); if (IS_ERR(bvi)) { ntfs_error(vi->i_sb, "Failed to get bitmap attribute."); err = PTR_ERR(bvi); goto unm_err_out; } bni = NTFS_I(bvi); if (NInoCompressed(bni) || NInoEncrypted(bni) || NInoSparse(bni)) { ntfs_error(vi->i_sb, "$BITMAP attribute is compressed " "and/or encrypted and/or sparse."); goto iput_unm_err_out; } /* Consistency check bitmap size vs. index allocation size. */ bvi_size = i_size_read(bvi); if ((bvi_size << 3) < (vi->i_size >> ni->itype.index.block_size_bits)) { ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) " "for index allocation (0x%llx).", bvi_size << 3, vi->i_size); goto iput_unm_err_out; } /* No longer need the bitmap attribute inode. */ iput(bvi); skip_large_dir_stuff: /* Setup the operations for this inode. */ vi->i_op = &ntfs_dir_inode_ops; vi->i_fop = &ntfs_dir_ops; vi->i_mapping->a_ops = &ntfs_mst_aops; } else { /* It is a file. */ ntfs_attr_reinit_search_ctx(ctx); /* Setup the data attribute, even if not present. */ ni->type = AT_DATA; ni->name = NULL; ni->name_len = 0; /* Find first extent of the unnamed data attribute. */ err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, 0, NULL, 0, ctx); if (unlikely(err)) { vi->i_size = ni->initialized_size = ni->allocated_size = 0; if (err != -ENOENT) { ntfs_error(vi->i_sb, "Failed to lookup $DATA " "attribute."); goto unm_err_out; } /* * FILE_Secure does not have an unnamed $DATA * attribute, so we special case it here. */ if (vi->i_ino == FILE_Secure) goto no_data_attr_special_case; /* * Most if not all the system files in the $Extend * system directory do not have unnamed data * attributes so we need to check if the parent * directory of the file is FILE_Extend and if it is * ignore this error. To do this we need to get the * name of this inode from the mft record as the name * contains the back reference to the parent directory. */ if (ntfs_is_extended_system_file(ctx) > 0) goto no_data_attr_special_case; // FIXME: File is corrupt! Hot-fix with empty data // attribute if recovery option is set. ntfs_error(vi->i_sb, "$DATA attribute is missing."); goto unm_err_out; } a = ctx->attr; /* Setup the state. */ if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) { if (a->flags & ATTR_COMPRESSION_MASK) { NInoSetCompressed(ni); if (vol->cluster_size > 4096) { ntfs_error(vi->i_sb, "Found " "compressed data but " "compression is " "disabled due to " "cluster size (%i) > " "4kiB.", vol->cluster_size); goto unm_err_out; } if ((a->flags & ATTR_COMPRESSION_MASK) != ATTR_IS_COMPRESSED) { ntfs_error(vi->i_sb, "Found unknown " "compression method " "or corrupt file."); goto unm_err_out; } } if (a->flags & ATTR_IS_SPARSE) NInoSetSparse(ni); } if (a->flags & ATTR_IS_ENCRYPTED) { if (NInoCompressed(ni)) { ntfs_error(vi->i_sb, "Found encrypted and " "compressed data."); goto unm_err_out; } NInoSetEncrypted(ni); } if (a->non_resident) { NInoSetNonResident(ni); if (NInoCompressed(ni) || NInoSparse(ni)) { if (NInoCompressed(ni) && a->data.non_resident. compression_unit != 4) { ntfs_error(vi->i_sb, "Found " "non-standard " "compression unit (%u " "instead of 4). " "Cannot handle this.", a->data.non_resident. compression_unit); err = -EOPNOTSUPP; goto unm_err_out; } if (a->data.non_resident.compression_unit) { ni->itype.compressed.block_size = 1U << (a->data.non_resident. compression_unit + vol->cluster_size_bits); ni->itype.compressed.block_size_bits = ffs(ni->itype. compressed. block_size) - 1; ni->itype.compressed.block_clusters = 1U << a->data. non_resident. compression_unit; } else { ni->itype.compressed.block_size = 0; ni->itype.compressed.block_size_bits = 0; ni->itype.compressed.block_clusters = 0; } ni->itype.compressed.size = sle64_to_cpu( a->data.non_resident. compressed_size); } if (a->data.non_resident.lowest_vcn) { ntfs_error(vi->i_sb, "First extent of $DATA " "attribute has non zero " "lowest_vcn."); goto unm_err_out; } vi->i_size = sle64_to_cpu( a->data.non_resident.data_size); ni->initialized_size = sle64_to_cpu( a->data.non_resident.initialized_size); ni->allocated_size = sle64_to_cpu( a->data.non_resident.allocated_size); } else { /* Resident attribute. */ vi->i_size = ni->initialized_size = le32_to_cpu( a->data.resident.value_length); ni->allocated_size = le32_to_cpu(a->length) - le16_to_cpu( a->data.resident.value_offset); if (vi->i_size > ni->allocated_size) { ntfs_error(vi->i_sb, "Resident data attribute " "is corrupt (size exceeds " "allocation)."); goto unm_err_out; } } no_data_attr_special_case: /* We are done with the mft record, so we release it. */ ntfs_attr_put_search_ctx(ctx); unmap_mft_record(ni); m = NULL; ctx = NULL; /* Setup the operations for this inode. */ vi->i_op = &ntfs_file_inode_ops; vi->i_fop = &ntfs_file_ops; vi->i_mapping->a_ops = &ntfs_normal_aops; if (NInoMstProtected(ni)) vi->i_mapping->a_ops = &ntfs_mst_aops; else if (NInoCompressed(ni)) vi->i_mapping->a_ops = &ntfs_compressed_aops; } /* * The number of 512-byte blocks used on disk (for stat). This is in so * far inaccurate as it doesn't account for any named streams or other * special non-resident attributes, but that is how Windows works, too, * so we are at least consistent with Windows, if not entirely * consistent with the Linux Way. Doing it the Linux Way would cause a * significant slowdown as it would involve iterating over all * attributes in the mft record and adding the allocated/compressed * sizes of all non-resident attributes present to give us the Linux * correct size that should go into i_blocks (after division by 512). */ if (S_ISREG(vi->i_mode) && (NInoCompressed(ni) || NInoSparse(ni))) vi->i_blocks = ni->itype.compressed.size >> 9; else vi->i_blocks = ni->allocated_size >> 9; ntfs_debug("Done."); return 0; iput_unm_err_out: iput(bvi); unm_err_out: if (!err) err = -EIO; if (ctx) ntfs_attr_put_search_ctx(ctx); if (m) unmap_mft_record(ni); err_out: ntfs_error(vol->sb, "Failed with error code %i. Marking corrupt " "inode 0x%lx as bad. Run chkdsk.", err, vi->i_ino); make_bad_inode(vi); if (err != -EOPNOTSUPP && err != -ENOMEM) NVolSetErrors(vol); return err; } /** * ntfs_read_locked_attr_inode - read an attribute inode from its base inode * @base_vi: base inode * @vi: attribute inode to read * * ntfs_read_locked_attr_inode() is called from ntfs_attr_iget() to read the * attribute inode described by @vi into memory from the base mft record * described by @base_ni. * * ntfs_read_locked_attr_inode() maps, pins and locks the base inode for * reading and looks up the attribute described by @vi before setting up the * necessary fields in @vi as well as initializing the ntfs inode. * * Q: What locks are held when the function is called? * A: i_state has I_NEW set, hence the inode is locked, also * i_count is set to 1, so it is not going to go away * * Return 0 on success and -errno on error. In the error case, the inode will * have had make_bad_inode() executed on it. * * Note this cannot be called for AT_INDEX_ALLOCATION. */ static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi) { ntfs_volume *vol = NTFS_SB(vi->i_sb); ntfs_inode *ni, *base_ni; MFT_RECORD *m; ATTR_RECORD *a; ntfs_attr_search_ctx *ctx; int err = 0; ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino); ntfs_init_big_inode(vi); ni = NTFS_I(vi); base_ni = NTFS_I(base_vi); /* Just mirror the values from the base inode. */ vi->i_uid = base_vi->i_uid; vi->i_gid = base_vi->i_gid; set_nlink(vi, base_vi->i_nlink); vi->i_mtime = base_vi->i_mtime; vi->i_ctime = base_vi->i_ctime; vi->i_atime = base_vi->i_atime; vi->i_generation = ni->seq_no = base_ni->seq_no; /* Set inode type to zero but preserve permissions. */ vi->i_mode = base_vi->i_mode & ~S_IFMT; m = map_mft_record(base_ni); if (IS_ERR(m)) { err = PTR_ERR(m); goto err_out; } ctx = ntfs_attr_get_search_ctx(base_ni, m); if (!ctx) { err = -ENOMEM; goto unm_err_out; } /* Find the attribute. */ err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, CASE_SENSITIVE, 0, NULL, 0, ctx); if (unlikely(err)) goto unm_err_out; a = ctx->attr; if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) { if (a->flags & ATTR_COMPRESSION_MASK) { NInoSetCompressed(ni); if ((ni->type != AT_DATA) || (ni->type == AT_DATA && ni->name_len)) { ntfs_error(vi->i_sb, "Found compressed " "non-data or named data " "attribute. Please report " "you saw this message to " "linux-ntfs-dev@lists." "sourceforge.net"); goto unm_err_out; } if (vol->cluster_size > 4096) { ntfs_error(vi->i_sb, "Found compressed " "attribute but compression is " "disabled due to cluster size " "(%i) > 4kiB.", vol->cluster_size); goto unm_err_out; } if ((a->flags & ATTR_COMPRESSION_MASK) != ATTR_IS_COMPRESSED) { ntfs_error(vi->i_sb, "Found unknown " "compression method."); goto unm_err_out; } } /* * The compressed/sparse flag set in an index root just means * to compress all files. */ if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) { ntfs_error(vi->i_sb, "Found mst protected attribute " "but the attribute is %s. Please " "report you saw this message to " "linux-ntfs-dev@lists.sourceforge.net", NInoCompressed(ni) ? "compressed" : "sparse"); goto unm_err_out; } if (a->flags & ATTR_IS_SPARSE) NInoSetSparse(ni); } if (a->flags & ATTR_IS_ENCRYPTED) { if (NInoCompressed(ni)) { ntfs_error(vi->i_sb, "Found encrypted and compressed " "data."); goto unm_err_out; } /* * The encryption flag set in an index root just means to * encrypt all files. */ if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) { ntfs_error(vi->i_sb, "Found mst protected attribute " "but the attribute is encrypted. " "Please report you saw this message " "to linux-ntfs-dev@lists.sourceforge." "net"); goto unm_err_out; } if (ni->type != AT_DATA) { ntfs_error(vi->i_sb, "Found encrypted non-data " "attribute."); goto unm_err_out; } NInoSetEncrypted(ni); } if (!a->non_resident) { /* Ensure the attribute name is placed before the value. */ if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= le16_to_cpu(a->data.resident.value_offset)))) { ntfs_error(vol->sb, "Attribute name is placed after " "the attribute value."); goto unm_err_out; } if (NInoMstProtected(ni)) { ntfs_error(vi->i_sb, "Found mst protected attribute " "but the attribute is resident. " "Please report you saw this message to " "linux-ntfs-dev@lists.sourceforge.net"); goto unm_err_out; } vi->i_size = ni->initialized_size = le32_to_cpu( a->data.resident.value_length); ni->allocated_size = le32_to_cpu(a->length) - le16_to_cpu(a->data.resident.value_offset); if (vi->i_size > ni->allocated_size) { ntfs_error(vi->i_sb, "Resident attribute is corrupt " "(size exceeds allocation)."); goto unm_err_out; } } else { NInoSetNonResident(ni); /* * Ensure the attribute name is placed before the mapping pairs * array. */ if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= le16_to_cpu( a->data.non_resident.mapping_pairs_offset)))) { ntfs_error(vol->sb, "Attribute name is placed after " "the mapping pairs array."); goto unm_err_out; } if (NInoCompressed(ni) || NInoSparse(ni)) { if (NInoCompressed(ni) && a->data.non_resident. compression_unit != 4) { ntfs_error(vi->i_sb, "Found non-standard " "compression unit (%u instead " "of 4). Cannot handle this.", a->data.non_resident. compression_unit); err = -EOPNOTSUPP; goto unm_err_out; } if (a->data.non_resident.compression_unit) { ni->itype.compressed.block_size = 1U << (a->data.non_resident. compression_unit + vol->cluster_size_bits); ni->itype.compressed.block_size_bits = ffs(ni->itype.compressed. block_size) - 1; ni->itype.compressed.block_clusters = 1U << a->data.non_resident. compression_unit; } else { ni->itype.compressed.block_size = 0; ni->itype.compressed.block_size_bits = 0; ni->itype.compressed.block_clusters = 0; } ni->itype.compressed.size = sle64_to_cpu( a->data.non_resident.compressed_size); } if (a->data.non_resident.lowest_vcn) { ntfs_error(vi->i_sb, "First extent of attribute has " "non-zero lowest_vcn."); goto unm_err_out; } vi->i_size = sle64_to_cpu(a->data.non_resident.data_size); ni->initialized_size = sle64_to_cpu( a->data.non_resident.initialized_size); ni->allocated_size = sle64_to_cpu( a->data.non_resident.allocated_size); } vi->i_mapping->a_ops = &ntfs_normal_aops; if (NInoMstProtected(ni)) vi->i_mapping->a_ops = &ntfs_mst_aops; else if (NInoCompressed(ni)) vi->i_mapping->a_ops = &ntfs_compressed_aops; if ((NInoCompressed(ni) || NInoSparse(ni)) && ni->type != AT_INDEX_ROOT) vi->i_blocks = ni->itype.compressed.size >> 9; else vi->i_blocks = ni->allocated_size >> 9; /* * Make sure the base inode does not go away and attach it to the * attribute inode. */ igrab(base_vi); ni->ext.base_ntfs_ino = base_ni; ni->nr_extents = -1; ntfs_attr_put_search_ctx(ctx); unmap_mft_record(base_ni); ntfs_debug("Done."); return 0; unm_err_out: if (!err) err = -EIO; if (ctx) ntfs_attr_put_search_ctx(ctx); unmap_mft_record(base_ni); err_out: ntfs_error(vol->sb, "Failed with error code %i while reading attribute " "inode (mft_no 0x%lx, type 0x%x, name_len %i). " "Marking corrupt inode and base inode 0x%lx as bad. " "Run chkdsk.", err, vi->i_ino, ni->type, ni->name_len, base_vi->i_ino); make_bad_inode(vi); if (err != -ENOMEM) NVolSetErrors(vol); return err; } /** * ntfs_read_locked_index_inode - read an index inode from its base inode * @base_vi: base inode * @vi: index inode to read * * ntfs_read_locked_index_inode() is called from ntfs_index_iget() to read the * index inode described by @vi into memory from the base mft record described * by @base_ni. * * ntfs_read_locked_index_inode() maps, pins and locks the base inode for * reading and looks up the attributes relating to the index described by @vi * before setting up the necessary fields in @vi as well as initializing the * ntfs inode. * * Note, index inodes are essentially attribute inodes (NInoAttr() is true) * with the attribute type set to AT_INDEX_ALLOCATION. Apart from that, they * are setup like directory inodes since directories are a special case of * indices ao they need to be treated in much the same way. Most importantly, * for small indices the index allocation attribute might not actually exist. * However, the index root attribute always exists but this does not need to * have an inode associated with it and this is why we define a new inode type * index. Also, like for directories, we need to have an attribute inode for * the bitmap attribute corresponding to the index allocation attribute and we * can store this in the appropriate field of the inode, just like we do for * normal directory inodes. * * Q: What locks are held when the function is called? * A: i_state has I_NEW set, hence the inode is locked, also * i_count is set to 1, so it is not going to go away * * Return 0 on success and -errno on error. In the error case, the inode will * have had make_bad_inode() executed on it. */ static int ntfs_read_locked_index_inode(struct inode *base_vi, struct inode *vi) { loff_t bvi_size; ntfs_volume *vol = NTFS_SB(vi->i_sb); ntfs_inode *ni, *base_ni, *bni; struct inode *bvi; MFT_RECORD *m; ATTR_RECORD *a; ntfs_attr_search_ctx *ctx; INDEX_ROOT *ir; u8 *ir_end, *index_end; int err = 0; ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino); ntfs_init_big_inode(vi); ni = NTFS_I(vi); base_ni = NTFS_I(base_vi); /* Just mirror the values from the base inode. */ vi->i_uid = base_vi->i_uid; vi->i_gid = base_vi->i_gid; set_nlink(vi, base_vi->i_nlink); vi->i_mtime = base_vi->i_mtime; vi->i_ctime = base_vi->i_ctime; vi->i_atime = base_vi->i_atime; vi->i_generation = ni->seq_no = base_ni->seq_no; /* Set inode type to zero but preserve permissions. */ vi->i_mode = base_vi->i_mode & ~S_IFMT; /* Map the mft record for the base inode. */ m = map_mft_record(base_ni); if (IS_ERR(m)) { err = PTR_ERR(m); goto err_out; } ctx = ntfs_attr_get_search_ctx(base_ni, m); if (!ctx) { err = -ENOMEM; goto unm_err_out; } /* Find the index root attribute. */ err = ntfs_attr_lookup(AT_INDEX_ROOT, ni->name, ni->name_len, CASE_SENSITIVE, 0, NULL, 0, ctx); if (unlikely(err)) { if (err == -ENOENT) ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is " "missing."); goto unm_err_out; } a = ctx->attr; /* Set up the state. */ if (unlikely(a->non_resident)) { ntfs_error(vol->sb, "$INDEX_ROOT attribute is not resident."); goto unm_err_out; } /* Ensure the attribute name is placed before the value. */ if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= le16_to_cpu(a->data.resident.value_offset)))) { ntfs_error(vol->sb, "$INDEX_ROOT attribute name is placed " "after the attribute value."); goto unm_err_out; } /* * Compressed/encrypted/sparse index root is not allowed, except for * directories of course but those are not dealt with here. */ if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_ENCRYPTED | ATTR_IS_SPARSE)) { ntfs_error(vi->i_sb, "Found compressed/encrypted/sparse index " "root attribute."); goto unm_err_out; } ir = (INDEX_ROOT*)((u8*)a + le16_to_cpu(a->data.resident.value_offset)); ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length); if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) { ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is corrupt."); goto unm_err_out; } index_end = (u8*)&ir->index + le32_to_cpu(ir->index.index_length); if (index_end > ir_end) { ntfs_error(vi->i_sb, "Index is corrupt."); goto unm_err_out; } if (ir->type) { ntfs_error(vi->i_sb, "Index type is not 0 (type is 0x%x).", le32_to_cpu(ir->type)); goto unm_err_out; } ni->itype.index.collation_rule = ir->collation_rule; ntfs_debug("Index collation rule is 0x%x.", le32_to_cpu(ir->collation_rule)); ni->itype.index.block_size = le32_to_cpu(ir->index_block_size); if (!is_power_of_2(ni->itype.index.block_size)) { ntfs_error(vi->i_sb, "Index block size (%u) is not a power of " "two.", ni->itype.index.block_size); goto unm_err_out; } if (ni->itype.index.block_size > PAGE_SIZE) { ntfs_error(vi->i_sb, "Index block size (%u) > PAGE_SIZE " "(%ld) is not supported. Sorry.", ni->itype.index.block_size, PAGE_SIZE); err = -EOPNOTSUPP; goto unm_err_out; } if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) { ntfs_error(vi->i_sb, "Index block size (%u) < NTFS_BLOCK_SIZE " "(%i) is not supported. Sorry.", ni->itype.index.block_size, NTFS_BLOCK_SIZE); err = -EOPNOTSUPP; goto unm_err_out; } ni->itype.index.block_size_bits = ffs(ni->itype.index.block_size) - 1; /* Determine the size of a vcn in the index. */ if (vol->cluster_size <= ni->itype.index.block_size) { ni->itype.index.vcn_size = vol->cluster_size; ni->itype.index.vcn_size_bits = vol->cluster_size_bits; } else { ni->itype.index.vcn_size = vol->sector_size; ni->itype.index.vcn_size_bits = vol->sector_size_bits; } /* Check for presence of index allocation attribute. */ if (!(ir->index.flags & LARGE_INDEX)) { /* No index allocation. */ vi->i_size = ni->initialized_size = ni->allocated_size = 0; /* We are done with the mft record, so we release it. */ ntfs_attr_put_search_ctx(ctx); unmap_mft_record(base_ni); m = NULL; ctx = NULL; goto skip_large_index_stuff; } /* LARGE_INDEX: Index allocation present. Setup state. */ NInoSetIndexAllocPresent(ni); /* Find index allocation attribute. */ ntfs_attr_reinit_search_ctx(ctx); err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, ni->name, ni->name_len, CASE_SENSITIVE, 0, NULL, 0, ctx); if (unlikely(err)) { if (err == -ENOENT) ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " "not present but $INDEX_ROOT " "indicated it is."); else ntfs_error(vi->i_sb, "Failed to lookup " "$INDEX_ALLOCATION attribute."); goto unm_err_out; } a = ctx->attr; if (!a->non_resident) { ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " "resident."); goto unm_err_out; } /* * Ensure the attribute name is placed before the mapping pairs array. */ if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= le16_to_cpu( a->data.non_resident.mapping_pairs_offset)))) { ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name is " "placed after the mapping pairs array."); goto unm_err_out; } if (a->flags & ATTR_IS_ENCRYPTED) { ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " "encrypted."); goto unm_err_out; } if (a->flags & ATTR_IS_SPARSE) { ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is sparse."); goto unm_err_out; } if (a->flags & ATTR_COMPRESSION_MASK) { ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " "compressed."); goto unm_err_out; } if (a->data.non_resident.lowest_vcn) { ntfs_error(vi->i_sb, "First extent of $INDEX_ALLOCATION " "attribute has non zero lowest_vcn."); goto unm_err_out; } vi->i_size = sle64_to_cpu(a->data.non_resident.data_size); ni->initialized_size = sle64_to_cpu( a->data.non_resident.initialized_size); ni->allocated_size = sle64_to_cpu(a->data.non_resident.allocated_size); /* * We are done with the mft record, so we release it. Otherwise * we would deadlock in ntfs_attr_iget(). */ ntfs_attr_put_search_ctx(ctx); unmap_mft_record(base_ni); m = NULL; ctx = NULL; /* Get the index bitmap attribute inode. */ bvi = ntfs_attr_iget(base_vi, AT_BITMAP, ni->name, ni->name_len); if (IS_ERR(bvi)) { ntfs_error(vi->i_sb, "Failed to get bitmap attribute."); err = PTR_ERR(bvi); goto unm_err_out; } bni = NTFS_I(bvi); if (NInoCompressed(bni) || NInoEncrypted(bni) || NInoSparse(bni)) { ntfs_error(vi->i_sb, "$BITMAP attribute is compressed and/or " "encrypted and/or sparse."); goto iput_unm_err_out; } /* Consistency check bitmap size vs. index allocation size. */ bvi_size = i_size_read(bvi); if ((bvi_size << 3) < (vi->i_size >> ni->itype.index.block_size_bits)) { ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) for " "index allocation (0x%llx).", bvi_size << 3, vi->i_size); goto iput_unm_err_out; } iput(bvi); skip_large_index_stuff: /* Setup the operations for this index inode. */ vi->i_mapping->a_ops = &ntfs_mst_aops; vi->i_blocks = ni->allocated_size >> 9; /* * Make sure the base inode doesn't go away and attach it to the * index inode. */ igrab(base_vi); ni->ext.base_ntfs_ino = base_ni; ni->nr_extents = -1; ntfs_debug("Done."); return 0; iput_unm_err_out: iput(bvi); unm_err_out: if (!err) err = -EIO; if (ctx) ntfs_attr_put_search_ctx(ctx); if (m) unmap_mft_record(base_ni); err_out: ntfs_error(vi->i_sb, "Failed with error code %i while reading index " "inode (mft_no 0x%lx, name_len %i.", err, vi->i_ino, ni->name_len); make_bad_inode(vi); if (err != -EOPNOTSUPP && err != -ENOMEM) NVolSetErrors(vol); return err; } /* * The MFT inode has special locking, so teach the lock validator * about this by splitting off the locking rules of the MFT from * the locking rules of other inodes. The MFT inode can never be * accessed from the VFS side (or even internally), only by the * map_mft functions. */ static struct lock_class_key mft_ni_runlist_lock_key, mft_ni_mrec_lock_key; /** * ntfs_read_inode_mount - special read_inode for mount time use only * @vi: inode to read * * Read inode FILE_MFT at mount time, only called with super_block lock * held from within the read_super() code path. * * This function exists because when it is called the page cache for $MFT/$DATA * is not initialized and hence we cannot get at the contents of mft records * by calling map_mft_record*(). * * Further it needs to cope with the circular references problem, i.e. cannot * load any attributes other than $ATTRIBUTE_LIST until $DATA is loaded, because * we do not know where the other extent mft records are yet and again, because * we cannot call map_mft_record*() yet. Obviously this applies only when an * attribute list is actually present in $MFT inode. * * We solve these problems by starting with the $DATA attribute before anything * else and iterating using ntfs_attr_lookup($DATA) over all extents. As each * extent is found, we ntfs_mapping_pairs_decompress() including the implied * ntfs_runlists_merge(). Each step of the iteration necessarily provides * sufficient information for the next step to complete. * * This should work but there are two possible pit falls (see inline comments * below), but only time will tell if they are real pits or just smoke... */ int ntfs_read_inode_mount(struct inode *vi) { VCN next_vcn, last_vcn, highest_vcn; s64 block; struct super_block *sb = vi->i_sb; ntfs_volume *vol = NTFS_SB(sb); struct buffer_head *bh; ntfs_inode *ni; MFT_RECORD *m = NULL; ATTR_RECORD *a; ntfs_attr_search_ctx *ctx; unsigned int i, nr_blocks; int err; ntfs_debug("Entering."); /* Initialize the ntfs specific part of @vi. */ ntfs_init_big_inode(vi); ni = NTFS_I(vi); /* Setup the data attribute. It is special as it is mst protected. */ NInoSetNonResident(ni); NInoSetMstProtected(ni); NInoSetSparseDisabled(ni); ni->type = AT_DATA; ni->name = NULL; ni->name_len = 0; /* * This sets up our little cheat allowing us to reuse the async read io * completion handler for directories. */ ni->itype.index.block_size = vol->mft_record_size; ni->itype.index.block_size_bits = vol->mft_record_size_bits; /* Very important! Needed to be able to call map_mft_record*(). */ vol->mft_ino = vi; /* Allocate enough memory to read the first mft record. */ if (vol->mft_record_size > 64 * 1024) { ntfs_error(sb, "Unsupported mft record size %i (max 64kiB).", vol->mft_record_size); goto err_out; } i = vol->mft_record_size; if (i < sb->s_blocksize) i = sb->s_blocksize; m = (MFT_RECORD*)ntfs_malloc_nofs(i); if (!m) { ntfs_error(sb, "Failed to allocate buffer for $MFT record 0."); goto err_out; } /* Determine the first block of the $MFT/$DATA attribute. */ block = vol->mft_lcn << vol->cluster_size_bits >> sb->s_blocksize_bits; nr_blocks = vol->mft_record_size >> sb->s_blocksize_bits; if (!nr_blocks) nr_blocks = 1; /* Load $MFT/$DATA's first mft record. */ for (i = 0; i < nr_blocks; i++) { bh = sb_bread(sb, block++); if (!bh) { ntfs_error(sb, "Device read failed."); goto err_out; } memcpy((char*)m + (i << sb->s_blocksize_bits), bh->b_data, sb->s_blocksize); brelse(bh); } if (le32_to_cpu(m->bytes_allocated) != vol->mft_record_size) { ntfs_error(sb, "Incorrect mft record size %u in superblock, should be %u.", le32_to_cpu(m->bytes_allocated), vol->mft_record_size); goto err_out; } /* Apply the mst fixups. */ if (post_read_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size)) { /* FIXME: Try to use the $MFTMirr now. */ ntfs_error(sb, "MST fixup failed. $MFT is corrupt."); goto err_out; } /* Sanity check offset to the first attribute */ if (le16_to_cpu(m->attrs_offset) >= le32_to_cpu(m->bytes_allocated)) { ntfs_error(sb, "Incorrect mft offset to the first attribute %u in superblock.", le16_to_cpu(m->attrs_offset)); goto err_out; } /* Need this to sanity check attribute list references to $MFT. */ vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number); /* Provides readpage() for map_mft_record(). */ vi->i_mapping->a_ops = &ntfs_mst_aops; ctx = ntfs_attr_get_search_ctx(ni, m); if (!ctx) { err = -ENOMEM; goto err_out; } /* Find the attribute list attribute if present. */ err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx); if (err) { if (unlikely(err != -ENOENT)) { ntfs_error(sb, "Failed to lookup attribute list " "attribute. You should run chkdsk."); goto put_err_out; } } else /* if (!err) */ { ATTR_LIST_ENTRY *al_entry, *next_al_entry; u8 *al_end; static const char *es = " Not allowed. $MFT is corrupt. " "You should run chkdsk."; ntfs_debug("Attribute list attribute found in $MFT."); NInoSetAttrList(ni); a = ctx->attr; if (a->flags & ATTR_COMPRESSION_MASK) { ntfs_error(sb, "Attribute list attribute is " "compressed.%s", es); goto put_err_out; } if (a->flags & ATTR_IS_ENCRYPTED || a->flags & ATTR_IS_SPARSE) { if (a->non_resident) { ntfs_error(sb, "Non-resident attribute list " "attribute is encrypted/" "sparse.%s", es); goto put_err_out; } ntfs_warning(sb, "Resident attribute list attribute " "in $MFT system file is marked " "encrypted/sparse which is not true. " "However, Windows allows this and " "chkdsk does not detect or correct it " "so we will just ignore the invalid " "flags and pretend they are not set."); } /* Now allocate memory for the attribute list. */ ni->attr_list_size = (u32)ntfs_attr_size(a); if (!ni->attr_list_size) { ntfs_error(sb, "Attr_list_size is zero"); goto put_err_out; } ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size); if (!ni->attr_list) { ntfs_error(sb, "Not enough memory to allocate buffer " "for attribute list."); goto put_err_out; } if (a->non_resident) { NInoSetAttrListNonResident(ni); if (a->data.non_resident.lowest_vcn) { ntfs_error(sb, "Attribute list has non zero " "lowest_vcn. $MFT is corrupt. " "You should run chkdsk."); goto put_err_out; } /* Setup the runlist. */ ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol, a, NULL); if (IS_ERR(ni->attr_list_rl.rl)) { err = PTR_ERR(ni->attr_list_rl.rl); ni->attr_list_rl.rl = NULL; ntfs_error(sb, "Mapping pairs decompression " "failed with error code %i.", -err); goto put_err_out; } /* Now load the attribute list. */ if ((err = load_attribute_list(vol, &ni->attr_list_rl, ni->attr_list, ni->attr_list_size, sle64_to_cpu(a->data. non_resident.initialized_size)))) { ntfs_error(sb, "Failed to load attribute list " "attribute with error code %i.", -err); goto put_err_out; } } else /* if (!ctx.attr->non_resident) */ { if ((u8*)a + le16_to_cpu( a->data.resident.value_offset) + le32_to_cpu( a->data.resident.value_length) > (u8*)ctx->mrec + vol->mft_record_size) { ntfs_error(sb, "Corrupt attribute list " "attribute."); goto put_err_out; } /* Now copy the attribute list. */ memcpy(ni->attr_list, (u8*)a + le16_to_cpu( a->data.resident.value_offset), le32_to_cpu( a->data.resident.value_length)); } /* The attribute list is now setup in memory. */ /* * FIXME: I don't know if this case is actually possible. * According to logic it is not possible but I have seen too * many weird things in MS software to rely on logic... Thus we * perform a manual search and make sure the first $MFT/$DATA * extent is in the base inode. If it is not we abort with an * error and if we ever see a report of this error we will need * to do some magic in order to have the necessary mft record * loaded and in the right place in the page cache. But * hopefully logic will prevail and this never happens... */ al_entry = (ATTR_LIST_ENTRY*)ni->attr_list; al_end = (u8*)al_entry + ni->attr_list_size; for (;; al_entry = next_al_entry) { /* Out of bounds check. */ if ((u8*)al_entry < ni->attr_list || (u8*)al_entry > al_end) goto em_put_err_out; /* Catch the end of the attribute list. */ if ((u8*)al_entry == al_end) goto em_put_err_out; if (!al_entry->length) goto em_put_err_out; if ((u8*)al_entry + 6 > al_end || (u8*)al_entry + le16_to_cpu(al_entry->length) > al_end) goto em_put_err_out; next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry + le16_to_cpu(al_entry->length)); if (le32_to_cpu(al_entry->type) > le32_to_cpu(AT_DATA)) goto em_put_err_out; if (AT_DATA != al_entry->type) continue; /* We want an unnamed attribute. */ if (al_entry->name_length) goto em_put_err_out; /* Want the first entry, i.e. lowest_vcn == 0. */ if (al_entry->lowest_vcn) goto em_put_err_out; /* First entry has to be in the base mft record. */ if (MREF_LE(al_entry->mft_reference) != vi->i_ino) { /* MFT references do not match, logic fails. */ ntfs_error(sb, "BUG: The first $DATA extent " "of $MFT is not in the base " "mft record. Please report " "you saw this message to " "linux-ntfs-dev@lists." "sourceforge.net"); goto put_err_out; } else { /* Sequence numbers must match. */ if (MSEQNO_LE(al_entry->mft_reference) != ni->seq_no) goto em_put_err_out; /* Got it. All is ok. We can stop now. */ break; } } } ntfs_attr_reinit_search_ctx(ctx); /* Now load all attribute extents. */ a = NULL; next_vcn = last_vcn = highest_vcn = 0; while (!(err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, next_vcn, NULL, 0, ctx))) { runlist_element *nrl; /* Cache the current attribute. */ a = ctx->attr; /* $MFT must be non-resident. */ if (!a->non_resident) { ntfs_error(sb, "$MFT must be non-resident but a " "resident extent was found. $MFT is " "corrupt. Run chkdsk."); goto put_err_out; } /* $MFT must be uncompressed and unencrypted. */ if (a->flags & ATTR_COMPRESSION_MASK || a->flags & ATTR_IS_ENCRYPTED || a->flags & ATTR_IS_SPARSE) { ntfs_error(sb, "$MFT must be uncompressed, " "non-sparse, and unencrypted but a " "compressed/sparse/encrypted extent " "was found. $MFT is corrupt. Run " "chkdsk."); goto put_err_out; } /* * Decompress the mapping pairs array of this extent and merge * the result into the existing runlist. No need for locking * as we have exclusive access to the inode at this time and we * are a mount in progress task, too. */ nrl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl); if (IS_ERR(nrl)) { ntfs_error(sb, "ntfs_mapping_pairs_decompress() " "failed with error code %ld. $MFT is " "corrupt.", PTR_ERR(nrl)); goto put_err_out; } ni->runlist.rl = nrl; /* Are we in the first extent? */ if (!next_vcn) { if (a->data.non_resident.lowest_vcn) { ntfs_error(sb, "First extent of $DATA " "attribute has non zero " "lowest_vcn. $MFT is corrupt. " "You should run chkdsk."); goto put_err_out; } /* Get the last vcn in the $DATA attribute. */ last_vcn = sle64_to_cpu( a->data.non_resident.allocated_size) >> vol->cluster_size_bits; /* Fill in the inode size. */ vi->i_size = sle64_to_cpu( a->data.non_resident.data_size); ni->initialized_size = sle64_to_cpu( a->data.non_resident.initialized_size); ni->allocated_size = sle64_to_cpu( a->data.non_resident.allocated_size); /* * Verify the number of mft records does not exceed * 2^32 - 1. */ if ((vi->i_size >> vol->mft_record_size_bits) >= (1ULL << 32)) { ntfs_error(sb, "$MFT is too big! Aborting."); goto put_err_out; } /* * We have got the first extent of the runlist for * $MFT which means it is now relatively safe to call * the normal ntfs_read_inode() function. * Complete reading the inode, this will actually * re-read the mft record for $MFT, this time entering * it into the page cache with which we complete the * kick start of the volume. It should be safe to do * this now as the first extent of $MFT/$DATA is * already known and we would hope that we don't need * further extents in order to find the other * attributes belonging to $MFT. Only time will tell if * this is really the case. If not we will have to play * magic at this point, possibly duplicating a lot of * ntfs_read_inode() at this point. We will need to * ensure we do enough of its work to be able to call * ntfs_read_inode() on extents of $MFT/$DATA. But lets * hope this never happens... */ ntfs_read_locked_inode(vi); if (is_bad_inode(vi)) { ntfs_error(sb, "ntfs_read_inode() of $MFT " "failed. BUG or corrupt $MFT. " "Run chkdsk and if no errors " "are found, please report you " "saw this message to " "linux-ntfs-dev@lists." "sourceforge.net"); ntfs_attr_put_search_ctx(ctx); /* Revert to the safe super operations. */ ntfs_free(m); return -1; } /* * Re-initialize some specifics about $MFT's inode as * ntfs_read_inode() will have set up the default ones. */ /* Set uid and gid to root. */ vi->i_uid = GLOBAL_ROOT_UID; vi->i_gid = GLOBAL_ROOT_GID; /* Regular file. No access for anyone. */ vi->i_mode = S_IFREG; /* No VFS initiated operations allowed for $MFT. */ vi->i_op = &ntfs_empty_inode_ops; vi->i_fop = &ntfs_empty_file_ops; } /* Get the lowest vcn for the next extent. */ highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn); next_vcn = highest_vcn + 1; /* Only one extent or error, which we catch below. */ if (next_vcn <= 0) break; /* Avoid endless loops due to corruption. */ if (next_vcn < sle64_to_cpu( a->data.non_resident.lowest_vcn)) { ntfs_error(sb, "$MFT has corrupt attribute list " "attribute. Run chkdsk."); goto put_err_out; } } if (err != -ENOENT) { ntfs_error(sb, "Failed to lookup $MFT/$DATA attribute extent. " "$MFT is corrupt. Run chkdsk."); goto put_err_out; } if (!a) { ntfs_error(sb, "$MFT/$DATA attribute not found. $MFT is " "corrupt. Run chkdsk."); goto put_err_out; } if (highest_vcn && highest_vcn != last_vcn - 1) { ntfs_error(sb, "Failed to load the complete runlist for " "$MFT/$DATA. Driver bug or corrupt $MFT. " "Run chkdsk."); ntfs_debug("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx", (unsigned long long)highest_vcn, (unsigned long long)last_vcn - 1); goto put_err_out; } ntfs_attr_put_search_ctx(ctx); ntfs_debug("Done."); ntfs_free(m); /* * Split the locking rules of the MFT inode from the * locking rules of other inodes: */ lockdep_set_class(&ni->runlist.lock, &mft_ni_runlist_lock_key); lockdep_set_class(&ni->mrec_lock, &mft_ni_mrec_lock_key); return 0; em_put_err_out: ntfs_error(sb, "Couldn't find first extent of $DATA attribute in " "attribute list. $MFT is corrupt. Run chkdsk."); put_err_out: ntfs_attr_put_search_ctx(ctx); err_out: ntfs_error(sb, "Failed. Marking inode as bad."); make_bad_inode(vi); ntfs_free(m); return -1; } static void __ntfs_clear_inode(ntfs_inode *ni) { /* Free all alocated memory. */ down_write(&ni->runlist.lock); if (ni->runlist.rl) { ntfs_free(ni->runlist.rl); ni->runlist.rl = NULL; } up_write(&ni->runlist.lock); if (ni->attr_list) { ntfs_free(ni->attr_list); ni->attr_list = NULL; } down_write(&ni->attr_list_rl.lock); if (ni->attr_list_rl.rl) { ntfs_free(ni->attr_list_rl.rl); ni->attr_list_rl.rl = NULL; } up_write(&ni->attr_list_rl.lock); if (ni->name_len && ni->name != I30) { /* Catch bugs... */ BUG_ON(!ni->name); kfree(ni->name); } } void ntfs_clear_extent_inode(ntfs_inode *ni) { ntfs_debug("Entering for inode 0x%lx.", ni->mft_no); BUG_ON(NInoAttr(ni)); BUG_ON(ni->nr_extents != -1); #ifdef NTFS_RW if (NInoDirty(ni)) { if (!is_bad_inode(VFS_I(ni->ext.base_ntfs_ino))) ntfs_error(ni->vol->sb, "Clearing dirty extent inode! " "Losing data! This is a BUG!!!"); // FIXME: Do something!!! } #endif /* NTFS_RW */ __ntfs_clear_inode(ni); /* Bye, bye... */ ntfs_destroy_extent_inode(ni); } /** * ntfs_evict_big_inode - clean up the ntfs specific part of an inode * @vi: vfs inode pending annihilation * * When the VFS is going to remove an inode from memory, ntfs_clear_big_inode() * is called, which deallocates all memory belonging to the NTFS specific part * of the inode and returns. * * If the MFT record is dirty, we commit it before doing anything else. */ void ntfs_evict_big_inode(struct inode *vi) { ntfs_inode *ni = NTFS_I(vi); truncate_inode_pages_final(&vi->i_data); clear_inode(vi); #ifdef NTFS_RW if (NInoDirty(ni)) { bool was_bad = (is_bad_inode(vi)); /* Committing the inode also commits all extent inodes. */ ntfs_commit_inode(vi); if (!was_bad && (is_bad_inode(vi) || NInoDirty(ni))) { ntfs_error(vi->i_sb, "Failed to commit dirty inode " "0x%lx. Losing data!", vi->i_ino); // FIXME: Do something!!! } } #endif /* NTFS_RW */ /* No need to lock at this stage as no one else has a reference. */ if (ni->nr_extents > 0) { int i; for (i = 0; i < ni->nr_extents; i++) ntfs_clear_extent_inode(ni->ext.extent_ntfs_inos[i]); kfree(ni->ext.extent_ntfs_inos); } __ntfs_clear_inode(ni); if (NInoAttr(ni)) { /* Release the base inode if we are holding it. */ if (ni->nr_extents == -1) { iput(VFS_I(ni->ext.base_ntfs_ino)); ni->nr_extents = 0; ni->ext.base_ntfs_ino = NULL; } } return; } /** * ntfs_show_options - show mount options in /proc/mounts * @sf: seq_file in which to write our mount options * @root: root of the mounted tree whose mount options to display * * Called by the VFS once for each mounted ntfs volume when someone reads * /proc/mounts in order to display the NTFS specific mount options of each * mount. The mount options of fs specified by @root are written to the seq file * @sf and success is returned. */ int ntfs_show_options(struct seq_file *sf, struct dentry *root) { ntfs_volume *vol = NTFS_SB(root->d_sb); int i; seq_printf(sf, ",uid=%i", from_kuid_munged(&init_user_ns, vol->uid)); seq_printf(sf, ",gid=%i", from_kgid_munged(&init_user_ns, vol->gid)); if (vol->fmask == vol->dmask) seq_printf(sf, ",umask=0%o", vol->fmask); else { seq_printf(sf, ",fmask=0%o", vol->fmask); seq_printf(sf, ",dmask=0%o", vol->dmask); } seq_printf(sf, ",nls=%s", vol->nls_map->charset); if (NVolCaseSensitive(vol)) seq_printf(sf, ",case_sensitive"); if (NVolShowSystemFiles(vol)) seq_printf(sf, ",show_sys_files"); if (!NVolSparseEnabled(vol)) seq_printf(sf, ",disable_sparse"); for (i = 0; on_errors_arr[i].val; i++) { if (on_errors_arr[i].val & vol->on_errors) seq_printf(sf, ",errors=%s", on_errors_arr[i].str); } seq_printf(sf, ",mft_zone_multiplier=%i", vol->mft_zone_multiplier); return 0; } #ifdef NTFS_RW static const char *es = " Leaving inconsistent metadata. Unmount and run " "chkdsk."; /** * ntfs_truncate - called when the i_size of an ntfs inode is changed * @vi: inode for which the i_size was changed * * We only support i_size changes for normal files at present, i.e. not * compressed and not encrypted. This is enforced in ntfs_setattr(), see * below. * * The kernel guarantees that @vi is a regular file (S_ISREG() is true) and * that the change is allowed. * * This implies for us that @vi is a file inode rather than a directory, index, * or attribute inode as well as that @vi is a base inode. * * Returns 0 on success or -errno on error. * * Called with ->i_mutex held. */ int ntfs_truncate(struct inode *vi) { s64 new_size, old_size, nr_freed, new_alloc_size, old_alloc_size; VCN highest_vcn; unsigned long flags; ntfs_inode *base_ni, *ni = NTFS_I(vi); ntfs_volume *vol = ni->vol; ntfs_attr_search_ctx *ctx; MFT_RECORD *m; ATTR_RECORD *a; const char *te = " Leaving file length out of sync with i_size."; int err, mp_size, size_change, alloc_change; u32 attr_len; ntfs_debug("Entering for inode 0x%lx.", vi->i_ino); BUG_ON(NInoAttr(ni)); BUG_ON(S_ISDIR(vi->i_mode)); BUG_ON(NInoMstProtected(ni)); BUG_ON(ni->nr_extents < 0); retry_truncate: /* * Lock the runlist for writing and map the mft record to ensure it is * safe to mess with the attribute runlist and sizes. */ down_write(&ni->runlist.lock); if (!NInoAttr(ni)) base_ni = ni; else base_ni = ni->ext.base_ntfs_ino; m = map_mft_record(base_ni); if (IS_ERR(m)) { err = PTR_ERR(m); ntfs_error(vi->i_sb, "Failed to map mft record for inode 0x%lx " "(error code %d).%s", vi->i_ino, err, te); ctx = NULL; m = NULL; goto old_bad_out; } ctx = ntfs_attr_get_search_ctx(base_ni, m); if (unlikely(!ctx)) { ntfs_error(vi->i_sb, "Failed to allocate a search context for " "inode 0x%lx (not enough memory).%s", vi->i_ino, te); err = -ENOMEM; goto old_bad_out; } err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, CASE_SENSITIVE, 0, NULL, 0, ctx); if (unlikely(err)) { if (err == -ENOENT) { ntfs_error(vi->i_sb, "Open attribute is missing from " "mft record. Inode 0x%lx is corrupt. " "Run chkdsk.%s", vi->i_ino, te); err = -EIO; } else ntfs_error(vi->i_sb, "Failed to lookup attribute in " "inode 0x%lx (error code %d).%s", vi->i_ino, err, te); goto old_bad_out; } m = ctx->mrec; a = ctx->attr; /* * The i_size of the vfs inode is the new size for the attribute value. */ new_size = i_size_read(vi); /* The current size of the attribute value is the old size. */ old_size = ntfs_attr_size(a); /* Calculate the new allocated size. */ if (NInoNonResident(ni)) new_alloc_size = (new_size + vol->cluster_size - 1) & ~(s64)vol->cluster_size_mask; else new_alloc_size = (new_size + 7) & ~7; /* The current allocated size is the old allocated size. */ read_lock_irqsave(&ni->size_lock, flags); old_alloc_size = ni->allocated_size; read_unlock_irqrestore(&ni->size_lock, flags); /* * The change in the file size. This will be 0 if no change, >0 if the * size is growing, and <0 if the size is shrinking. */ size_change = -1; if (new_size - old_size >= 0) { size_change = 1; if (new_size == old_size) size_change = 0; } /* As above for the allocated size. */ alloc_change = -1; if (new_alloc_size - old_alloc_size >= 0) { alloc_change = 1; if (new_alloc_size == old_alloc_size) alloc_change = 0; } /* * If neither the size nor the allocation are being changed there is * nothing to do. */ if (!size_change && !alloc_change) goto unm_done; /* If the size is changing, check if new size is allowed in $AttrDef. */ if (size_change) { err = ntfs_attr_size_bounds_check(vol, ni->type, new_size); if (unlikely(err)) { if (err == -ERANGE) { ntfs_error(vol->sb, "Truncate would cause the " "inode 0x%lx to %simum size " "for its attribute type " "(0x%x). Aborting truncate.", vi->i_ino, new_size > old_size ? "exceed " "the max" : "go under the min", le32_to_cpu(ni->type)); err = -EFBIG; } else { ntfs_error(vol->sb, "Inode 0x%lx has unknown " "attribute type 0x%x. " "Aborting truncate.", vi->i_ino, le32_to_cpu(ni->type)); err = -EIO; } /* Reset the vfs inode size to the old size. */ i_size_write(vi, old_size); goto err_out; } } if (NInoCompressed(ni) || NInoEncrypted(ni)) { ntfs_warning(vi->i_sb, "Changes in inode size are not " "supported yet for %s files, ignoring.", NInoCompressed(ni) ? "compressed" : "encrypted"); err = -EOPNOTSUPP; goto bad_out; } if (a->non_resident) goto do_non_resident_truncate; BUG_ON(NInoNonResident(ni)); /* Resize the attribute record to best fit the new attribute size. */ if (new_size < vol->mft_record_size && !ntfs_resident_attr_value_resize(m, a, new_size)) { /* The resize succeeded! */ flush_dcache_mft_record_page(ctx->ntfs_ino); mark_mft_record_dirty(ctx->ntfs_ino); write_lock_irqsave(&ni->size_lock, flags); /* Update the sizes in the ntfs inode and all is done. */ ni->allocated_size = le32_to_cpu(a->length) - le16_to_cpu(a->data.resident.value_offset); /* * Note ntfs_resident_attr_value_resize() has already done any * necessary data clearing in the attribute record. When the * file is being shrunk vmtruncate() will already have cleared * the top part of the last partial page, i.e. since this is * the resident case this is the page with index 0. However, * when the file is being expanded, the page cache page data * between the old data_size, i.e. old_size, and the new_size * has not been zeroed. Fortunately, we do not need to zero it * either since on one hand it will either already be zero due * to both readpage and writepage clearing partial page data * beyond i_size in which case there is nothing to do or in the * case of the file being mmap()ped at the same time, POSIX * specifies that the behaviour is unspecified thus we do not * have to do anything. This means that in our implementation * in the rare case that the file is mmap()ped and a write * occurred into the mmap()ped region just beyond the file size * and writepage has not yet been called to write out the page * (which would clear the area beyond the file size) and we now * extend the file size to incorporate this dirty region * outside the file size, a write of the page would result in * this data being written to disk instead of being cleared. * Given both POSIX and the Linux mmap(2) man page specify that * this corner case is undefined, we choose to leave it like * that as this is much simpler for us as we cannot lock the * relevant page now since we are holding too many ntfs locks * which would result in a lock reversal deadlock. */ ni->initialized_size = new_size; write_unlock_irqrestore(&ni->size_lock, flags); goto unm_done; } /* If the above resize failed, this must be an attribute extension. */ BUG_ON(size_change < 0); /* * We have to drop all the locks so we can call * ntfs_attr_make_non_resident(). This could be optimised by try- * locking the first page cache page and only if that fails dropping * the locks, locking the page, and redoing all the locking and * lookups. While this would be a huge optimisation, it is not worth * it as this is definitely a slow code path as it only ever can happen * once for any given file. */ ntfs_attr_put_search_ctx(ctx); unmap_mft_record(base_ni); up_write(&ni->runlist.lock); /* * Not enough space in the mft record, try to make the attribute * non-resident and if successful restart the truncation process. */ err = ntfs_attr_make_non_resident(ni, old_size); if (likely(!err)) goto retry_truncate; /* * Could not make non-resident. If this is due to this not being * permitted for this attribute type or there not being enough space, * try to make other attributes non-resident. Otherwise fail. */ if (unlikely(err != -EPERM && err != -ENOSPC)) { ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, attribute " "type 0x%x, because the conversion from " "resident to non-resident attribute failed " "with error code %i.", vi->i_ino, (unsigned)le32_to_cpu(ni->type), err); if (err != -ENOMEM) err = -EIO; goto conv_err_out; } /* TODO: Not implemented from here, abort. */ if (err == -ENOSPC) ntfs_error(vol->sb, "Not enough space in the mft record/on " "disk for the non-resident attribute value. " "This case is not implemented yet."); else /* if (err == -EPERM) */ ntfs_error(vol->sb, "This attribute type may not be " "non-resident. This case is not implemented " "yet."); err = -EOPNOTSUPP; goto conv_err_out; #if 0 // TODO: Attempt to make other attributes non-resident. if (!err) goto do_resident_extend; /* * Both the attribute list attribute and the standard information * attribute must remain in the base inode. Thus, if this is one of * these attributes, we have to try to move other attributes out into * extent mft records instead. */ if (ni->type == AT_ATTRIBUTE_LIST || ni->type == AT_STANDARD_INFORMATION) { // TODO: Attempt to move other attributes into extent mft // records. err = -EOPNOTSUPP; if (!err) goto do_resident_extend; goto err_out; } // TODO: Attempt to move this attribute to an extent mft record, but // only if it is not already the only attribute in an mft record in // which case there would be nothing to gain. err = -EOPNOTSUPP; if (!err) goto do_resident_extend; /* There is nothing we can do to make enough space. )-: */ goto err_out; #endif do_non_resident_truncate: BUG_ON(!NInoNonResident(ni)); if (alloc_change < 0) { highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn); if (highest_vcn > 0 && old_alloc_size >> vol->cluster_size_bits > highest_vcn + 1) { /* * This attribute has multiple extents. Not yet * supported. */ ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, " "attribute type 0x%x, because the " "attribute is highly fragmented (it " "consists of multiple extents) and " "this case is not implemented yet.", vi->i_ino, (unsigned)le32_to_cpu(ni->type)); err = -EOPNOTSUPP; goto bad_out; } } /* * If the size is shrinking, need to reduce the initialized_size and * the data_size before reducing the allocation. */ if (size_change < 0) { /* * Make the valid size smaller (i_size is already up-to-date). */ write_lock_irqsave(&ni->size_lock, flags); if (new_size < ni->initialized_size) { ni->initialized_size = new_size; a->data.non_resident.initialized_size = cpu_to_sle64(new_size); } a->data.non_resident.data_size = cpu_to_sle64(new_size); write_unlock_irqrestore(&ni->size_lock, flags); flush_dcache_mft_record_page(ctx->ntfs_ino); mark_mft_record_dirty(ctx->ntfs_ino); /* If the allocated size is not changing, we are done. */ if (!alloc_change) goto unm_done; /* * If the size is shrinking it makes no sense for the * allocation to be growing. */ BUG_ON(alloc_change > 0); } else /* if (size_change >= 0) */ { /* * The file size is growing or staying the same but the * allocation can be shrinking, growing or staying the same. */ if (alloc_change > 0) { /* * We need to extend the allocation and possibly update * the data size. If we are updating the data size, * since we are not touching the initialized_size we do * not need to worry about the actual data on disk. * And as far as the page cache is concerned, there * will be no pages beyond the old data size and any * partial region in the last page between the old and * new data size (or the end of the page if the new * data size is outside the page) does not need to be * modified as explained above for the resident * attribute truncate case. To do this, we simply drop * the locks we hold and leave all the work to our * friendly helper ntfs_attr_extend_allocation(). */ ntfs_attr_put_search_ctx(ctx); unmap_mft_record(base_ni); up_write(&ni->runlist.lock); err = ntfs_attr_extend_allocation(ni, new_size, size_change > 0 ? new_size : -1, -1); /* * ntfs_attr_extend_allocation() will have done error * output already. */ goto done; } if (!alloc_change) goto alloc_done; } /* alloc_change < 0 */ /* Free the clusters. */ nr_freed = ntfs_cluster_free(ni, new_alloc_size >> vol->cluster_size_bits, -1, ctx); m = ctx->mrec; a = ctx->attr; if (unlikely(nr_freed < 0)) { ntfs_error(vol->sb, "Failed to release cluster(s) (error code " "%lli). Unmount and run chkdsk to recover " "the lost cluster(s).", (long long)nr_freed); NVolSetErrors(vol); nr_freed = 0; } /* Truncate the runlist. */ err = ntfs_rl_truncate_nolock(vol, &ni->runlist, new_alloc_size >> vol->cluster_size_bits); /* * If the runlist truncation failed and/or the search context is no * longer valid, we cannot resize the attribute record or build the * mapping pairs array thus we mark the inode bad so that no access to * the freed clusters can happen. */ if (unlikely(err || IS_ERR(m))) { ntfs_error(vol->sb, "Failed to %s (error code %li).%s", IS_ERR(m) ? "restore attribute search context" : "truncate attribute runlist", IS_ERR(m) ? PTR_ERR(m) : err, es); err = -EIO; goto bad_out; } /* Get the size for the shrunk mapping pairs array for the runlist. */ mp_size = ntfs_get_size_for_mapping_pairs(vol, ni->runlist.rl, 0, -1); if (unlikely(mp_size <= 0)) { ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, " "attribute type 0x%x, because determining the " "size for the mapping pairs failed with error " "code %i.%s", vi->i_ino, (unsigned)le32_to_cpu(ni->type), mp_size, es); err = -EIO; goto bad_out; } /* * Shrink the attribute record for the new mapping pairs array. Note, * this cannot fail since we are making the attribute smaller thus by * definition there is enough space to do so. */ attr_len = le32_to_cpu(a->length); err = ntfs_attr_record_resize(m, a, mp_size + le16_to_cpu(a->data.non_resident.mapping_pairs_offset)); BUG_ON(err); /* * Generate the mapping pairs array directly into the attribute record. */ err = ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(a->data.non_resident.mapping_pairs_offset), mp_size, ni->runlist.rl, 0, -1, NULL); if (unlikely(err)) { ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, " "attribute type 0x%x, because building the " "mapping pairs failed with error code %i.%s", vi->i_ino, (unsigned)le32_to_cpu(ni->type), err, es); err = -EIO; goto bad_out; } /* Update the allocated/compressed size as well as the highest vcn. */ a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >> vol->cluster_size_bits) - 1); write_lock_irqsave(&ni->size_lock, flags); ni->allocated_size = new_alloc_size; a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size); if (NInoSparse(ni) || NInoCompressed(ni)) { if (nr_freed) { ni->itype.compressed.size -= nr_freed << vol->cluster_size_bits; BUG_ON(ni->itype.compressed.size < 0); a->data.non_resident.compressed_size = cpu_to_sle64( ni->itype.compressed.size); vi->i_blocks = ni->itype.compressed.size >> 9; } } else vi->i_blocks = new_alloc_size >> 9; write_unlock_irqrestore(&ni->size_lock, flags); /* * We have shrunk the allocation. If this is a shrinking truncate we * have already dealt with the initialized_size and the data_size above * and we are done. If the truncate is only changing the allocation * and not the data_size, we are also done. If this is an extending * truncate, need to extend the data_size now which is ensured by the * fact that @size_change is positive. */ alloc_done: /* * If the size is growing, need to update it now. If it is shrinking, * we have already updated it above (before the allocation change). */ if (size_change > 0) a->data.non_resident.data_size = cpu_to_sle64(new_size); /* Ensure the modified mft record is written out. */ flush_dcache_mft_record_page(ctx->ntfs_ino); mark_mft_record_dirty(ctx->ntfs_ino); unm_done: ntfs_attr_put_search_ctx(ctx); unmap_mft_record(base_ni); up_write(&ni->runlist.lock); done: /* Update the mtime and ctime on the base inode. */ /* normally ->truncate shouldn't update ctime or mtime, * but ntfs did before so it got a copy & paste version * of file_update_time. one day someone should fix this * for real. */ if (!IS_NOCMTIME(VFS_I(base_ni)) && !IS_RDONLY(VFS_I(base_ni))) { struct timespec64 now = current_time(VFS_I(base_ni)); int sync_it = 0; if (!timespec64_equal(&VFS_I(base_ni)->i_mtime, &now) || !timespec64_equal(&VFS_I(base_ni)->i_ctime, &now)) sync_it = 1; VFS_I(base_ni)->i_mtime = now; VFS_I(base_ni)->i_ctime = now; if (sync_it) mark_inode_dirty_sync(VFS_I(base_ni)); } if (likely(!err)) { NInoClearTruncateFailed(ni); ntfs_debug("Done."); } return err; old_bad_out: old_size = -1; bad_out: if (err != -ENOMEM && err != -EOPNOTSUPP) NVolSetErrors(vol); if (err != -EOPNOTSUPP) NInoSetTruncateFailed(ni); else if (old_size >= 0) i_size_write(vi, old_size); err_out: if (ctx) ntfs_attr_put_search_ctx(ctx); if (m) unmap_mft_record(base_ni); up_write(&ni->runlist.lock); out: ntfs_debug("Failed. Returning error code %i.", err); return err; conv_err_out: if (err != -ENOMEM && err != -EOPNOTSUPP) NVolSetErrors(vol); if (err != -EOPNOTSUPP) NInoSetTruncateFailed(ni); else i_size_write(vi, old_size); goto out; } /** * ntfs_truncate_vfs - wrapper for ntfs_truncate() that has no return value * @vi: inode for which the i_size was changed * * Wrapper for ntfs_truncate() that has no return value. * * See ntfs_truncate() description above for details. */ #ifdef NTFS_RW void ntfs_truncate_vfs(struct inode *vi) { ntfs_truncate(vi); } #endif /** * ntfs_setattr - called from notify_change() when an attribute is being changed * @dentry: dentry whose attributes to change * @attr: structure describing the attributes and the changes * * We have to trap VFS attempts to truncate the file described by @dentry as * soon as possible, because we do not implement changes in i_size yet. So we * abort all i_size changes here. * * We also abort all changes of user, group, and mode as we do not implement * the NTFS ACLs yet. * * Called with ->i_mutex held. */ int ntfs_setattr(struct dentry *dentry, struct iattr *attr) { struct inode *vi = d_inode(dentry); int err; unsigned int ia_valid = attr->ia_valid; err = setattr_prepare(dentry, attr); if (err) goto out; /* We do not support NTFS ACLs yet. */ if (ia_valid & (ATTR_UID | ATTR_GID | ATTR_MODE)) { ntfs_warning(vi->i_sb, "Changes in user/group/mode are not " "supported yet, ignoring."); err = -EOPNOTSUPP; goto out; } if (ia_valid & ATTR_SIZE) { if (attr->ia_size != i_size_read(vi)) { ntfs_inode *ni = NTFS_I(vi); /* * FIXME: For now we do not support resizing of * compressed or encrypted files yet. */ if (NInoCompressed(ni) || NInoEncrypted(ni)) { ntfs_warning(vi->i_sb, "Changes in inode size " "are not supported yet for " "%s files, ignoring.", NInoCompressed(ni) ? "compressed" : "encrypted"); err = -EOPNOTSUPP; } else { truncate_setsize(vi, attr->ia_size); ntfs_truncate_vfs(vi); } if (err || ia_valid == ATTR_SIZE) goto out; } else { /* * We skipped the truncate but must still update * timestamps. */ ia_valid |= ATTR_MTIME | ATTR_CTIME; } } if (ia_valid & ATTR_ATIME) vi->i_atime = timespec64_trunc(attr->ia_atime, vi->i_sb->s_time_gran); if (ia_valid & ATTR_MTIME) vi->i_mtime = timespec64_trunc(attr->ia_mtime, vi->i_sb->s_time_gran); if (ia_valid & ATTR_CTIME) vi->i_ctime = timespec64_trunc(attr->ia_ctime, vi->i_sb->s_time_gran); mark_inode_dirty(vi); out: return err; } /** * ntfs_write_inode - write out a dirty inode * @vi: inode to write out * @sync: if true, write out synchronously * * Write out a dirty inode to disk including any extent inodes if present. * * If @sync is true, commit the inode to disk and wait for io completion. This * is done using write_mft_record(). * * If @sync is false, just schedule the write to happen but do not wait for i/o * completion. In 2.6 kernels, scheduling usually happens just by virtue of * marking the page (and in this case mft record) dirty but we do not implement * this yet as write_mft_record() largely ignores the @sync parameter and * always performs synchronous writes. * * Return 0 on success and -errno on error. */ int __ntfs_write_inode(struct inode *vi, int sync) { sle64 nt; ntfs_inode *ni = NTFS_I(vi); ntfs_attr_search_ctx *ctx; MFT_RECORD *m; STANDARD_INFORMATION *si; int err = 0; bool modified = false; ntfs_debug("Entering for %sinode 0x%lx.", NInoAttr(ni) ? "attr " : "", vi->i_ino); /* * Dirty attribute inodes are written via their real inodes so just * clean them here. Access time updates are taken care off when the * real inode is written. */ if (NInoAttr(ni)) { NInoClearDirty(ni); ntfs_debug("Done."); return 0; } /* Map, pin, and lock the mft record belonging to the inode. */ m = map_mft_record(ni); if (IS_ERR(m)) { err = PTR_ERR(m); goto err_out; } /* Update the access times in the standard information attribute. */ ctx = ntfs_attr_get_search_ctx(ni, m); if (unlikely(!ctx)) { err = -ENOMEM; goto unm_err_out; } err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, CASE_SENSITIVE, 0, NULL, 0, ctx); if (unlikely(err)) { ntfs_attr_put_search_ctx(ctx); goto unm_err_out; } si = (STANDARD_INFORMATION*)((u8*)ctx->attr + le16_to_cpu(ctx->attr->data.resident.value_offset)); /* Update the access times if they have changed. */ nt = utc2ntfs(vi->i_mtime); if (si->last_data_change_time != nt) { ntfs_debug("Updating mtime for inode 0x%lx: old = 0x%llx, " "new = 0x%llx", vi->i_ino, (long long) sle64_to_cpu(si->last_data_change_time), (long long)sle64_to_cpu(nt)); si->last_data_change_time = nt; modified = true; } nt = utc2ntfs(vi->i_ctime); if (si->last_mft_change_time != nt) { ntfs_debug("Updating ctime for inode 0x%lx: old = 0x%llx, " "new = 0x%llx", vi->i_ino, (long long) sle64_to_cpu(si->last_mft_change_time), (long long)sle64_to_cpu(nt)); si->last_mft_change_time = nt; modified = true; } nt = utc2ntfs(vi->i_atime); if (si->last_access_time != nt) { ntfs_debug("Updating atime for inode 0x%lx: old = 0x%llx, " "new = 0x%llx", vi->i_ino, (long long)sle64_to_cpu(si->last_access_time), (long long)sle64_to_cpu(nt)); si->last_access_time = nt; modified = true; } /* * If we just modified the standard information attribute we need to * mark the mft record it is in dirty. We do this manually so that * mark_inode_dirty() is not called which would redirty the inode and * hence result in an infinite loop of trying to write the inode. * There is no need to mark the base inode nor the base mft record * dirty, since we are going to write this mft record below in any case * and the base mft record may actually not have been modified so it * might not need to be written out. * NOTE: It is not a problem when the inode for $MFT itself is being * written out as mark_ntfs_record_dirty() will only set I_DIRTY_PAGES * on the $MFT inode and hence ntfs_write_inode() will not be * re-invoked because of it which in turn is ok since the dirtied mft * record will be cleaned and written out to disk below, i.e. before * this function returns. */ if (modified) { flush_dcache_mft_record_page(ctx->ntfs_ino); if (!NInoTestSetDirty(ctx->ntfs_ino)) mark_ntfs_record_dirty(ctx->ntfs_ino->page, ctx->ntfs_ino->page_ofs); } ntfs_attr_put_search_ctx(ctx); /* Now the access times are updated, write the base mft record. */ if (NInoDirty(ni)) err = write_mft_record(ni, m, sync); /* Write all attached extent mft records. */ mutex_lock(&ni->extent_lock); if (ni->nr_extents > 0) { ntfs_inode **extent_nis = ni->ext.extent_ntfs_inos; int i; ntfs_debug("Writing %i extent inodes.", ni->nr_extents); for (i = 0; i < ni->nr_extents; i++) { ntfs_inode *tni = extent_nis[i]; if (NInoDirty(tni)) { MFT_RECORD *tm = map_mft_record(tni); int ret; if (IS_ERR(tm)) { if (!err || err == -ENOMEM) err = PTR_ERR(tm); continue; } ret = write_mft_record(tni, tm, sync); unmap_mft_record(tni); if (unlikely(ret)) { if (!err || err == -ENOMEM) err = ret; } } } } mutex_unlock(&ni->extent_lock); unmap_mft_record(ni); if (unlikely(err)) goto err_out; ntfs_debug("Done."); return 0; unm_err_out: unmap_mft_record(ni); err_out: if (err == -ENOMEM) { ntfs_warning(vi->i_sb, "Not enough memory to write inode. " "Marking the inode dirty again, so the VFS " "retries later."); mark_inode_dirty(vi); } else { ntfs_error(vi->i_sb, "Failed (error %i): Run chkdsk.", -err); NVolSetErrors(ni->vol); } return err; } #endif /* NTFS_RW */