// SPDX-License-Identifier: GPL-2.0-or-later /* * APM X-Gene SoC EDAC (error detection and correction) * * Copyright (c) 2015, Applied Micro Circuits Corporation * Author: Feng Kan * Loc Ho */ #include #include #include #include #include #include #include #include #include "edac_module.h" #define EDAC_MOD_STR "xgene_edac" /* Global error configuration status registers (CSR) */ #define PCPHPERRINTSTS 0x0000 #define PCPHPERRINTMSK 0x0004 #define MCU_CTL_ERR_MASK BIT(12) #define IOB_PA_ERR_MASK BIT(11) #define IOB_BA_ERR_MASK BIT(10) #define IOB_XGIC_ERR_MASK BIT(9) #define IOB_RB_ERR_MASK BIT(8) #define L3C_UNCORR_ERR_MASK BIT(5) #define MCU_UNCORR_ERR_MASK BIT(4) #define PMD3_MERR_MASK BIT(3) #define PMD2_MERR_MASK BIT(2) #define PMD1_MERR_MASK BIT(1) #define PMD0_MERR_MASK BIT(0) #define PCPLPERRINTSTS 0x0008 #define PCPLPERRINTMSK 0x000C #define CSW_SWITCH_TRACE_ERR_MASK BIT(2) #define L3C_CORR_ERR_MASK BIT(1) #define MCU_CORR_ERR_MASK BIT(0) #define MEMERRINTSTS 0x0010 #define MEMERRINTMSK 0x0014 struct xgene_edac { struct device *dev; struct regmap *csw_map; struct regmap *mcba_map; struct regmap *mcbb_map; struct regmap *efuse_map; struct regmap *rb_map; void __iomem *pcp_csr; spinlock_t lock; struct dentry *dfs; struct list_head mcus; struct list_head pmds; struct list_head l3s; struct list_head socs; struct mutex mc_lock; int mc_active_mask; int mc_registered_mask; }; static void xgene_edac_pcp_rd(struct xgene_edac *edac, u32 reg, u32 *val) { *val = readl(edac->pcp_csr + reg); } static void xgene_edac_pcp_clrbits(struct xgene_edac *edac, u32 reg, u32 bits_mask) { u32 val; spin_lock(&edac->lock); val = readl(edac->pcp_csr + reg); val &= ~bits_mask; writel(val, edac->pcp_csr + reg); spin_unlock(&edac->lock); } static void xgene_edac_pcp_setbits(struct xgene_edac *edac, u32 reg, u32 bits_mask) { u32 val; spin_lock(&edac->lock); val = readl(edac->pcp_csr + reg); val |= bits_mask; writel(val, edac->pcp_csr + reg); spin_unlock(&edac->lock); } /* Memory controller error CSR */ #define MCU_MAX_RANK 8 #define MCU_RANK_STRIDE 0x40 #define MCUGECR 0x0110 #define MCU_GECR_DEMANDUCINTREN_MASK BIT(0) #define MCU_GECR_BACKUCINTREN_MASK BIT(1) #define MCU_GECR_CINTREN_MASK BIT(2) #define MUC_GECR_MCUADDRERREN_MASK BIT(9) #define MCUGESR 0x0114 #define MCU_GESR_ADDRNOMATCH_ERR_MASK BIT(7) #define MCU_GESR_ADDRMULTIMATCH_ERR_MASK BIT(6) #define MCU_GESR_PHYP_ERR_MASK BIT(3) #define MCUESRR0 0x0314 #define MCU_ESRR_MULTUCERR_MASK BIT(3) #define MCU_ESRR_BACKUCERR_MASK BIT(2) #define MCU_ESRR_DEMANDUCERR_MASK BIT(1) #define MCU_ESRR_CERR_MASK BIT(0) #define MCUESRRA0 0x0318 #define MCUEBLRR0 0x031c #define MCU_EBLRR_ERRBANK_RD(src) (((src) & 0x00000007) >> 0) #define MCUERCRR0 0x0320 #define MCU_ERCRR_ERRROW_RD(src) (((src) & 0xFFFF0000) >> 16) #define MCU_ERCRR_ERRCOL_RD(src) ((src) & 0x00000FFF) #define MCUSBECNT0 0x0324 #define MCU_SBECNT_COUNT(src) ((src) & 0xFFFF) #define CSW_CSWCR 0x0000 #define CSW_CSWCR_DUALMCB_MASK BIT(0) #define MCBADDRMR 0x0000 #define MCBADDRMR_MCU_INTLV_MODE_MASK BIT(3) #define MCBADDRMR_DUALMCU_MODE_MASK BIT(2) #define MCBADDRMR_MCB_INTLV_MODE_MASK BIT(1) #define MCBADDRMR_ADDRESS_MODE_MASK BIT(0) struct xgene_edac_mc_ctx { struct list_head next; char *name; struct mem_ctl_info *mci; struct xgene_edac *edac; void __iomem *mcu_csr; u32 mcu_id; }; static ssize_t xgene_edac_mc_err_inject_write(struct file *file, const char __user *data, size_t count, loff_t *ppos) { struct mem_ctl_info *mci = file->private_data; struct xgene_edac_mc_ctx *ctx = mci->pvt_info; int i; for (i = 0; i < MCU_MAX_RANK; i++) { writel(MCU_ESRR_MULTUCERR_MASK | MCU_ESRR_BACKUCERR_MASK | MCU_ESRR_DEMANDUCERR_MASK | MCU_ESRR_CERR_MASK, ctx->mcu_csr + MCUESRRA0 + i * MCU_RANK_STRIDE); } return count; } static const struct file_operations xgene_edac_mc_debug_inject_fops = { .open = simple_open, .write = xgene_edac_mc_err_inject_write, .llseek = generic_file_llseek, }; static void xgene_edac_mc_create_debugfs_node(struct mem_ctl_info *mci) { if (!IS_ENABLED(CONFIG_EDAC_DEBUG)) return; if (!mci->debugfs) return; edac_debugfs_create_file("inject_ctrl", S_IWUSR, mci->debugfs, mci, &xgene_edac_mc_debug_inject_fops); } static void xgene_edac_mc_check(struct mem_ctl_info *mci) { struct xgene_edac_mc_ctx *ctx = mci->pvt_info; unsigned int pcp_hp_stat; unsigned int pcp_lp_stat; u32 reg; u32 rank; u32 bank; u32 count; u32 col_row; xgene_edac_pcp_rd(ctx->edac, PCPHPERRINTSTS, &pcp_hp_stat); xgene_edac_pcp_rd(ctx->edac, PCPLPERRINTSTS, &pcp_lp_stat); if (!((MCU_UNCORR_ERR_MASK & pcp_hp_stat) || (MCU_CTL_ERR_MASK & pcp_hp_stat) || (MCU_CORR_ERR_MASK & pcp_lp_stat))) return; for (rank = 0; rank < MCU_MAX_RANK; rank++) { reg = readl(ctx->mcu_csr + MCUESRR0 + rank * MCU_RANK_STRIDE); /* Detect uncorrectable memory error */ if (reg & (MCU_ESRR_DEMANDUCERR_MASK | MCU_ESRR_BACKUCERR_MASK)) { /* Detected uncorrectable memory error */ edac_mc_chipset_printk(mci, KERN_ERR, "X-Gene", "MCU uncorrectable error at rank %d\n", rank); edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, 0, 0, 0, 0, 0, -1, mci->ctl_name, ""); } /* Detect correctable memory error */ if (reg & MCU_ESRR_CERR_MASK) { bank = readl(ctx->mcu_csr + MCUEBLRR0 + rank * MCU_RANK_STRIDE); col_row = readl(ctx->mcu_csr + MCUERCRR0 + rank * MCU_RANK_STRIDE); count = readl(ctx->mcu_csr + MCUSBECNT0 + rank * MCU_RANK_STRIDE); edac_mc_chipset_printk(mci, KERN_WARNING, "X-Gene", "MCU correctable error at rank %d bank %d column %d row %d count %d\n", rank, MCU_EBLRR_ERRBANK_RD(bank), MCU_ERCRR_ERRCOL_RD(col_row), MCU_ERCRR_ERRROW_RD(col_row), MCU_SBECNT_COUNT(count)); edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, 0, 0, 0, -1, mci->ctl_name, ""); } /* Clear all error registers */ writel(0x0, ctx->mcu_csr + MCUEBLRR0 + rank * MCU_RANK_STRIDE); writel(0x0, ctx->mcu_csr + MCUERCRR0 + rank * MCU_RANK_STRIDE); writel(0x0, ctx->mcu_csr + MCUSBECNT0 + rank * MCU_RANK_STRIDE); writel(reg, ctx->mcu_csr + MCUESRR0 + rank * MCU_RANK_STRIDE); } /* Detect memory controller error */ reg = readl(ctx->mcu_csr + MCUGESR); if (reg) { if (reg & MCU_GESR_ADDRNOMATCH_ERR_MASK) edac_mc_chipset_printk(mci, KERN_WARNING, "X-Gene", "MCU address miss-match error\n"); if (reg & MCU_GESR_ADDRMULTIMATCH_ERR_MASK) edac_mc_chipset_printk(mci, KERN_WARNING, "X-Gene", "MCU address multi-match error\n"); writel(reg, ctx->mcu_csr + MCUGESR); } } static void xgene_edac_mc_irq_ctl(struct mem_ctl_info *mci, bool enable) { struct xgene_edac_mc_ctx *ctx = mci->pvt_info; unsigned int val; if (edac_op_state != EDAC_OPSTATE_INT) return; mutex_lock(&ctx->edac->mc_lock); /* * As there is only single bit for enable error and interrupt mask, * we must only enable top level interrupt after all MCUs are * registered. Otherwise, if there is an error and the corresponding * MCU has not registered, the interrupt will never get cleared. To * determine all MCU have registered, we will keep track of active * MCUs and registered MCUs. */ if (enable) { /* Set registered MCU bit */ ctx->edac->mc_registered_mask |= 1 << ctx->mcu_id; /* Enable interrupt after all active MCU registered */ if (ctx->edac->mc_registered_mask == ctx->edac->mc_active_mask) { /* Enable memory controller top level interrupt */ xgene_edac_pcp_clrbits(ctx->edac, PCPHPERRINTMSK, MCU_UNCORR_ERR_MASK | MCU_CTL_ERR_MASK); xgene_edac_pcp_clrbits(ctx->edac, PCPLPERRINTMSK, MCU_CORR_ERR_MASK); } /* Enable MCU interrupt and error reporting */ val = readl(ctx->mcu_csr + MCUGECR); val |= MCU_GECR_DEMANDUCINTREN_MASK | MCU_GECR_BACKUCINTREN_MASK | MCU_GECR_CINTREN_MASK | MUC_GECR_MCUADDRERREN_MASK; writel(val, ctx->mcu_csr + MCUGECR); } else { /* Disable MCU interrupt */ val = readl(ctx->mcu_csr + MCUGECR); val &= ~(MCU_GECR_DEMANDUCINTREN_MASK | MCU_GECR_BACKUCINTREN_MASK | MCU_GECR_CINTREN_MASK | MUC_GECR_MCUADDRERREN_MASK); writel(val, ctx->mcu_csr + MCUGECR); /* Disable memory controller top level interrupt */ xgene_edac_pcp_setbits(ctx->edac, PCPHPERRINTMSK, MCU_UNCORR_ERR_MASK | MCU_CTL_ERR_MASK); xgene_edac_pcp_setbits(ctx->edac, PCPLPERRINTMSK, MCU_CORR_ERR_MASK); /* Clear registered MCU bit */ ctx->edac->mc_registered_mask &= ~(1 << ctx->mcu_id); } mutex_unlock(&ctx->edac->mc_lock); } static int xgene_edac_mc_is_active(struct xgene_edac_mc_ctx *ctx, int mc_idx) { unsigned int reg; u32 mcu_mask; if (regmap_read(ctx->edac->csw_map, CSW_CSWCR, ®)) return 0; if (reg & CSW_CSWCR_DUALMCB_MASK) { /* * Dual MCB active - Determine if all 4 active or just MCU0 * and MCU2 active */ if (regmap_read(ctx->edac->mcbb_map, MCBADDRMR, ®)) return 0; mcu_mask = (reg & MCBADDRMR_DUALMCU_MODE_MASK) ? 0xF : 0x5; } else { /* * Single MCB active - Determine if MCU0/MCU1 or just MCU0 * active */ if (regmap_read(ctx->edac->mcba_map, MCBADDRMR, ®)) return 0; mcu_mask = (reg & MCBADDRMR_DUALMCU_MODE_MASK) ? 0x3 : 0x1; } /* Save active MC mask if hasn't set already */ if (!ctx->edac->mc_active_mask) ctx->edac->mc_active_mask = mcu_mask; return (mcu_mask & (1 << mc_idx)) ? 1 : 0; } static int xgene_edac_mc_add(struct xgene_edac *edac, struct device_node *np) { struct mem_ctl_info *mci; struct edac_mc_layer layers[2]; struct xgene_edac_mc_ctx tmp_ctx; struct xgene_edac_mc_ctx *ctx; struct resource res; int rc; memset(&tmp_ctx, 0, sizeof(tmp_ctx)); tmp_ctx.edac = edac; if (!devres_open_group(edac->dev, xgene_edac_mc_add, GFP_KERNEL)) return -ENOMEM; rc = of_address_to_resource(np, 0, &res); if (rc < 0) { dev_err(edac->dev, "no MCU resource address\n"); goto err_group; } tmp_ctx.mcu_csr = devm_ioremap_resource(edac->dev, &res); if (IS_ERR(tmp_ctx.mcu_csr)) { dev_err(edac->dev, "unable to map MCU resource\n"); rc = PTR_ERR(tmp_ctx.mcu_csr); goto err_group; } /* Ignore non-active MCU */ if (of_property_read_u32(np, "memory-controller", &tmp_ctx.mcu_id)) { dev_err(edac->dev, "no memory-controller property\n"); rc = -ENODEV; goto err_group; } if (!xgene_edac_mc_is_active(&tmp_ctx, tmp_ctx.mcu_id)) { rc = -ENODEV; goto err_group; } layers[0].type = EDAC_MC_LAYER_CHIP_SELECT; layers[0].size = 4; layers[0].is_virt_csrow = true; layers[1].type = EDAC_MC_LAYER_CHANNEL; layers[1].size = 2; layers[1].is_virt_csrow = false; mci = edac_mc_alloc(tmp_ctx.mcu_id, ARRAY_SIZE(layers), layers, sizeof(*ctx)); if (!mci) { rc = -ENOMEM; goto err_group; } ctx = mci->pvt_info; *ctx = tmp_ctx; /* Copy over resource value */ ctx->name = "xgene_edac_mc_err"; ctx->mci = mci; mci->pdev = &mci->dev; mci->ctl_name = ctx->name; mci->dev_name = ctx->name; mci->mtype_cap = MEM_FLAG_RDDR | MEM_FLAG_RDDR2 | MEM_FLAG_RDDR3 | MEM_FLAG_DDR | MEM_FLAG_DDR2 | MEM_FLAG_DDR3; mci->edac_ctl_cap = EDAC_FLAG_SECDED; mci->edac_cap = EDAC_FLAG_SECDED; mci->mod_name = EDAC_MOD_STR; mci->ctl_page_to_phys = NULL; mci->scrub_cap = SCRUB_FLAG_HW_SRC; mci->scrub_mode = SCRUB_HW_SRC; if (edac_op_state == EDAC_OPSTATE_POLL) mci->edac_check = xgene_edac_mc_check; if (edac_mc_add_mc(mci)) { dev_err(edac->dev, "edac_mc_add_mc failed\n"); rc = -EINVAL; goto err_free; } xgene_edac_mc_create_debugfs_node(mci); list_add(&ctx->next, &edac->mcus); xgene_edac_mc_irq_ctl(mci, true); devres_remove_group(edac->dev, xgene_edac_mc_add); dev_info(edac->dev, "X-Gene EDAC MC registered\n"); return 0; err_free: edac_mc_free(mci); err_group: devres_release_group(edac->dev, xgene_edac_mc_add); return rc; } static int xgene_edac_mc_remove(struct xgene_edac_mc_ctx *mcu) { xgene_edac_mc_irq_ctl(mcu->mci, false); edac_mc_del_mc(&mcu->mci->dev); edac_mc_free(mcu->mci); return 0; } /* CPU L1/L2 error CSR */ #define MAX_CPU_PER_PMD 2 #define CPU_CSR_STRIDE 0x00100000 #define CPU_L2C_PAGE 0x000D0000 #define CPU_MEMERR_L2C_PAGE 0x000E0000 #define CPU_MEMERR_CPU_PAGE 0x000F0000 #define MEMERR_CPU_ICFECR_PAGE_OFFSET 0x0000 #define MEMERR_CPU_ICFESR_PAGE_OFFSET 0x0004 #define MEMERR_CPU_ICFESR_ERRWAY_RD(src) (((src) & 0xFF000000) >> 24) #define MEMERR_CPU_ICFESR_ERRINDEX_RD(src) (((src) & 0x003F0000) >> 16) #define MEMERR_CPU_ICFESR_ERRINFO_RD(src) (((src) & 0x0000FF00) >> 8) #define MEMERR_CPU_ICFESR_ERRTYPE_RD(src) (((src) & 0x00000070) >> 4) #define MEMERR_CPU_ICFESR_MULTCERR_MASK BIT(2) #define MEMERR_CPU_ICFESR_CERR_MASK BIT(0) #define MEMERR_CPU_LSUESR_PAGE_OFFSET 0x000c #define MEMERR_CPU_LSUESR_ERRWAY_RD(src) (((src) & 0xFF000000) >> 24) #define MEMERR_CPU_LSUESR_ERRINDEX_RD(src) (((src) & 0x003F0000) >> 16) #define MEMERR_CPU_LSUESR_ERRINFO_RD(src) (((src) & 0x0000FF00) >> 8) #define MEMERR_CPU_LSUESR_ERRTYPE_RD(src) (((src) & 0x00000070) >> 4) #define MEMERR_CPU_LSUESR_MULTCERR_MASK BIT(2) #define MEMERR_CPU_LSUESR_CERR_MASK BIT(0) #define MEMERR_CPU_LSUECR_PAGE_OFFSET 0x0008 #define MEMERR_CPU_MMUECR_PAGE_OFFSET 0x0010 #define MEMERR_CPU_MMUESR_PAGE_OFFSET 0x0014 #define MEMERR_CPU_MMUESR_ERRWAY_RD(src) (((src) & 0xFF000000) >> 24) #define MEMERR_CPU_MMUESR_ERRINDEX_RD(src) (((src) & 0x007F0000) >> 16) #define MEMERR_CPU_MMUESR_ERRINFO_RD(src) (((src) & 0x0000FF00) >> 8) #define MEMERR_CPU_MMUESR_ERRREQSTR_LSU_MASK BIT(7) #define MEMERR_CPU_MMUESR_ERRTYPE_RD(src) (((src) & 0x00000070) >> 4) #define MEMERR_CPU_MMUESR_MULTCERR_MASK BIT(2) #define MEMERR_CPU_MMUESR_CERR_MASK BIT(0) #define MEMERR_CPU_ICFESRA_PAGE_OFFSET 0x0804 #define MEMERR_CPU_LSUESRA_PAGE_OFFSET 0x080c #define MEMERR_CPU_MMUESRA_PAGE_OFFSET 0x0814 #define MEMERR_L2C_L2ECR_PAGE_OFFSET 0x0000 #define MEMERR_L2C_L2ESR_PAGE_OFFSET 0x0004 #define MEMERR_L2C_L2ESR_ERRSYN_RD(src) (((src) & 0xFF000000) >> 24) #define MEMERR_L2C_L2ESR_ERRWAY_RD(src) (((src) & 0x00FC0000) >> 18) #define MEMERR_L2C_L2ESR_ERRCPU_RD(src) (((src) & 0x00020000) >> 17) #define MEMERR_L2C_L2ESR_ERRGROUP_RD(src) (((src) & 0x0000E000) >> 13) #define MEMERR_L2C_L2ESR_ERRACTION_RD(src) (((src) & 0x00001C00) >> 10) #define MEMERR_L2C_L2ESR_ERRTYPE_RD(src) (((src) & 0x00000300) >> 8) #define MEMERR_L2C_L2ESR_MULTUCERR_MASK BIT(3) #define MEMERR_L2C_L2ESR_MULTICERR_MASK BIT(2) #define MEMERR_L2C_L2ESR_UCERR_MASK BIT(1) #define MEMERR_L2C_L2ESR_ERR_MASK BIT(0) #define MEMERR_L2C_L2EALR_PAGE_OFFSET 0x0008 #define CPUX_L2C_L2RTOCR_PAGE_OFFSET 0x0010 #define MEMERR_L2C_L2EAHR_PAGE_OFFSET 0x000c #define CPUX_L2C_L2RTOSR_PAGE_OFFSET 0x0014 #define MEMERR_L2C_L2RTOSR_MULTERR_MASK BIT(1) #define MEMERR_L2C_L2RTOSR_ERR_MASK BIT(0) #define CPUX_L2C_L2RTOALR_PAGE_OFFSET 0x0018 #define CPUX_L2C_L2RTOAHR_PAGE_OFFSET 0x001c #define MEMERR_L2C_L2ESRA_PAGE_OFFSET 0x0804 /* * Processor Module Domain (PMD) context - Context for a pair of processors. * Each PMD consists of 2 CPUs and a shared L2 cache. Each CPU consists of * its own L1 cache. */ struct xgene_edac_pmd_ctx { struct list_head next; struct device ddev; char *name; struct xgene_edac *edac; struct edac_device_ctl_info *edac_dev; void __iomem *pmd_csr; u32 pmd; int version; }; static void xgene_edac_pmd_l1_check(struct edac_device_ctl_info *edac_dev, int cpu_idx) { struct xgene_edac_pmd_ctx *ctx = edac_dev->pvt_info; void __iomem *pg_f; u32 val; pg_f = ctx->pmd_csr + cpu_idx * CPU_CSR_STRIDE + CPU_MEMERR_CPU_PAGE; val = readl(pg_f + MEMERR_CPU_ICFESR_PAGE_OFFSET); if (!val) goto chk_lsu; dev_err(edac_dev->dev, "CPU%d L1 memory error ICF 0x%08X Way 0x%02X Index 0x%02X Info 0x%02X\n", ctx->pmd * MAX_CPU_PER_PMD + cpu_idx, val, MEMERR_CPU_ICFESR_ERRWAY_RD(val), MEMERR_CPU_ICFESR_ERRINDEX_RD(val), MEMERR_CPU_ICFESR_ERRINFO_RD(val)); if (val & MEMERR_CPU_ICFESR_CERR_MASK) dev_err(edac_dev->dev, "One or more correctable error\n"); if (val & MEMERR_CPU_ICFESR_MULTCERR_MASK) dev_err(edac_dev->dev, "Multiple correctable error\n"); switch (MEMERR_CPU_ICFESR_ERRTYPE_RD(val)) { case 1: dev_err(edac_dev->dev, "L1 TLB multiple hit\n"); break; case 2: dev_err(edac_dev->dev, "Way select multiple hit\n"); break; case 3: dev_err(edac_dev->dev, "Physical tag parity error\n"); break; case 4: case 5: dev_err(edac_dev->dev, "L1 data parity error\n"); break; case 6: dev_err(edac_dev->dev, "L1 pre-decode parity error\n"); break; } /* Clear any HW errors */ writel(val, pg_f + MEMERR_CPU_ICFESR_PAGE_OFFSET); if (val & (MEMERR_CPU_ICFESR_CERR_MASK | MEMERR_CPU_ICFESR_MULTCERR_MASK)) edac_device_handle_ce(edac_dev, 0, 0, edac_dev->ctl_name); chk_lsu: val = readl(pg_f + MEMERR_CPU_LSUESR_PAGE_OFFSET); if (!val) goto chk_mmu; dev_err(edac_dev->dev, "CPU%d memory error LSU 0x%08X Way 0x%02X Index 0x%02X Info 0x%02X\n", ctx->pmd * MAX_CPU_PER_PMD + cpu_idx, val, MEMERR_CPU_LSUESR_ERRWAY_RD(val), MEMERR_CPU_LSUESR_ERRINDEX_RD(val), MEMERR_CPU_LSUESR_ERRINFO_RD(val)); if (val & MEMERR_CPU_LSUESR_CERR_MASK) dev_err(edac_dev->dev, "One or more correctable error\n"); if (val & MEMERR_CPU_LSUESR_MULTCERR_MASK) dev_err(edac_dev->dev, "Multiple correctable error\n"); switch (MEMERR_CPU_LSUESR_ERRTYPE_RD(val)) { case 0: dev_err(edac_dev->dev, "Load tag error\n"); break; case 1: dev_err(edac_dev->dev, "Load data error\n"); break; case 2: dev_err(edac_dev->dev, "WSL multihit error\n"); break; case 3: dev_err(edac_dev->dev, "Store tag error\n"); break; case 4: dev_err(edac_dev->dev, "DTB multihit from load pipeline error\n"); break; case 5: dev_err(edac_dev->dev, "DTB multihit from store pipeline error\n"); break; } /* Clear any HW errors */ writel(val, pg_f + MEMERR_CPU_LSUESR_PAGE_OFFSET); if (val & (MEMERR_CPU_LSUESR_CERR_MASK | MEMERR_CPU_LSUESR_MULTCERR_MASK)) edac_device_handle_ce(edac_dev, 0, 0, edac_dev->ctl_name); chk_mmu: val = readl(pg_f + MEMERR_CPU_MMUESR_PAGE_OFFSET); if (!val) return; dev_err(edac_dev->dev, "CPU%d memory error MMU 0x%08X Way 0x%02X Index 0x%02X Info 0x%02X %s\n", ctx->pmd * MAX_CPU_PER_PMD + cpu_idx, val, MEMERR_CPU_MMUESR_ERRWAY_RD(val), MEMERR_CPU_MMUESR_ERRINDEX_RD(val), MEMERR_CPU_MMUESR_ERRINFO_RD(val), val & MEMERR_CPU_MMUESR_ERRREQSTR_LSU_MASK ? "LSU" : "ICF"); if (val & MEMERR_CPU_MMUESR_CERR_MASK) dev_err(edac_dev->dev, "One or more correctable error\n"); if (val & MEMERR_CPU_MMUESR_MULTCERR_MASK) dev_err(edac_dev->dev, "Multiple correctable error\n"); switch (MEMERR_CPU_MMUESR_ERRTYPE_RD(val)) { case 0: dev_err(edac_dev->dev, "Stage 1 UTB hit error\n"); break; case 1: dev_err(edac_dev->dev, "Stage 1 UTB miss error\n"); break; case 2: dev_err(edac_dev->dev, "Stage 1 UTB allocate error\n"); break; case 3: dev_err(edac_dev->dev, "TMO operation single bank error\n"); break; case 4: dev_err(edac_dev->dev, "Stage 2 UTB error\n"); break; case 5: dev_err(edac_dev->dev, "Stage 2 UTB miss error\n"); break; case 6: dev_err(edac_dev->dev, "Stage 2 UTB allocate error\n"); break; case 7: dev_err(edac_dev->dev, "TMO operation multiple bank error\n"); break; } /* Clear any HW errors */ writel(val, pg_f + MEMERR_CPU_MMUESR_PAGE_OFFSET); edac_device_handle_ce(edac_dev, 0, 0, edac_dev->ctl_name); } static void xgene_edac_pmd_l2_check(struct edac_device_ctl_info *edac_dev) { struct xgene_edac_pmd_ctx *ctx = edac_dev->pvt_info; void __iomem *pg_d; void __iomem *pg_e; u32 val_hi; u32 val_lo; u32 val; /* Check L2 */ pg_e = ctx->pmd_csr + CPU_MEMERR_L2C_PAGE; val = readl(pg_e + MEMERR_L2C_L2ESR_PAGE_OFFSET); if (!val) goto chk_l2c; val_lo = readl(pg_e + MEMERR_L2C_L2EALR_PAGE_OFFSET); val_hi = readl(pg_e + MEMERR_L2C_L2EAHR_PAGE_OFFSET); dev_err(edac_dev->dev, "PMD%d memory error L2C L2ESR 0x%08X @ 0x%08X.%08X\n", ctx->pmd, val, val_hi, val_lo); dev_err(edac_dev->dev, "ErrSyndrome 0x%02X ErrWay 0x%02X ErrCpu %d ErrGroup 0x%02X ErrAction 0x%02X\n", MEMERR_L2C_L2ESR_ERRSYN_RD(val), MEMERR_L2C_L2ESR_ERRWAY_RD(val), MEMERR_L2C_L2ESR_ERRCPU_RD(val), MEMERR_L2C_L2ESR_ERRGROUP_RD(val), MEMERR_L2C_L2ESR_ERRACTION_RD(val)); if (val & MEMERR_L2C_L2ESR_ERR_MASK) dev_err(edac_dev->dev, "One or more correctable error\n"); if (val & MEMERR_L2C_L2ESR_MULTICERR_MASK) dev_err(edac_dev->dev, "Multiple correctable error\n"); if (val & MEMERR_L2C_L2ESR_UCERR_MASK) dev_err(edac_dev->dev, "One or more uncorrectable error\n"); if (val & MEMERR_L2C_L2ESR_MULTUCERR_MASK) dev_err(edac_dev->dev, "Multiple uncorrectable error\n"); switch (MEMERR_L2C_L2ESR_ERRTYPE_RD(val)) { case 0: dev_err(edac_dev->dev, "Outbound SDB parity error\n"); break; case 1: dev_err(edac_dev->dev, "Inbound SDB parity error\n"); break; case 2: dev_err(edac_dev->dev, "Tag ECC error\n"); break; case 3: dev_err(edac_dev->dev, "Data ECC error\n"); break; } /* Clear any HW errors */ writel(val, pg_e + MEMERR_L2C_L2ESR_PAGE_OFFSET); if (val & (MEMERR_L2C_L2ESR_ERR_MASK | MEMERR_L2C_L2ESR_MULTICERR_MASK)) edac_device_handle_ce(edac_dev, 0, 0, edac_dev->ctl_name); if (val & (MEMERR_L2C_L2ESR_UCERR_MASK | MEMERR_L2C_L2ESR_MULTUCERR_MASK)) edac_device_handle_ue(edac_dev, 0, 0, edac_dev->ctl_name); chk_l2c: /* Check if any memory request timed out on L2 cache */ pg_d = ctx->pmd_csr + CPU_L2C_PAGE; val = readl(pg_d + CPUX_L2C_L2RTOSR_PAGE_OFFSET); if (val) { val_lo = readl(pg_d + CPUX_L2C_L2RTOALR_PAGE_OFFSET); val_hi = readl(pg_d + CPUX_L2C_L2RTOAHR_PAGE_OFFSET); dev_err(edac_dev->dev, "PMD%d L2C error L2C RTOSR 0x%08X @ 0x%08X.%08X\n", ctx->pmd, val, val_hi, val_lo); writel(val, pg_d + CPUX_L2C_L2RTOSR_PAGE_OFFSET); } } static void xgene_edac_pmd_check(struct edac_device_ctl_info *edac_dev) { struct xgene_edac_pmd_ctx *ctx = edac_dev->pvt_info; unsigned int pcp_hp_stat; int i; xgene_edac_pcp_rd(ctx->edac, PCPHPERRINTSTS, &pcp_hp_stat); if (!((PMD0_MERR_MASK << ctx->pmd) & pcp_hp_stat)) return; /* Check CPU L1 error */ for (i = 0; i < MAX_CPU_PER_PMD; i++) xgene_edac_pmd_l1_check(edac_dev, i); /* Check CPU L2 error */ xgene_edac_pmd_l2_check(edac_dev); } static void xgene_edac_pmd_cpu_hw_cfg(struct edac_device_ctl_info *edac_dev, int cpu) { struct xgene_edac_pmd_ctx *ctx = edac_dev->pvt_info; void __iomem *pg_f = ctx->pmd_csr + cpu * CPU_CSR_STRIDE + CPU_MEMERR_CPU_PAGE; /* * Enable CPU memory error: * MEMERR_CPU_ICFESRA, MEMERR_CPU_LSUESRA, and MEMERR_CPU_MMUESRA */ writel(0x00000301, pg_f + MEMERR_CPU_ICFECR_PAGE_OFFSET); writel(0x00000301, pg_f + MEMERR_CPU_LSUECR_PAGE_OFFSET); writel(0x00000101, pg_f + MEMERR_CPU_MMUECR_PAGE_OFFSET); } static void xgene_edac_pmd_hw_cfg(struct edac_device_ctl_info *edac_dev) { struct xgene_edac_pmd_ctx *ctx = edac_dev->pvt_info; void __iomem *pg_d = ctx->pmd_csr + CPU_L2C_PAGE; void __iomem *pg_e = ctx->pmd_csr + CPU_MEMERR_L2C_PAGE; /* Enable PMD memory error - MEMERR_L2C_L2ECR and L2C_L2RTOCR */ writel(0x00000703, pg_e + MEMERR_L2C_L2ECR_PAGE_OFFSET); /* Configure L2C HW request time out feature if supported */ if (ctx->version > 1) writel(0x00000119, pg_d + CPUX_L2C_L2RTOCR_PAGE_OFFSET); } static void xgene_edac_pmd_hw_ctl(struct edac_device_ctl_info *edac_dev, bool enable) { struct xgene_edac_pmd_ctx *ctx = edac_dev->pvt_info; int i; /* Enable PMD error interrupt */ if (edac_dev->op_state == OP_RUNNING_INTERRUPT) { if (enable) xgene_edac_pcp_clrbits(ctx->edac, PCPHPERRINTMSK, PMD0_MERR_MASK << ctx->pmd); else xgene_edac_pcp_setbits(ctx->edac, PCPHPERRINTMSK, PMD0_MERR_MASK << ctx->pmd); } if (enable) { xgene_edac_pmd_hw_cfg(edac_dev); /* Two CPUs per a PMD */ for (i = 0; i < MAX_CPU_PER_PMD; i++) xgene_edac_pmd_cpu_hw_cfg(edac_dev, i); } } static ssize_t xgene_edac_pmd_l1_inject_ctrl_write(struct file *file, const char __user *data, size_t count, loff_t *ppos) { struct edac_device_ctl_info *edac_dev = file->private_data; struct xgene_edac_pmd_ctx *ctx = edac_dev->pvt_info; void __iomem *cpux_pg_f; int i; for (i = 0; i < MAX_CPU_PER_PMD; i++) { cpux_pg_f = ctx->pmd_csr + i * CPU_CSR_STRIDE + CPU_MEMERR_CPU_PAGE; writel(MEMERR_CPU_ICFESR_MULTCERR_MASK | MEMERR_CPU_ICFESR_CERR_MASK, cpux_pg_f + MEMERR_CPU_ICFESRA_PAGE_OFFSET); writel(MEMERR_CPU_LSUESR_MULTCERR_MASK | MEMERR_CPU_LSUESR_CERR_MASK, cpux_pg_f + MEMERR_CPU_LSUESRA_PAGE_OFFSET); writel(MEMERR_CPU_MMUESR_MULTCERR_MASK | MEMERR_CPU_MMUESR_CERR_MASK, cpux_pg_f + MEMERR_CPU_MMUESRA_PAGE_OFFSET); } return count; } static ssize_t xgene_edac_pmd_l2_inject_ctrl_write(struct file *file, const char __user *data, size_t count, loff_t *ppos) { struct edac_device_ctl_info *edac_dev = file->private_data; struct xgene_edac_pmd_ctx *ctx = edac_dev->pvt_info; void __iomem *pg_e = ctx->pmd_csr + CPU_MEMERR_L2C_PAGE; writel(MEMERR_L2C_L2ESR_MULTUCERR_MASK | MEMERR_L2C_L2ESR_MULTICERR_MASK | MEMERR_L2C_L2ESR_UCERR_MASK | MEMERR_L2C_L2ESR_ERR_MASK, pg_e + MEMERR_L2C_L2ESRA_PAGE_OFFSET); return count; } static const struct file_operations xgene_edac_pmd_debug_inject_fops[] = { { .open = simple_open, .write = xgene_edac_pmd_l1_inject_ctrl_write, .llseek = generic_file_llseek, }, { .open = simple_open, .write = xgene_edac_pmd_l2_inject_ctrl_write, .llseek = generic_file_llseek, }, { } }; static void xgene_edac_pmd_create_debugfs_nodes(struct edac_device_ctl_info *edac_dev) { struct xgene_edac_pmd_ctx *ctx = edac_dev->pvt_info; struct dentry *dbgfs_dir; char name[10]; if (!IS_ENABLED(CONFIG_EDAC_DEBUG) || !ctx->edac->dfs) return; snprintf(name, sizeof(name), "PMD%d", ctx->pmd); dbgfs_dir = edac_debugfs_create_dir_at(name, ctx->edac->dfs); if (!dbgfs_dir) return; edac_debugfs_create_file("l1_inject_ctrl", S_IWUSR, dbgfs_dir, edac_dev, &xgene_edac_pmd_debug_inject_fops[0]); edac_debugfs_create_file("l2_inject_ctrl", S_IWUSR, dbgfs_dir, edac_dev, &xgene_edac_pmd_debug_inject_fops[1]); } static int xgene_edac_pmd_available(u32 efuse, int pmd) { return (efuse & (1 << pmd)) ? 0 : 1; } static int xgene_edac_pmd_add(struct xgene_edac *edac, struct device_node *np, int version) { struct edac_device_ctl_info *edac_dev; struct xgene_edac_pmd_ctx *ctx; struct resource res; char edac_name[10]; u32 pmd; int rc; u32 val; if (!devres_open_group(edac->dev, xgene_edac_pmd_add, GFP_KERNEL)) return -ENOMEM; /* Determine if this PMD is disabled */ if (of_property_read_u32(np, "pmd-controller", &pmd)) { dev_err(edac->dev, "no pmd-controller property\n"); rc = -ENODEV; goto err_group; } rc = regmap_read(edac->efuse_map, 0, &val); if (rc) goto err_group; if (!xgene_edac_pmd_available(val, pmd)) { rc = -ENODEV; goto err_group; } snprintf(edac_name, sizeof(edac_name), "l2c%d", pmd); edac_dev = edac_device_alloc_ctl_info(sizeof(*ctx), edac_name, 1, "l2c", 1, 2, edac_device_alloc_index()); if (!edac_dev) { rc = -ENOMEM; goto err_group; } ctx = edac_dev->pvt_info; ctx->name = "xgene_pmd_err"; ctx->pmd = pmd; ctx->edac = edac; ctx->edac_dev = edac_dev; ctx->ddev = *edac->dev; ctx->version = version; edac_dev->dev = &ctx->ddev; edac_dev->ctl_name = ctx->name; edac_dev->dev_name = ctx->name; edac_dev->mod_name = EDAC_MOD_STR; rc = of_address_to_resource(np, 0, &res); if (rc < 0) { dev_err(edac->dev, "no PMD resource address\n"); goto err_free; } ctx->pmd_csr = devm_ioremap_resource(edac->dev, &res); if (IS_ERR(ctx->pmd_csr)) { dev_err(edac->dev, "devm_ioremap_resource failed for PMD resource address\n"); rc = PTR_ERR(ctx->pmd_csr); goto err_free; } if (edac_op_state == EDAC_OPSTATE_POLL) edac_dev->edac_check = xgene_edac_pmd_check; xgene_edac_pmd_create_debugfs_nodes(edac_dev); rc = edac_device_add_device(edac_dev); if (rc > 0) { dev_err(edac->dev, "edac_device_add_device failed\n"); rc = -ENOMEM; goto err_free; } if (edac_op_state == EDAC_OPSTATE_INT) edac_dev->op_state = OP_RUNNING_INTERRUPT; list_add(&ctx->next, &edac->pmds); xgene_edac_pmd_hw_ctl(edac_dev, 1); devres_remove_group(edac->dev, xgene_edac_pmd_add); dev_info(edac->dev, "X-Gene EDAC PMD%d registered\n", ctx->pmd); return 0; err_free: edac_device_free_ctl_info(edac_dev); err_group: devres_release_group(edac->dev, xgene_edac_pmd_add); return rc; } static int xgene_edac_pmd_remove(struct xgene_edac_pmd_ctx *pmd) { struct edac_device_ctl_info *edac_dev = pmd->edac_dev; xgene_edac_pmd_hw_ctl(edac_dev, 0); edac_device_del_device(edac_dev->dev); edac_device_free_ctl_info(edac_dev); return 0; } /* L3 Error device */ #define L3C_ESR (0x0A * 4) #define L3C_ESR_DATATAG_MASK BIT(9) #define L3C_ESR_MULTIHIT_MASK BIT(8) #define L3C_ESR_UCEVICT_MASK BIT(6) #define L3C_ESR_MULTIUCERR_MASK BIT(5) #define L3C_ESR_MULTICERR_MASK BIT(4) #define L3C_ESR_UCERR_MASK BIT(3) #define L3C_ESR_CERR_MASK BIT(2) #define L3C_ESR_UCERRINTR_MASK BIT(1) #define L3C_ESR_CERRINTR_MASK BIT(0) #define L3C_ECR (0x0B * 4) #define L3C_ECR_UCINTREN BIT(3) #define L3C_ECR_CINTREN BIT(2) #define L3C_UCERREN BIT(1) #define L3C_CERREN BIT(0) #define L3C_ELR (0x0C * 4) #define L3C_ELR_ERRSYN(src) ((src & 0xFF800000) >> 23) #define L3C_ELR_ERRWAY(src) ((src & 0x007E0000) >> 17) #define L3C_ELR_AGENTID(src) ((src & 0x0001E000) >> 13) #define L3C_ELR_ERRGRP(src) ((src & 0x00000F00) >> 8) #define L3C_ELR_OPTYPE(src) ((src & 0x000000F0) >> 4) #define L3C_ELR_PADDRHIGH(src) (src & 0x0000000F) #define L3C_AELR (0x0D * 4) #define L3C_BELR (0x0E * 4) #define L3C_BELR_BANK(src) (src & 0x0000000F) struct xgene_edac_dev_ctx { struct list_head next; struct device ddev; char *name; struct xgene_edac *edac; struct edac_device_ctl_info *edac_dev; int edac_idx; void __iomem *dev_csr; int version; }; /* * Version 1 of the L3 controller has broken single bit correctable logic for * certain error syndromes. Log them as uncorrectable in that case. */ static bool xgene_edac_l3_promote_to_uc_err(u32 l3cesr, u32 l3celr) { if (l3cesr & L3C_ESR_DATATAG_MASK) { switch (L3C_ELR_ERRSYN(l3celr)) { case 0x13C: case 0x0B4: case 0x007: case 0x00D: case 0x00E: case 0x019: case 0x01A: case 0x01C: case 0x04E: case 0x041: return true; } } else if (L3C_ELR_ERRWAY(l3celr) == 9) return true; return false; } static void xgene_edac_l3_check(struct edac_device_ctl_info *edac_dev) { struct xgene_edac_dev_ctx *ctx = edac_dev->pvt_info; u32 l3cesr; u32 l3celr; u32 l3caelr; u32 l3cbelr; l3cesr = readl(ctx->dev_csr + L3C_ESR); if (!(l3cesr & (L3C_ESR_UCERR_MASK | L3C_ESR_CERR_MASK))) return; if (l3cesr & L3C_ESR_UCERR_MASK) dev_err(edac_dev->dev, "L3C uncorrectable error\n"); if (l3cesr & L3C_ESR_CERR_MASK) dev_warn(edac_dev->dev, "L3C correctable error\n"); l3celr = readl(ctx->dev_csr + L3C_ELR); l3caelr = readl(ctx->dev_csr + L3C_AELR); l3cbelr = readl(ctx->dev_csr + L3C_BELR); if (l3cesr & L3C_ESR_MULTIHIT_MASK) dev_err(edac_dev->dev, "L3C multiple hit error\n"); if (l3cesr & L3C_ESR_UCEVICT_MASK) dev_err(edac_dev->dev, "L3C dropped eviction of line with error\n"); if (l3cesr & L3C_ESR_MULTIUCERR_MASK) dev_err(edac_dev->dev, "L3C multiple uncorrectable error\n"); if (l3cesr & L3C_ESR_DATATAG_MASK) dev_err(edac_dev->dev, "L3C data error syndrome 0x%X group 0x%X\n", L3C_ELR_ERRSYN(l3celr), L3C_ELR_ERRGRP(l3celr)); else dev_err(edac_dev->dev, "L3C tag error syndrome 0x%X Way of Tag 0x%X Agent ID 0x%X Operation type 0x%X\n", L3C_ELR_ERRSYN(l3celr), L3C_ELR_ERRWAY(l3celr), L3C_ELR_AGENTID(l3celr), L3C_ELR_OPTYPE(l3celr)); /* * NOTE: Address [41:38] in L3C_ELR_PADDRHIGH(l3celr). * Address [37:6] in l3caelr. Lower 6 bits are zero. */ dev_err(edac_dev->dev, "L3C error address 0x%08X.%08X bank %d\n", L3C_ELR_PADDRHIGH(l3celr) << 6 | (l3caelr >> 26), (l3caelr & 0x3FFFFFFF) << 6, L3C_BELR_BANK(l3cbelr)); dev_err(edac_dev->dev, "L3C error status register value 0x%X\n", l3cesr); /* Clear L3C error interrupt */ writel(0, ctx->dev_csr + L3C_ESR); if (ctx->version <= 1 && xgene_edac_l3_promote_to_uc_err(l3cesr, l3celr)) { edac_device_handle_ue(edac_dev, 0, 0, edac_dev->ctl_name); return; } if (l3cesr & L3C_ESR_CERR_MASK) edac_device_handle_ce(edac_dev, 0, 0, edac_dev->ctl_name); if (l3cesr & L3C_ESR_UCERR_MASK) edac_device_handle_ue(edac_dev, 0, 0, edac_dev->ctl_name); } static void xgene_edac_l3_hw_init(struct edac_device_ctl_info *edac_dev, bool enable) { struct xgene_edac_dev_ctx *ctx = edac_dev->pvt_info; u32 val; val = readl(ctx->dev_csr + L3C_ECR); val |= L3C_UCERREN | L3C_CERREN; /* On disable, we just disable interrupt but keep error enabled */ if (edac_dev->op_state == OP_RUNNING_INTERRUPT) { if (enable) val |= L3C_ECR_UCINTREN | L3C_ECR_CINTREN; else val &= ~(L3C_ECR_UCINTREN | L3C_ECR_CINTREN); } writel(val, ctx->dev_csr + L3C_ECR); if (edac_dev->op_state == OP_RUNNING_INTERRUPT) { /* Enable/disable L3 error top level interrupt */ if (enable) { xgene_edac_pcp_clrbits(ctx->edac, PCPHPERRINTMSK, L3C_UNCORR_ERR_MASK); xgene_edac_pcp_clrbits(ctx->edac, PCPLPERRINTMSK, L3C_CORR_ERR_MASK); } else { xgene_edac_pcp_setbits(ctx->edac, PCPHPERRINTMSK, L3C_UNCORR_ERR_MASK); xgene_edac_pcp_setbits(ctx->edac, PCPLPERRINTMSK, L3C_CORR_ERR_MASK); } } } static ssize_t xgene_edac_l3_inject_ctrl_write(struct file *file, const char __user *data, size_t count, loff_t *ppos) { struct edac_device_ctl_info *edac_dev = file->private_data; struct xgene_edac_dev_ctx *ctx = edac_dev->pvt_info; /* Generate all errors */ writel(0xFFFFFFFF, ctx->dev_csr + L3C_ESR); return count; } static const struct file_operations xgene_edac_l3_debug_inject_fops = { .open = simple_open, .write = xgene_edac_l3_inject_ctrl_write, .llseek = generic_file_llseek }; static void xgene_edac_l3_create_debugfs_nodes(struct edac_device_ctl_info *edac_dev) { struct xgene_edac_dev_ctx *ctx = edac_dev->pvt_info; struct dentry *dbgfs_dir; char name[10]; if (!IS_ENABLED(CONFIG_EDAC_DEBUG) || !ctx->edac->dfs) return; snprintf(name, sizeof(name), "l3c%d", ctx->edac_idx); dbgfs_dir = edac_debugfs_create_dir_at(name, ctx->edac->dfs); if (!dbgfs_dir) return; debugfs_create_file("l3_inject_ctrl", S_IWUSR, dbgfs_dir, edac_dev, &xgene_edac_l3_debug_inject_fops); } static int xgene_edac_l3_add(struct xgene_edac *edac, struct device_node *np, int version) { struct edac_device_ctl_info *edac_dev; struct xgene_edac_dev_ctx *ctx; struct resource res; void __iomem *dev_csr; int edac_idx; int rc = 0; if (!devres_open_group(edac->dev, xgene_edac_l3_add, GFP_KERNEL)) return -ENOMEM; rc = of_address_to_resource(np, 0, &res); if (rc < 0) { dev_err(edac->dev, "no L3 resource address\n"); goto err_release_group; } dev_csr = devm_ioremap_resource(edac->dev, &res); if (IS_ERR(dev_csr)) { dev_err(edac->dev, "devm_ioremap_resource failed for L3 resource address\n"); rc = PTR_ERR(dev_csr); goto err_release_group; } edac_idx = edac_device_alloc_index(); edac_dev = edac_device_alloc_ctl_info(sizeof(*ctx), "l3c", 1, "l3c", 1, 0, edac_idx); if (!edac_dev) { rc = -ENOMEM; goto err_release_group; } ctx = edac_dev->pvt_info; ctx->dev_csr = dev_csr; ctx->name = "xgene_l3_err"; ctx->edac_idx = edac_idx; ctx->edac = edac; ctx->edac_dev = edac_dev; ctx->ddev = *edac->dev; ctx->version = version; edac_dev->dev = &ctx->ddev; edac_dev->ctl_name = ctx->name; edac_dev->dev_name = ctx->name; edac_dev->mod_name = EDAC_MOD_STR; if (edac_op_state == EDAC_OPSTATE_POLL) edac_dev->edac_check = xgene_edac_l3_check; xgene_edac_l3_create_debugfs_nodes(edac_dev); rc = edac_device_add_device(edac_dev); if (rc > 0) { dev_err(edac->dev, "failed edac_device_add_device()\n"); rc = -ENOMEM; goto err_ctl_free; } if (edac_op_state == EDAC_OPSTATE_INT) edac_dev->op_state = OP_RUNNING_INTERRUPT; list_add(&ctx->next, &edac->l3s); xgene_edac_l3_hw_init(edac_dev, 1); devres_remove_group(edac->dev, xgene_edac_l3_add); dev_info(edac->dev, "X-Gene EDAC L3 registered\n"); return 0; err_ctl_free: edac_device_free_ctl_info(edac_dev); err_release_group: devres_release_group(edac->dev, xgene_edac_l3_add); return rc; } static int xgene_edac_l3_remove(struct xgene_edac_dev_ctx *l3) { struct edac_device_ctl_info *edac_dev = l3->edac_dev; xgene_edac_l3_hw_init(edac_dev, 0); edac_device_del_device(l3->edac->dev); edac_device_free_ctl_info(edac_dev); return 0; } /* SoC error device */ #define IOBAXIS0TRANSERRINTSTS 0x0000 #define IOBAXIS0_M_ILLEGAL_ACCESS_MASK BIT(1) #define IOBAXIS0_ILLEGAL_ACCESS_MASK BIT(0) #define IOBAXIS0TRANSERRINTMSK 0x0004 #define IOBAXIS0TRANSERRREQINFOL 0x0008 #define IOBAXIS0TRANSERRREQINFOH 0x000c #define REQTYPE_RD(src) (((src) & BIT(0))) #define ERRADDRH_RD(src) (((src) & 0xffc00000) >> 22) #define IOBAXIS1TRANSERRINTSTS 0x0010 #define IOBAXIS1TRANSERRINTMSK 0x0014 #define IOBAXIS1TRANSERRREQINFOL 0x0018 #define IOBAXIS1TRANSERRREQINFOH 0x001c #define IOBPATRANSERRINTSTS 0x0020 #define IOBPA_M_REQIDRAM_CORRUPT_MASK BIT(7) #define IOBPA_REQIDRAM_CORRUPT_MASK BIT(6) #define IOBPA_M_TRANS_CORRUPT_MASK BIT(5) #define IOBPA_TRANS_CORRUPT_MASK BIT(4) #define IOBPA_M_WDATA_CORRUPT_MASK BIT(3) #define IOBPA_WDATA_CORRUPT_MASK BIT(2) #define IOBPA_M_RDATA_CORRUPT_MASK BIT(1) #define IOBPA_RDATA_CORRUPT_MASK BIT(0) #define IOBBATRANSERRINTSTS 0x0030 #define M_ILLEGAL_ACCESS_MASK BIT(15) #define ILLEGAL_ACCESS_MASK BIT(14) #define M_WIDRAM_CORRUPT_MASK BIT(13) #define WIDRAM_CORRUPT_MASK BIT(12) #define M_RIDRAM_CORRUPT_MASK BIT(11) #define RIDRAM_CORRUPT_MASK BIT(10) #define M_TRANS_CORRUPT_MASK BIT(9) #define TRANS_CORRUPT_MASK BIT(8) #define M_WDATA_CORRUPT_MASK BIT(7) #define WDATA_CORRUPT_MASK BIT(6) #define M_RBM_POISONED_REQ_MASK BIT(5) #define RBM_POISONED_REQ_MASK BIT(4) #define M_XGIC_POISONED_REQ_MASK BIT(3) #define XGIC_POISONED_REQ_MASK BIT(2) #define M_WRERR_RESP_MASK BIT(1) #define WRERR_RESP_MASK BIT(0) #define IOBBATRANSERRREQINFOL 0x0038 #define IOBBATRANSERRREQINFOH 0x003c #define REQTYPE_F2_RD(src) ((src) & BIT(0)) #define ERRADDRH_F2_RD(src) (((src) & 0xffc00000) >> 22) #define IOBBATRANSERRCSWREQID 0x0040 #define XGICTRANSERRINTSTS 0x0050 #define M_WR_ACCESS_ERR_MASK BIT(3) #define WR_ACCESS_ERR_MASK BIT(2) #define M_RD_ACCESS_ERR_MASK BIT(1) #define RD_ACCESS_ERR_MASK BIT(0) #define XGICTRANSERRINTMSK 0x0054 #define XGICTRANSERRREQINFO 0x0058 #define REQTYPE_MASK BIT(26) #define ERRADDR_RD(src) ((src) & 0x03ffffff) #define GLBL_ERR_STS 0x0800 #define MDED_ERR_MASK BIT(3) #define DED_ERR_MASK BIT(2) #define MSEC_ERR_MASK BIT(1) #define SEC_ERR_MASK BIT(0) #define GLBL_SEC_ERRL 0x0810 #define GLBL_SEC_ERRH 0x0818 #define GLBL_MSEC_ERRL 0x0820 #define GLBL_MSEC_ERRH 0x0828 #define GLBL_DED_ERRL 0x0830 #define GLBL_DED_ERRLMASK 0x0834 #define GLBL_DED_ERRH 0x0838 #define GLBL_DED_ERRHMASK 0x083c #define GLBL_MDED_ERRL 0x0840 #define GLBL_MDED_ERRLMASK 0x0844 #define GLBL_MDED_ERRH 0x0848 #define GLBL_MDED_ERRHMASK 0x084c /* IO Bus Registers */ #define RBCSR 0x0000 #define STICKYERR_MASK BIT(0) #define RBEIR 0x0008 #define AGENT_OFFLINE_ERR_MASK BIT(30) #define UNIMPL_RBPAGE_ERR_MASK BIT(29) #define WORD_ALIGNED_ERR_MASK BIT(28) #define PAGE_ACCESS_ERR_MASK BIT(27) #define WRITE_ACCESS_MASK BIT(26) static const char * const soc_mem_err_v1[] = { "10GbE0", "10GbE1", "Security", "SATA45", "SATA23/ETH23", "SATA01/ETH01", "USB1", "USB0", "QML", "QM0", "QM1 (XGbE01)", "PCIE4", "PCIE3", "PCIE2", "PCIE1", "PCIE0", "CTX Manager", "OCM", "1GbE", "CLE", "AHBC", "PktDMA", "GFC", "MSLIM", "10GbE2", "10GbE3", "QM2 (XGbE23)", "IOB", "unknown", "unknown", "unknown", "unknown", }; static void xgene_edac_iob_gic_report(struct edac_device_ctl_info *edac_dev) { struct xgene_edac_dev_ctx *ctx = edac_dev->pvt_info; u32 err_addr_lo; u32 err_addr_hi; u32 reg; u32 info; /* GIC transaction error interrupt */ reg = readl(ctx->dev_csr + XGICTRANSERRINTSTS); if (!reg) goto chk_iob_err; dev_err(edac_dev->dev, "XGIC transaction error\n"); if (reg & RD_ACCESS_ERR_MASK) dev_err(edac_dev->dev, "XGIC read size error\n"); if (reg & M_RD_ACCESS_ERR_MASK) dev_err(edac_dev->dev, "Multiple XGIC read size error\n"); if (reg & WR_ACCESS_ERR_MASK) dev_err(edac_dev->dev, "XGIC write size error\n"); if (reg & M_WR_ACCESS_ERR_MASK) dev_err(edac_dev->dev, "Multiple XGIC write size error\n"); info = readl(ctx->dev_csr + XGICTRANSERRREQINFO); dev_err(edac_dev->dev, "XGIC %s access @ 0x%08X (0x%08X)\n", info & REQTYPE_MASK ? "read" : "write", ERRADDR_RD(info), info); writel(reg, ctx->dev_csr + XGICTRANSERRINTSTS); chk_iob_err: /* IOB memory error */ reg = readl(ctx->dev_csr + GLBL_ERR_STS); if (!reg) return; if (reg & SEC_ERR_MASK) { err_addr_lo = readl(ctx->dev_csr + GLBL_SEC_ERRL); err_addr_hi = readl(ctx->dev_csr + GLBL_SEC_ERRH); dev_err(edac_dev->dev, "IOB single-bit correctable memory at 0x%08X.%08X error\n", err_addr_lo, err_addr_hi); writel(err_addr_lo, ctx->dev_csr + GLBL_SEC_ERRL); writel(err_addr_hi, ctx->dev_csr + GLBL_SEC_ERRH); } if (reg & MSEC_ERR_MASK) { err_addr_lo = readl(ctx->dev_csr + GLBL_MSEC_ERRL); err_addr_hi = readl(ctx->dev_csr + GLBL_MSEC_ERRH); dev_err(edac_dev->dev, "IOB multiple single-bit correctable memory at 0x%08X.%08X error\n", err_addr_lo, err_addr_hi); writel(err_addr_lo, ctx->dev_csr + GLBL_MSEC_ERRL); writel(err_addr_hi, ctx->dev_csr + GLBL_MSEC_ERRH); } if (reg & (SEC_ERR_MASK | MSEC_ERR_MASK)) edac_device_handle_ce(edac_dev, 0, 0, edac_dev->ctl_name); if (reg & DED_ERR_MASK) { err_addr_lo = readl(ctx->dev_csr + GLBL_DED_ERRL); err_addr_hi = readl(ctx->dev_csr + GLBL_DED_ERRH); dev_err(edac_dev->dev, "IOB double-bit uncorrectable memory at 0x%08X.%08X error\n", err_addr_lo, err_addr_hi); writel(err_addr_lo, ctx->dev_csr + GLBL_DED_ERRL); writel(err_addr_hi, ctx->dev_csr + GLBL_DED_ERRH); } if (reg & MDED_ERR_MASK) { err_addr_lo = readl(ctx->dev_csr + GLBL_MDED_ERRL); err_addr_hi = readl(ctx->dev_csr + GLBL_MDED_ERRH); dev_err(edac_dev->dev, "Multiple IOB double-bit uncorrectable memory at 0x%08X.%08X error\n", err_addr_lo, err_addr_hi); writel(err_addr_lo, ctx->dev_csr + GLBL_MDED_ERRL); writel(err_addr_hi, ctx->dev_csr + GLBL_MDED_ERRH); } if (reg & (DED_ERR_MASK | MDED_ERR_MASK)) edac_device_handle_ue(edac_dev, 0, 0, edac_dev->ctl_name); } static void xgene_edac_rb_report(struct edac_device_ctl_info *edac_dev) { struct xgene_edac_dev_ctx *ctx = edac_dev->pvt_info; u32 err_addr_lo; u32 err_addr_hi; u32 reg; /* If the register bus resource isn't available, just skip it */ if (!ctx->edac->rb_map) goto rb_skip; /* * Check RB access errors * 1. Out of range * 2. Un-implemented page * 3. Un-aligned access * 4. Offline slave IP */ if (regmap_read(ctx->edac->rb_map, RBCSR, ®)) return; if (reg & STICKYERR_MASK) { bool write; dev_err(edac_dev->dev, "IOB bus access error(s)\n"); if (regmap_read(ctx->edac->rb_map, RBEIR, ®)) return; write = reg & WRITE_ACCESS_MASK ? 1 : 0; if (reg & AGENT_OFFLINE_ERR_MASK) dev_err(edac_dev->dev, "IOB bus %s access to offline agent error\n", write ? "write" : "read"); if (reg & UNIMPL_RBPAGE_ERR_MASK) dev_err(edac_dev->dev, "IOB bus %s access to unimplemented page error\n", write ? "write" : "read"); if (reg & WORD_ALIGNED_ERR_MASK) dev_err(edac_dev->dev, "IOB bus %s word aligned access error\n", write ? "write" : "read"); if (reg & PAGE_ACCESS_ERR_MASK) dev_err(edac_dev->dev, "IOB bus %s to page out of range access error\n", write ? "write" : "read"); if (regmap_write(ctx->edac->rb_map, RBEIR, 0)) return; if (regmap_write(ctx->edac->rb_map, RBCSR, 0)) return; } rb_skip: /* IOB Bridge agent transaction error interrupt */ reg = readl(ctx->dev_csr + IOBBATRANSERRINTSTS); if (!reg) return; dev_err(edac_dev->dev, "IOB bridge agent (BA) transaction error\n"); if (reg & WRERR_RESP_MASK) dev_err(edac_dev->dev, "IOB BA write response error\n"); if (reg & M_WRERR_RESP_MASK) dev_err(edac_dev->dev, "Multiple IOB BA write response error\n"); if (reg & XGIC_POISONED_REQ_MASK) dev_err(edac_dev->dev, "IOB BA XGIC poisoned write error\n"); if (reg & M_XGIC_POISONED_REQ_MASK) dev_err(edac_dev->dev, "Multiple IOB BA XGIC poisoned write error\n"); if (reg & RBM_POISONED_REQ_MASK) dev_err(edac_dev->dev, "IOB BA RBM poisoned write error\n"); if (reg & M_RBM_POISONED_REQ_MASK) dev_err(edac_dev->dev, "Multiple IOB BA RBM poisoned write error\n"); if (reg & WDATA_CORRUPT_MASK) dev_err(edac_dev->dev, "IOB BA write error\n"); if (reg & M_WDATA_CORRUPT_MASK) dev_err(edac_dev->dev, "Multiple IOB BA write error\n"); if (reg & TRANS_CORRUPT_MASK) dev_err(edac_dev->dev, "IOB BA transaction error\n"); if (reg & M_TRANS_CORRUPT_MASK) dev_err(edac_dev->dev, "Multiple IOB BA transaction error\n"); if (reg & RIDRAM_CORRUPT_MASK) dev_err(edac_dev->dev, "IOB BA RDIDRAM read transaction ID error\n"); if (reg & M_RIDRAM_CORRUPT_MASK) dev_err(edac_dev->dev, "Multiple IOB BA RDIDRAM read transaction ID error\n"); if (reg & WIDRAM_CORRUPT_MASK) dev_err(edac_dev->dev, "IOB BA RDIDRAM write transaction ID error\n"); if (reg & M_WIDRAM_CORRUPT_MASK) dev_err(edac_dev->dev, "Multiple IOB BA RDIDRAM write transaction ID error\n"); if (reg & ILLEGAL_ACCESS_MASK) dev_err(edac_dev->dev, "IOB BA XGIC/RB illegal access error\n"); if (reg & M_ILLEGAL_ACCESS_MASK) dev_err(edac_dev->dev, "Multiple IOB BA XGIC/RB illegal access error\n"); err_addr_lo = readl(ctx->dev_csr + IOBBATRANSERRREQINFOL); err_addr_hi = readl(ctx->dev_csr + IOBBATRANSERRREQINFOH); dev_err(edac_dev->dev, "IOB BA %s access at 0x%02X.%08X (0x%08X)\n", REQTYPE_F2_RD(err_addr_hi) ? "read" : "write", ERRADDRH_F2_RD(err_addr_hi), err_addr_lo, err_addr_hi); if (reg & WRERR_RESP_MASK) dev_err(edac_dev->dev, "IOB BA requestor ID 0x%08X\n", readl(ctx->dev_csr + IOBBATRANSERRCSWREQID)); writel(reg, ctx->dev_csr + IOBBATRANSERRINTSTS); } static void xgene_edac_pa_report(struct edac_device_ctl_info *edac_dev) { struct xgene_edac_dev_ctx *ctx = edac_dev->pvt_info; u32 err_addr_lo; u32 err_addr_hi; u32 reg; /* IOB Processing agent transaction error interrupt */ reg = readl(ctx->dev_csr + IOBPATRANSERRINTSTS); if (!reg) goto chk_iob_axi0; dev_err(edac_dev->dev, "IOB processing agent (PA) transaction error\n"); if (reg & IOBPA_RDATA_CORRUPT_MASK) dev_err(edac_dev->dev, "IOB PA read data RAM error\n"); if (reg & IOBPA_M_RDATA_CORRUPT_MASK) dev_err(edac_dev->dev, "Multiple IOB PA read data RAM error\n"); if (reg & IOBPA_WDATA_CORRUPT_MASK) dev_err(edac_dev->dev, "IOB PA write data RAM error\n"); if (reg & IOBPA_M_WDATA_CORRUPT_MASK) dev_err(edac_dev->dev, "Multiple IOB PA write data RAM error\n"); if (reg & IOBPA_TRANS_CORRUPT_MASK) dev_err(edac_dev->dev, "IOB PA transaction error\n"); if (reg & IOBPA_M_TRANS_CORRUPT_MASK) dev_err(edac_dev->dev, "Multiple IOB PA transaction error\n"); if (reg & IOBPA_REQIDRAM_CORRUPT_MASK) dev_err(edac_dev->dev, "IOB PA transaction ID RAM error\n"); if (reg & IOBPA_M_REQIDRAM_CORRUPT_MASK) dev_err(edac_dev->dev, "Multiple IOB PA transaction ID RAM error\n"); writel(reg, ctx->dev_csr + IOBPATRANSERRINTSTS); chk_iob_axi0: /* IOB AXI0 Error */ reg = readl(ctx->dev_csr + IOBAXIS0TRANSERRINTSTS); if (!reg) goto chk_iob_axi1; err_addr_lo = readl(ctx->dev_csr + IOBAXIS0TRANSERRREQINFOL); err_addr_hi = readl(ctx->dev_csr + IOBAXIS0TRANSERRREQINFOH); dev_err(edac_dev->dev, "%sAXI slave 0 illegal %s access @ 0x%02X.%08X (0x%08X)\n", reg & IOBAXIS0_M_ILLEGAL_ACCESS_MASK ? "Multiple " : "", REQTYPE_RD(err_addr_hi) ? "read" : "write", ERRADDRH_RD(err_addr_hi), err_addr_lo, err_addr_hi); writel(reg, ctx->dev_csr + IOBAXIS0TRANSERRINTSTS); chk_iob_axi1: /* IOB AXI1 Error */ reg = readl(ctx->dev_csr + IOBAXIS1TRANSERRINTSTS); if (!reg) return; err_addr_lo = readl(ctx->dev_csr + IOBAXIS1TRANSERRREQINFOL); err_addr_hi = readl(ctx->dev_csr + IOBAXIS1TRANSERRREQINFOH); dev_err(edac_dev->dev, "%sAXI slave 1 illegal %s access @ 0x%02X.%08X (0x%08X)\n", reg & IOBAXIS0_M_ILLEGAL_ACCESS_MASK ? "Multiple " : "", REQTYPE_RD(err_addr_hi) ? "read" : "write", ERRADDRH_RD(err_addr_hi), err_addr_lo, err_addr_hi); writel(reg, ctx->dev_csr + IOBAXIS1TRANSERRINTSTS); } static void xgene_edac_soc_check(struct edac_device_ctl_info *edac_dev) { struct xgene_edac_dev_ctx *ctx = edac_dev->pvt_info; const char * const *soc_mem_err = NULL; u32 pcp_hp_stat; u32 pcp_lp_stat; u32 reg; int i; xgene_edac_pcp_rd(ctx->edac, PCPHPERRINTSTS, &pcp_hp_stat); xgene_edac_pcp_rd(ctx->edac, PCPLPERRINTSTS, &pcp_lp_stat); xgene_edac_pcp_rd(ctx->edac, MEMERRINTSTS, ®); if (!((pcp_hp_stat & (IOB_PA_ERR_MASK | IOB_BA_ERR_MASK | IOB_XGIC_ERR_MASK | IOB_RB_ERR_MASK)) || (pcp_lp_stat & CSW_SWITCH_TRACE_ERR_MASK) || reg)) return; if (pcp_hp_stat & IOB_XGIC_ERR_MASK) xgene_edac_iob_gic_report(edac_dev); if (pcp_hp_stat & (IOB_RB_ERR_MASK | IOB_BA_ERR_MASK)) xgene_edac_rb_report(edac_dev); if (pcp_hp_stat & IOB_PA_ERR_MASK) xgene_edac_pa_report(edac_dev); if (pcp_lp_stat & CSW_SWITCH_TRACE_ERR_MASK) { dev_info(edac_dev->dev, "CSW switch trace correctable memory parity error\n"); edac_device_handle_ce(edac_dev, 0, 0, edac_dev->ctl_name); } if (!reg) return; if (ctx->version == 1) soc_mem_err = soc_mem_err_v1; if (!soc_mem_err) { dev_err(edac_dev->dev, "SoC memory parity error 0x%08X\n", reg); edac_device_handle_ue(edac_dev, 0, 0, edac_dev->ctl_name); return; } for (i = 0; i < 31; i++) { if (reg & (1 << i)) { dev_err(edac_dev->dev, "%s memory parity error\n", soc_mem_err[i]); edac_device_handle_ue(edac_dev, 0, 0, edac_dev->ctl_name); } } } static void xgene_edac_soc_hw_init(struct edac_device_ctl_info *edac_dev, bool enable) { struct xgene_edac_dev_ctx *ctx = edac_dev->pvt_info; /* Enable SoC IP error interrupt */ if (edac_dev->op_state == OP_RUNNING_INTERRUPT) { if (enable) { xgene_edac_pcp_clrbits(ctx->edac, PCPHPERRINTMSK, IOB_PA_ERR_MASK | IOB_BA_ERR_MASK | IOB_XGIC_ERR_MASK | IOB_RB_ERR_MASK); xgene_edac_pcp_clrbits(ctx->edac, PCPLPERRINTMSK, CSW_SWITCH_TRACE_ERR_MASK); } else { xgene_edac_pcp_setbits(ctx->edac, PCPHPERRINTMSK, IOB_PA_ERR_MASK | IOB_BA_ERR_MASK | IOB_XGIC_ERR_MASK | IOB_RB_ERR_MASK); xgene_edac_pcp_setbits(ctx->edac, PCPLPERRINTMSK, CSW_SWITCH_TRACE_ERR_MASK); } writel(enable ? 0x0 : 0xFFFFFFFF, ctx->dev_csr + IOBAXIS0TRANSERRINTMSK); writel(enable ? 0x0 : 0xFFFFFFFF, ctx->dev_csr + IOBAXIS1TRANSERRINTMSK); writel(enable ? 0x0 : 0xFFFFFFFF, ctx->dev_csr + XGICTRANSERRINTMSK); xgene_edac_pcp_setbits(ctx->edac, MEMERRINTMSK, enable ? 0x0 : 0xFFFFFFFF); } } static int xgene_edac_soc_add(struct xgene_edac *edac, struct device_node *np, int version) { struct edac_device_ctl_info *edac_dev; struct xgene_edac_dev_ctx *ctx; void __iomem *dev_csr; struct resource res; int edac_idx; int rc; if (!devres_open_group(edac->dev, xgene_edac_soc_add, GFP_KERNEL)) return -ENOMEM; rc = of_address_to_resource(np, 0, &res); if (rc < 0) { dev_err(edac->dev, "no SoC resource address\n"); goto err_release_group; } dev_csr = devm_ioremap_resource(edac->dev, &res); if (IS_ERR(dev_csr)) { dev_err(edac->dev, "devm_ioremap_resource failed for soc resource address\n"); rc = PTR_ERR(dev_csr); goto err_release_group; } edac_idx = edac_device_alloc_index(); edac_dev = edac_device_alloc_ctl_info(sizeof(*ctx), "SOC", 1, "SOC", 1, 2, edac_idx); if (!edac_dev) { rc = -ENOMEM; goto err_release_group; } ctx = edac_dev->pvt_info; ctx->dev_csr = dev_csr; ctx->name = "xgene_soc_err"; ctx->edac_idx = edac_idx; ctx->edac = edac; ctx->edac_dev = edac_dev; ctx->ddev = *edac->dev; ctx->version = version; edac_dev->dev = &ctx->ddev; edac_dev->ctl_name = ctx->name; edac_dev->dev_name = ctx->name; edac_dev->mod_name = EDAC_MOD_STR; if (edac_op_state == EDAC_OPSTATE_POLL) edac_dev->edac_check = xgene_edac_soc_check; rc = edac_device_add_device(edac_dev); if (rc > 0) { dev_err(edac->dev, "failed edac_device_add_device()\n"); rc = -ENOMEM; goto err_ctl_free; } if (edac_op_state == EDAC_OPSTATE_INT) edac_dev->op_state = OP_RUNNING_INTERRUPT; list_add(&ctx->next, &edac->socs); xgene_edac_soc_hw_init(edac_dev, 1); devres_remove_group(edac->dev, xgene_edac_soc_add); dev_info(edac->dev, "X-Gene EDAC SoC registered\n"); return 0; err_ctl_free: edac_device_free_ctl_info(edac_dev); err_release_group: devres_release_group(edac->dev, xgene_edac_soc_add); return rc; } static int xgene_edac_soc_remove(struct xgene_edac_dev_ctx *soc) { struct edac_device_ctl_info *edac_dev = soc->edac_dev; xgene_edac_soc_hw_init(edac_dev, 0); edac_device_del_device(soc->edac->dev); edac_device_free_ctl_info(edac_dev); return 0; } static irqreturn_t xgene_edac_isr(int irq, void *dev_id) { struct xgene_edac *ctx = dev_id; struct xgene_edac_pmd_ctx *pmd; struct xgene_edac_dev_ctx *node; unsigned int pcp_hp_stat; unsigned int pcp_lp_stat; xgene_edac_pcp_rd(ctx, PCPHPERRINTSTS, &pcp_hp_stat); xgene_edac_pcp_rd(ctx, PCPLPERRINTSTS, &pcp_lp_stat); if ((MCU_UNCORR_ERR_MASK & pcp_hp_stat) || (MCU_CTL_ERR_MASK & pcp_hp_stat) || (MCU_CORR_ERR_MASK & pcp_lp_stat)) { struct xgene_edac_mc_ctx *mcu; list_for_each_entry(mcu, &ctx->mcus, next) xgene_edac_mc_check(mcu->mci); } list_for_each_entry(pmd, &ctx->pmds, next) { if ((PMD0_MERR_MASK << pmd->pmd) & pcp_hp_stat) xgene_edac_pmd_check(pmd->edac_dev); } list_for_each_entry(node, &ctx->l3s, next) xgene_edac_l3_check(node->edac_dev); list_for_each_entry(node, &ctx->socs, next) xgene_edac_soc_check(node->edac_dev); return IRQ_HANDLED; } static int xgene_edac_probe(struct platform_device *pdev) { struct xgene_edac *edac; struct device_node *child; struct resource *res; int rc; edac = devm_kzalloc(&pdev->dev, sizeof(*edac), GFP_KERNEL); if (!edac) return -ENOMEM; edac->dev = &pdev->dev; platform_set_drvdata(pdev, edac); INIT_LIST_HEAD(&edac->mcus); INIT_LIST_HEAD(&edac->pmds); INIT_LIST_HEAD(&edac->l3s); INIT_LIST_HEAD(&edac->socs); spin_lock_init(&edac->lock); mutex_init(&edac->mc_lock); edac->csw_map = syscon_regmap_lookup_by_phandle(pdev->dev.of_node, "regmap-csw"); if (IS_ERR(edac->csw_map)) { dev_err(edac->dev, "unable to get syscon regmap csw\n"); rc = PTR_ERR(edac->csw_map); goto out_err; } edac->mcba_map = syscon_regmap_lookup_by_phandle(pdev->dev.of_node, "regmap-mcba"); if (IS_ERR(edac->mcba_map)) { dev_err(edac->dev, "unable to get syscon regmap mcba\n"); rc = PTR_ERR(edac->mcba_map); goto out_err; } edac->mcbb_map = syscon_regmap_lookup_by_phandle(pdev->dev.of_node, "regmap-mcbb"); if (IS_ERR(edac->mcbb_map)) { dev_err(edac->dev, "unable to get syscon regmap mcbb\n"); rc = PTR_ERR(edac->mcbb_map); goto out_err; } edac->efuse_map = syscon_regmap_lookup_by_phandle(pdev->dev.of_node, "regmap-efuse"); if (IS_ERR(edac->efuse_map)) { dev_err(edac->dev, "unable to get syscon regmap efuse\n"); rc = PTR_ERR(edac->efuse_map); goto out_err; } /* * NOTE: The register bus resource is optional for compatibility * reason. */ edac->rb_map = syscon_regmap_lookup_by_phandle(pdev->dev.of_node, "regmap-rb"); if (IS_ERR(edac->rb_map)) { dev_warn(edac->dev, "missing syscon regmap rb\n"); edac->rb_map = NULL; } res = platform_get_resource(pdev, IORESOURCE_MEM, 0); edac->pcp_csr = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(edac->pcp_csr)) { dev_err(&pdev->dev, "no PCP resource address\n"); rc = PTR_ERR(edac->pcp_csr); goto out_err; } if (edac_op_state == EDAC_OPSTATE_INT) { int irq; int i; for (i = 0; i < 3; i++) { irq = platform_get_irq_optional(pdev, i); if (irq < 0) { dev_err(&pdev->dev, "No IRQ resource\n"); rc = irq; goto out_err; } rc = devm_request_irq(&pdev->dev, irq, xgene_edac_isr, IRQF_SHARED, dev_name(&pdev->dev), edac); if (rc) { dev_err(&pdev->dev, "Could not request IRQ %d\n", irq); goto out_err; } } } edac->dfs = edac_debugfs_create_dir(pdev->dev.kobj.name); for_each_child_of_node(pdev->dev.of_node, child) { if (!of_device_is_available(child)) continue; if (of_device_is_compatible(child, "apm,xgene-edac-mc")) xgene_edac_mc_add(edac, child); if (of_device_is_compatible(child, "apm,xgene-edac-pmd")) xgene_edac_pmd_add(edac, child, 1); if (of_device_is_compatible(child, "apm,xgene-edac-pmd-v2")) xgene_edac_pmd_add(edac, child, 2); if (of_device_is_compatible(child, "apm,xgene-edac-l3")) xgene_edac_l3_add(edac, child, 1); if (of_device_is_compatible(child, "apm,xgene-edac-l3-v2")) xgene_edac_l3_add(edac, child, 2); if (of_device_is_compatible(child, "apm,xgene-edac-soc")) xgene_edac_soc_add(edac, child, 0); if (of_device_is_compatible(child, "apm,xgene-edac-soc-v1")) xgene_edac_soc_add(edac, child, 1); } return 0; out_err: return rc; } static void xgene_edac_remove(struct platform_device *pdev) { struct xgene_edac *edac = dev_get_drvdata(&pdev->dev); struct xgene_edac_mc_ctx *mcu; struct xgene_edac_mc_ctx *temp_mcu; struct xgene_edac_pmd_ctx *pmd; struct xgene_edac_pmd_ctx *temp_pmd; struct xgene_edac_dev_ctx *node; struct xgene_edac_dev_ctx *temp_node; list_for_each_entry_safe(mcu, temp_mcu, &edac->mcus, next) xgene_edac_mc_remove(mcu); list_for_each_entry_safe(pmd, temp_pmd, &edac->pmds, next) xgene_edac_pmd_remove(pmd); list_for_each_entry_safe(node, temp_node, &edac->l3s, next) xgene_edac_l3_remove(node); list_for_each_entry_safe(node, temp_node, &edac->socs, next) xgene_edac_soc_remove(node); } static const struct of_device_id xgene_edac_of_match[] = { { .compatible = "apm,xgene-edac" }, {}, }; MODULE_DEVICE_TABLE(of, xgene_edac_of_match); static struct platform_driver xgene_edac_driver = { .probe = xgene_edac_probe, .remove = xgene_edac_remove, .driver = { .name = "xgene-edac", .of_match_table = xgene_edac_of_match, }, }; static int __init xgene_edac_init(void) { int rc; if (ghes_get_devices()) return -EBUSY; /* Make sure error reporting method is sane */ switch (edac_op_state) { case EDAC_OPSTATE_POLL: case EDAC_OPSTATE_INT: break; default: edac_op_state = EDAC_OPSTATE_INT; break; } rc = platform_driver_register(&xgene_edac_driver); if (rc) { edac_printk(KERN_ERR, EDAC_MOD_STR, "EDAC fails to register\n"); goto reg_failed; } return 0; reg_failed: return rc; } module_init(xgene_edac_init); static void __exit xgene_edac_exit(void) { platform_driver_unregister(&xgene_edac_driver); } module_exit(xgene_edac_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Feng Kan "); MODULE_DESCRIPTION("APM X-Gene EDAC driver"); module_param(edac_op_state, int, 0444); MODULE_PARM_DESC(edac_op_state, "EDAC error reporting state: 0=Poll, 2=Interrupt");