// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de) * Copyright (C) 2002- 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../internal.h" int is_skas_winch(int pid, int fd, void *data) { return pid == getpgrp(); } static const char *ptrace_reg_name(int idx) { #define R(n) case HOST_##n: return #n switch (idx) { #ifdef __x86_64__ R(BX); R(CX); R(DI); R(SI); R(DX); R(BP); R(AX); R(R8); R(R9); R(R10); R(R11); R(R12); R(R13); R(R14); R(R15); R(ORIG_AX); R(CS); R(SS); R(EFLAGS); #elif defined(__i386__) R(IP); R(SP); R(EFLAGS); R(AX); R(BX); R(CX); R(DX); R(SI); R(DI); R(BP); R(CS); R(SS); R(DS); R(FS); R(ES); R(GS); R(ORIG_AX); #endif } return ""; } static int ptrace_dump_regs(int pid) { unsigned long regs[MAX_REG_NR]; int i; if (ptrace(PTRACE_GETREGS, pid, 0, regs) < 0) return -errno; printk(UM_KERN_ERR "Stub registers -\n"); for (i = 0; i < ARRAY_SIZE(regs); i++) { const char *regname = ptrace_reg_name(i); printk(UM_KERN_ERR "\t%s\t(%2d): %lx\n", regname, i, regs[i]); } return 0; } /* * Signals that are OK to receive in the stub - we'll just continue it. * SIGWINCH will happen when UML is inside a detached screen. */ #define STUB_SIG_MASK ((1 << SIGALRM) | (1 << SIGWINCH)) /* Signals that the stub will finish with - anything else is an error */ #define STUB_DONE_MASK (1 << SIGTRAP) void wait_stub_done(int pid) { int n, status, err; while (1) { CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL)); if ((n < 0) || !WIFSTOPPED(status)) goto bad_wait; if (((1 << WSTOPSIG(status)) & STUB_SIG_MASK) == 0) break; err = ptrace(PTRACE_CONT, pid, 0, 0); if (err) { printk(UM_KERN_ERR "%s : continue failed, errno = %d\n", __func__, errno); fatal_sigsegv(); } } if (((1 << WSTOPSIG(status)) & STUB_DONE_MASK) != 0) return; bad_wait: err = ptrace_dump_regs(pid); if (err) printk(UM_KERN_ERR "Failed to get registers from stub, errno = %d\n", -err); printk(UM_KERN_ERR "%s : failed to wait for SIGTRAP, pid = %d, n = %d, errno = %d, status = 0x%x\n", __func__, pid, n, errno, status); fatal_sigsegv(); } extern unsigned long current_stub_stack(void); static void get_skas_faultinfo(int pid, struct faultinfo *fi) { int err; err = ptrace(PTRACE_CONT, pid, 0, SIGSEGV); if (err) { printk(UM_KERN_ERR "Failed to continue stub, pid = %d, " "errno = %d\n", pid, errno); fatal_sigsegv(); } wait_stub_done(pid); /* * faultinfo is prepared by the stub_segv_handler at start of * the stub stack page. We just have to copy it. */ memcpy(fi, (void *)current_stub_stack(), sizeof(*fi)); } static void handle_segv(int pid, struct uml_pt_regs *regs) { get_skas_faultinfo(pid, ®s->faultinfo); segv(regs->faultinfo, 0, 1, NULL); } static void handle_trap(int pid, struct uml_pt_regs *regs) { if ((UPT_IP(regs) >= STUB_START) && (UPT_IP(regs) < STUB_END)) fatal_sigsegv(); handle_syscall(regs); } extern char __syscall_stub_start[]; static int stub_exe_fd; static int userspace_tramp(void *stack) { char *const argv[] = { "uml-userspace", NULL }; int pipe_fds[2]; unsigned long long offset; struct stub_init_data init_data = { .stub_start = STUB_START, .segv_handler = STUB_CODE + (unsigned long) stub_segv_handler - (unsigned long) __syscall_stub_start, }; struct iomem_region *iomem; int ret; init_data.stub_code_fd = phys_mapping(uml_to_phys(__syscall_stub_start), &offset); init_data.stub_code_offset = MMAP_OFFSET(offset); init_data.stub_data_fd = phys_mapping(uml_to_phys(stack), &offset); init_data.stub_data_offset = MMAP_OFFSET(offset); /* Set CLOEXEC on all FDs and then unset on all memory related FDs */ close_range(0, ~0U, CLOSE_RANGE_CLOEXEC); fcntl(init_data.stub_data_fd, F_SETFD, 0); for (iomem = iomem_regions; iomem; iomem = iomem->next) fcntl(iomem->fd, F_SETFD, 0); /* Create a pipe for init_data (no CLOEXEC) and dup2 to STDIN */ if (pipe(pipe_fds)) exit(2); if (dup2(pipe_fds[0], 0) < 0) exit(3); close(pipe_fds[0]); /* Write init_data and close write side */ ret = write(pipe_fds[1], &init_data, sizeof(init_data)); close(pipe_fds[1]); if (ret != sizeof(init_data)) exit(4); execveat(stub_exe_fd, "", argv, NULL, AT_EMPTY_PATH); exit(5); } extern char stub_exe_start[]; extern char stub_exe_end[]; extern char *tempdir; #define STUB_EXE_NAME_TEMPLATE "/uml-userspace-XXXXXX" #ifndef MFD_EXEC #define MFD_EXEC 0x0010U #endif static int __init init_stub_exe_fd(void) { size_t written = 0; char *tmpfile = NULL; stub_exe_fd = memfd_create("uml-userspace", MFD_EXEC | MFD_CLOEXEC | MFD_ALLOW_SEALING); if (stub_exe_fd < 0) { printk(UM_KERN_INFO "Could not create executable memfd, using temporary file!"); tmpfile = malloc(strlen(tempdir) + strlen(STUB_EXE_NAME_TEMPLATE) + 1); if (tmpfile == NULL) panic("Failed to allocate memory for stub binary name"); strcpy(tmpfile, tempdir); strcat(tmpfile, STUB_EXE_NAME_TEMPLATE); stub_exe_fd = mkstemp(tmpfile); if (stub_exe_fd < 0) panic("Could not create temporary file for stub binary: %d", -errno); } while (written < stub_exe_end - stub_exe_start) { ssize_t res = write(stub_exe_fd, stub_exe_start + written, stub_exe_end - stub_exe_start - written); if (res < 0) { if (errno == EINTR) continue; if (tmpfile) unlink(tmpfile); panic("Failed write stub binary: %d", -errno); } written += res; } if (!tmpfile) { fcntl(stub_exe_fd, F_ADD_SEALS, F_SEAL_WRITE | F_SEAL_SHRINK | F_SEAL_GROW | F_SEAL_SEAL); } else { if (fchmod(stub_exe_fd, 00500) < 0) { unlink(tmpfile); panic("Could not make stub binary executable: %d", -errno); } close(stub_exe_fd); stub_exe_fd = open(tmpfile, O_RDONLY | O_CLOEXEC | O_NOFOLLOW); if (stub_exe_fd < 0) { unlink(tmpfile); panic("Could not reopen stub binary: %d", -errno); } unlink(tmpfile); free(tmpfile); } return 0; } __initcall(init_stub_exe_fd); int userspace_pid[NR_CPUS]; /** * start_userspace() - prepare a new userspace process * @stub_stack: pointer to the stub stack. * * Setups a new temporary stack page that is used while userspace_tramp() runs * Clones the kernel process into a new userspace process, with FDs only. * * Return: When positive: the process id of the new userspace process, * when negative: an error number. * FIXME: can PIDs become negative?! */ int start_userspace(unsigned long stub_stack) { void *stack; unsigned long sp; int pid, status, n, err; /* setup a temporary stack page */ stack = mmap(NULL, UM_KERN_PAGE_SIZE, PROT_READ | PROT_WRITE | PROT_EXEC, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); if (stack == MAP_FAILED) { err = -errno; printk(UM_KERN_ERR "%s : mmap failed, errno = %d\n", __func__, errno); return err; } /* set stack pointer to the end of the stack page, so it can grow downwards */ sp = (unsigned long)stack + UM_KERN_PAGE_SIZE; /* clone into new userspace process */ pid = clone(userspace_tramp, (void *) sp, CLONE_VFORK | CLONE_VM | SIGCHLD, (void *)stub_stack); if (pid < 0) { err = -errno; printk(UM_KERN_ERR "%s : clone failed, errno = %d\n", __func__, errno); return err; } do { CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL)); if (n < 0) { err = -errno; printk(UM_KERN_ERR "%s : wait failed, errno = %d\n", __func__, errno); goto out_kill; } } while (WIFSTOPPED(status) && (WSTOPSIG(status) == SIGALRM)); if (!WIFSTOPPED(status) || (WSTOPSIG(status) != SIGSTOP)) { err = -EINVAL; printk(UM_KERN_ERR "%s : expected SIGSTOP, got status = %d\n", __func__, status); goto out_kill; } if (ptrace(PTRACE_SETOPTIONS, pid, NULL, (void *) PTRACE_O_TRACESYSGOOD) < 0) { err = -errno; printk(UM_KERN_ERR "%s : PTRACE_SETOPTIONS failed, errno = %d\n", __func__, errno); goto out_kill; } if (munmap(stack, UM_KERN_PAGE_SIZE) < 0) { err = -errno; printk(UM_KERN_ERR "%s : munmap failed, errno = %d\n", __func__, errno); goto out_kill; } return pid; out_kill: os_kill_ptraced_process(pid, 1); return err; } int unscheduled_userspace_iterations; extern unsigned long tt_extra_sched_jiffies; void userspace(struct uml_pt_regs *regs) { int err, status, op, pid = userspace_pid[0]; siginfo_t si; /* Handle any immediate reschedules or signals */ interrupt_end(); while (1) { /* * When we are in time-travel mode, userspace can theoretically * do a *lot* of work without being scheduled. The problem with * this is that it will prevent kernel bookkeeping (primarily * the RCU) from running and this can for example cause OOM * situations. * * This code accounts a jiffie against the scheduling clock * after the defined userspace iterations in the same thread. * By doing so the situation is effectively prevented. */ if (time_travel_mode == TT_MODE_INFCPU || time_travel_mode == TT_MODE_EXTERNAL) { #ifdef CONFIG_UML_MAX_USERSPACE_ITERATIONS if (CONFIG_UML_MAX_USERSPACE_ITERATIONS && unscheduled_userspace_iterations++ > CONFIG_UML_MAX_USERSPACE_ITERATIONS) { tt_extra_sched_jiffies += 1; unscheduled_userspace_iterations = 0; } #endif } time_travel_print_bc_msg(); current_mm_sync(); /* Flush out any pending syscalls */ err = syscall_stub_flush(current_mm_id()); if (err) { if (err == -ENOMEM) report_enomem(); printk(UM_KERN_ERR "%s - Error flushing stub syscalls: %d", __func__, -err); fatal_sigsegv(); } /* * This can legitimately fail if the process loads a * bogus value into a segment register. It will * segfault and PTRACE_GETREGS will read that value * out of the process. However, PTRACE_SETREGS will * fail. In this case, there is nothing to do but * just kill the process. */ if (ptrace(PTRACE_SETREGS, pid, 0, regs->gp)) { printk(UM_KERN_ERR "%s - ptrace set regs failed, errno = %d\n", __func__, errno); fatal_sigsegv(); } if (put_fp_registers(pid, regs->fp)) { printk(UM_KERN_ERR "%s - ptrace set fp regs failed, errno = %d\n", __func__, errno); fatal_sigsegv(); } if (singlestepping()) op = PTRACE_SYSEMU_SINGLESTEP; else op = PTRACE_SYSEMU; if (ptrace(op, pid, 0, 0)) { printk(UM_KERN_ERR "%s - ptrace continue failed, op = %d, errno = %d\n", __func__, op, errno); fatal_sigsegv(); } CATCH_EINTR(err = waitpid(pid, &status, WUNTRACED | __WALL)); if (err < 0) { printk(UM_KERN_ERR "%s - wait failed, errno = %d\n", __func__, errno); fatal_sigsegv(); } regs->is_user = 1; if (ptrace(PTRACE_GETREGS, pid, 0, regs->gp)) { printk(UM_KERN_ERR "%s - PTRACE_GETREGS failed, errno = %d\n", __func__, errno); fatal_sigsegv(); } if (get_fp_registers(pid, regs->fp)) { printk(UM_KERN_ERR "%s - get_fp_registers failed, errno = %d\n", __func__, errno); fatal_sigsegv(); } UPT_SYSCALL_NR(regs) = -1; /* Assume: It's not a syscall */ if (WIFSTOPPED(status)) { int sig = WSTOPSIG(status); /* These signal handlers need the si argument. * The SIGIO and SIGALARM handlers which constitute the * majority of invocations, do not use it. */ switch (sig) { case SIGSEGV: case SIGTRAP: case SIGILL: case SIGBUS: case SIGFPE: case SIGWINCH: ptrace(PTRACE_GETSIGINFO, pid, 0, (struct siginfo *)&si); break; } switch (sig) { case SIGSEGV: if (PTRACE_FULL_FAULTINFO) { get_skas_faultinfo(pid, ®s->faultinfo); (*sig_info[SIGSEGV])(SIGSEGV, (struct siginfo *)&si, regs); } else handle_segv(pid, regs); break; case SIGTRAP + 0x80: handle_trap(pid, regs); break; case SIGTRAP: relay_signal(SIGTRAP, (struct siginfo *)&si, regs); break; case SIGALRM: break; case SIGIO: case SIGILL: case SIGBUS: case SIGFPE: case SIGWINCH: block_signals_trace(); (*sig_info[sig])(sig, (struct siginfo *)&si, regs); unblock_signals_trace(); break; default: printk(UM_KERN_ERR "%s - child stopped with signal %d\n", __func__, sig); fatal_sigsegv(); } pid = userspace_pid[0]; interrupt_end(); /* Avoid -ERESTARTSYS handling in host */ if (PT_SYSCALL_NR_OFFSET != PT_SYSCALL_RET_OFFSET) PT_SYSCALL_NR(regs->gp) = -1; } } } void new_thread(void *stack, jmp_buf *buf, void (*handler)(void)) { (*buf)[0].JB_IP = (unsigned long) handler; (*buf)[0].JB_SP = (unsigned long) stack + UM_THREAD_SIZE - sizeof(void *); } #define INIT_JMP_NEW_THREAD 0 #define INIT_JMP_CALLBACK 1 #define INIT_JMP_HALT 2 #define INIT_JMP_REBOOT 3 void switch_threads(jmp_buf *me, jmp_buf *you) { unscheduled_userspace_iterations = 0; if (UML_SETJMP(me) == 0) UML_LONGJMP(you, 1); } static jmp_buf initial_jmpbuf; /* XXX Make these percpu */ static void (*cb_proc)(void *arg); static void *cb_arg; static jmp_buf *cb_back; int start_idle_thread(void *stack, jmp_buf *switch_buf) { int n; set_handler(SIGWINCH); /* * Can't use UML_SETJMP or UML_LONGJMP here because they save * and restore signals, with the possible side-effect of * trying to handle any signals which came when they were * blocked, which can't be done on this stack. * Signals must be blocked when jumping back here and restored * after returning to the jumper. */ n = setjmp(initial_jmpbuf); switch (n) { case INIT_JMP_NEW_THREAD: (*switch_buf)[0].JB_IP = (unsigned long) uml_finishsetup; (*switch_buf)[0].JB_SP = (unsigned long) stack + UM_THREAD_SIZE - sizeof(void *); break; case INIT_JMP_CALLBACK: (*cb_proc)(cb_arg); longjmp(*cb_back, 1); break; case INIT_JMP_HALT: kmalloc_ok = 0; return 0; case INIT_JMP_REBOOT: kmalloc_ok = 0; return 1; default: printk(UM_KERN_ERR "Bad sigsetjmp return in %s - %d\n", __func__, n); fatal_sigsegv(); } longjmp(*switch_buf, 1); /* unreachable */ printk(UM_KERN_ERR "impossible long jump!"); fatal_sigsegv(); return 0; } void initial_thread_cb_skas(void (*proc)(void *), void *arg) { jmp_buf here; cb_proc = proc; cb_arg = arg; cb_back = &here; block_signals_trace(); if (UML_SETJMP(&here) == 0) UML_LONGJMP(&initial_jmpbuf, INIT_JMP_CALLBACK); unblock_signals_trace(); cb_proc = NULL; cb_arg = NULL; cb_back = NULL; } void halt_skas(void) { block_signals_trace(); UML_LONGJMP(&initial_jmpbuf, INIT_JMP_HALT); } static bool noreboot; static int __init noreboot_cmd_param(char *str, int *add) { *add = 0; noreboot = true; return 0; } __uml_setup("noreboot", noreboot_cmd_param, "noreboot\n" " Rather than rebooting, exit always, akin to QEMU's -no-reboot option.\n" " This is useful if you're using CONFIG_PANIC_TIMEOUT in order to catch\n" " crashes in CI\n"); void reboot_skas(void) { block_signals_trace(); UML_LONGJMP(&initial_jmpbuf, noreboot ? INIT_JMP_HALT : INIT_JMP_REBOOT); } void __switch_mm(struct mm_id *mm_idp) { userspace_pid[0] = mm_idp->pid; }