// SPDX-License-Identifier: GPL-2.0-or-later /* * Congatec Board Controller I2C busses driver * * Copyright (C) 2024 Bootlin * Author: Thomas Richard */ #include #include #include #include #include #define CGBC_I2C_PRIMARY_BUS_ID 0 #define CGBC_I2C_PM_BUS_ID 4 #define CGBC_I2C_CMD_START 0x40 #define CGBC_I2C_CMD_STAT 0x48 #define CGBC_I2C_CMD_DATA 0x50 #define CGBC_I2C_CMD_SPEED 0x58 #define CGBC_I2C_STAT_IDL 0x00 #define CGBC_I2C_STAT_DAT 0x01 #define CGBC_I2C_STAT_BUSY 0x02 #define CGBC_I2C_START 0x80 #define CGBC_I2C_STOP 0x40 #define CGBC_I2C_LAST_ACK 0x80 /* send ACK on last read byte */ /* * Reference code defines 1kHz as min freq and 6.1MHz as max freq. * But in practice, the board controller limits the frequency to 1MHz, and the * 1kHz is not functional (minimal working freq is 50kHz). * So use these values as limits. */ #define CGBC_I2C_FREQ_MIN_HZ 50000 /* 50 kHz */ #define CGBC_I2C_FREQ_MAX_HZ 1000000 /* 1 MHz */ #define CGBC_I2C_FREQ_UNIT_1KHZ 0x40 #define CGBC_I2C_FREQ_UNIT_10KHZ 0x80 #define CGBC_I2C_FREQ_UNIT_100KHZ 0xC0 #define CGBC_I2C_FREQ_UNIT_MASK 0xC0 #define CGBC_I2C_FREQ_VALUE_MASK 0x3F #define CGBC_I2C_READ_MAX_LEN 31 #define CGBC_I2C_WRITE_MAX_LEN 32 #define CGBC_I2C_CMD_HEADER_SIZE 4 #define CGBC_I2C_CMD_SIZE (CGBC_I2C_CMD_HEADER_SIZE + CGBC_I2C_WRITE_MAX_LEN) enum cgbc_i2c_state { CGBC_I2C_STATE_DONE = 0, CGBC_I2C_STATE_INIT, CGBC_I2C_STATE_START, CGBC_I2C_STATE_READ, CGBC_I2C_STATE_WRITE, CGBC_I2C_STATE_ERROR, }; struct i2c_algo_cgbc_data { u8 bus_id; unsigned long read_maxtime_us; }; struct cgbc_i2c_data { struct device *dev; struct cgbc_device_data *cgbc; struct i2c_adapter adap; struct i2c_msg *msg; int nmsgs; int pos; enum cgbc_i2c_state state; }; struct cgbc_i2c_transfer { u8 bus_id; bool start; bool stop; bool last_ack; u8 read; u8 write; u8 addr; u8 data[CGBC_I2C_WRITE_MAX_LEN]; }; static u8 cgbc_i2c_freq_to_reg(unsigned int bus_frequency) { u8 reg; if (bus_frequency <= 10000) reg = CGBC_I2C_FREQ_UNIT_1KHZ | (bus_frequency / 1000); else if (bus_frequency <= 100000) reg = CGBC_I2C_FREQ_UNIT_10KHZ | (bus_frequency / 10000); else reg = CGBC_I2C_FREQ_UNIT_100KHZ | (bus_frequency / 100000); return reg; } static unsigned int cgbc_i2c_reg_to_freq(u8 reg) { unsigned int freq = reg & CGBC_I2C_FREQ_VALUE_MASK; u8 unit = reg & CGBC_I2C_FREQ_UNIT_MASK; if (unit == CGBC_I2C_FREQ_UNIT_100KHZ) return freq * 100000; else if (unit == CGBC_I2C_FREQ_UNIT_10KHZ) return freq * 10000; else return freq * 1000; } static int cgbc_i2c_get_status(struct i2c_adapter *adap) { struct i2c_algo_cgbc_data *algo_data = adap->algo_data; struct cgbc_i2c_data *i2c = i2c_get_adapdata(adap); struct cgbc_device_data *cgbc = i2c->cgbc; u8 cmd = CGBC_I2C_CMD_STAT | algo_data->bus_id; u8 status; int ret; ret = cgbc_command(cgbc, &cmd, sizeof(cmd), NULL, 0, &status); if (ret) return ret; return status; } static int cgbc_i2c_set_frequency(struct i2c_adapter *adap, unsigned int bus_frequency) { struct i2c_algo_cgbc_data *algo_data = adap->algo_data; struct cgbc_i2c_data *i2c = i2c_get_adapdata(adap); struct cgbc_device_data *cgbc = i2c->cgbc; u8 cmd[2], data; int ret; if (bus_frequency > CGBC_I2C_FREQ_MAX_HZ || bus_frequency < CGBC_I2C_FREQ_MIN_HZ) { dev_info(i2c->dev, "invalid frequency %u, using default\n", bus_frequency); bus_frequency = I2C_MAX_STANDARD_MODE_FREQ; } cmd[0] = CGBC_I2C_CMD_SPEED | algo_data->bus_id; cmd[1] = cgbc_i2c_freq_to_reg(bus_frequency); ret = cgbc_command(cgbc, &cmd, sizeof(cmd), &data, 1, NULL); if (ret) return dev_err_probe(i2c->dev, ret, "Failed to initialize I2C bus %s", adap->name); cmd[1] = 0x00; ret = cgbc_command(cgbc, &cmd, sizeof(cmd), &data, 1, NULL); if (ret) return dev_err_probe(i2c->dev, ret, "Failed to get I2C bus frequency"); bus_frequency = cgbc_i2c_reg_to_freq(data); dev_dbg(i2c->dev, "%s is running at %d Hz\n", adap->name, bus_frequency); /* * The read_maxtime_us variable represents the maximum time to wait * for data during a read operation. The maximum amount of data that * can be read by a command is CGBC_I2C_READ_MAX_LEN. * Therefore, calculate the max time to properly size the timeout. */ algo_data->read_maxtime_us = (BITS_PER_BYTE + 1) * CGBC_I2C_READ_MAX_LEN * USEC_PER_SEC / bus_frequency; return 0; } static unsigned int cgbc_i2c_xfer_to_cmd(struct cgbc_i2c_transfer xfer, u8 *cmd) { int i = 0; cmd[i++] = CGBC_I2C_CMD_START | xfer.bus_id; cmd[i] = (xfer.start) ? CGBC_I2C_START : 0x00; if (xfer.stop) cmd[i] |= CGBC_I2C_STOP; cmd[i++] |= (xfer.start) ? xfer.write + 1 : xfer.write; cmd[i++] = (xfer.last_ack) ? (xfer.read | CGBC_I2C_LAST_ACK) : xfer.read; if (xfer.start) cmd[i++] = xfer.addr; if (xfer.write > 0) memcpy(&cmd[i], &xfer.data, xfer.write); return i + xfer.write; } static int cgbc_i2c_xfer_msg(struct i2c_adapter *adap) { struct i2c_algo_cgbc_data *algo_data = adap->algo_data; struct cgbc_i2c_data *i2c = i2c_get_adapdata(adap); struct cgbc_device_data *cgbc = i2c->cgbc; struct i2c_msg *msg = i2c->msg; u8 cmd[CGBC_I2C_CMD_SIZE]; int ret, max_len, len, i; unsigned int cmd_len; u8 cmd_data; struct cgbc_i2c_transfer xfer = { .bus_id = algo_data->bus_id, .addr = i2c_8bit_addr_from_msg(msg), }; if (i2c->state == CGBC_I2C_STATE_DONE) return 0; ret = cgbc_i2c_get_status(adap); if (ret == CGBC_I2C_STAT_BUSY) return -EBUSY; else if (ret < 0) goto err; if (i2c->state == CGBC_I2C_STATE_INIT || (i2c->state == CGBC_I2C_STATE_WRITE && msg->flags & I2C_M_RD)) xfer.start = true; i2c->state = (msg->flags & I2C_M_RD) ? CGBC_I2C_STATE_READ : CGBC_I2C_STATE_WRITE; max_len = (i2c->state == CGBC_I2C_STATE_READ) ? CGBC_I2C_READ_MAX_LEN : CGBC_I2C_WRITE_MAX_LEN; if (msg->len - i2c->pos > max_len) { len = max_len; } else { len = msg->len - i2c->pos; if (i2c->nmsgs == 1) xfer.stop = true; } if (i2c->state == CGBC_I2C_STATE_WRITE) { xfer.write = len; xfer.read = 0; for (i = 0; i < len; i++) xfer.data[i] = msg->buf[i2c->pos + i]; cmd_len = cgbc_i2c_xfer_to_cmd(xfer, &cmd[0]); ret = cgbc_command(cgbc, &cmd, cmd_len, NULL, 0, NULL); if (ret) goto err; } else if (i2c->state == CGBC_I2C_STATE_READ) { xfer.write = 0; xfer.read = len; if (i2c->nmsgs > 1 || msg->len - i2c->pos > max_len) xfer.read |= CGBC_I2C_LAST_ACK; cmd_len = cgbc_i2c_xfer_to_cmd(xfer, &cmd[0]); ret = cgbc_command(cgbc, &cmd, cmd_len, NULL, 0, NULL); if (ret) goto err; ret = read_poll_timeout(cgbc_i2c_get_status, ret, ret != CGBC_I2C_STAT_BUSY, 0, 2 * algo_data->read_maxtime_us, false, adap); if (ret < 0) goto err; cmd_data = CGBC_I2C_CMD_DATA | algo_data->bus_id; ret = cgbc_command(cgbc, &cmd_data, sizeof(cmd_data), msg->buf + i2c->pos, len, NULL); if (ret) goto err; } if (len == (msg->len - i2c->pos)) { i2c->msg++; i2c->nmsgs--; i2c->pos = 0; } else { i2c->pos += len; } if (i2c->nmsgs == 0) i2c->state = CGBC_I2C_STATE_DONE; return 0; err: i2c->state = CGBC_I2C_STATE_ERROR; return ret; } static int cgbc_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num) { struct cgbc_i2c_data *i2c = i2c_get_adapdata(adap); unsigned long timeout = jiffies + HZ; int ret; i2c->state = CGBC_I2C_STATE_INIT; i2c->msg = msgs; i2c->nmsgs = num; i2c->pos = 0; while (time_before(jiffies, timeout)) { ret = cgbc_i2c_xfer_msg(adap); if (i2c->state == CGBC_I2C_STATE_DONE) return num; if (i2c->state == CGBC_I2C_STATE_ERROR) return ret; if (ret == 0) timeout = jiffies + HZ; } i2c->state = CGBC_I2C_STATE_ERROR; return -ETIMEDOUT; } static u32 cgbc_i2c_func(struct i2c_adapter *adap) { return I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL & ~(I2C_FUNC_SMBUS_QUICK)); } static const struct i2c_algorithm cgbc_i2c_algorithm = { .master_xfer = cgbc_i2c_xfer, .functionality = cgbc_i2c_func, }; static struct i2c_algo_cgbc_data cgbc_i2c_algo_data[] = { { .bus_id = CGBC_I2C_PRIMARY_BUS_ID }, { .bus_id = CGBC_I2C_PM_BUS_ID }, }; static const struct i2c_adapter cgbc_i2c_adapter[] = { { .owner = THIS_MODULE, .name = "Congatec General Purpose I2C adapter", .class = I2C_CLASS_DEPRECATED, .algo = &cgbc_i2c_algorithm, .algo_data = &cgbc_i2c_algo_data[0], .nr = -1, }, { .owner = THIS_MODULE, .name = "Congatec Power Management I2C adapter", .class = I2C_CLASS_DEPRECATED, .algo = &cgbc_i2c_algorithm, .algo_data = &cgbc_i2c_algo_data[1], .nr = -1, }, }; static int cgbc_i2c_probe(struct platform_device *pdev) { struct cgbc_device_data *cgbc = dev_get_drvdata(pdev->dev.parent); struct cgbc_i2c_data *i2c; int ret; i2c = devm_kzalloc(&pdev->dev, sizeof(*i2c), GFP_KERNEL); if (!i2c) return -ENOMEM; i2c->cgbc = cgbc; i2c->dev = &pdev->dev; i2c->adap = cgbc_i2c_adapter[pdev->id]; i2c->adap.dev.parent = i2c->dev; i2c_set_adapdata(&i2c->adap, i2c); platform_set_drvdata(pdev, i2c); ret = cgbc_i2c_set_frequency(&i2c->adap, I2C_MAX_STANDARD_MODE_FREQ); if (ret) return ret; return i2c_add_numbered_adapter(&i2c->adap); } static void cgbc_i2c_remove(struct platform_device *pdev) { struct cgbc_i2c_data *i2c = platform_get_drvdata(pdev); i2c_del_adapter(&i2c->adap); } static struct platform_driver cgbc_i2c_driver = { .driver = { .name = "cgbc-i2c", }, .probe = cgbc_i2c_probe, .remove = cgbc_i2c_remove, }; module_platform_driver(cgbc_i2c_driver); MODULE_DESCRIPTION("Congatec Board Controller I2C Driver"); MODULE_AUTHOR("Thomas Richard "); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:cgbc_i2c");