// SPDX-License-Identifier: GPL-2.0-or-later /* * Synopsys DesignWare I2C adapter driver. * * Based on the TI DAVINCI I2C adapter driver. * * Copyright (C) 2006 Texas Instruments. * Copyright (C) 2007 MontaVista Software Inc. * Copyright (C) 2009 Provigent Ltd. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DEFAULT_SYMBOL_NAMESPACE "I2C_DW_COMMON" #include "i2c-designware-core.h" static const char *const abort_sources[] = { [ABRT_7B_ADDR_NOACK] = "slave address not acknowledged (7bit mode)", [ABRT_10ADDR1_NOACK] = "first address byte not acknowledged (10bit mode)", [ABRT_10ADDR2_NOACK] = "second address byte not acknowledged (10bit mode)", [ABRT_TXDATA_NOACK] = "data not acknowledged", [ABRT_GCALL_NOACK] = "no acknowledgement for a general call", [ABRT_GCALL_READ] = "read after general call", [ABRT_SBYTE_ACKDET] = "start byte acknowledged", [ABRT_SBYTE_NORSTRT] = "trying to send start byte when restart is disabled", [ABRT_10B_RD_NORSTRT] = "trying to read when restart is disabled (10bit mode)", [ABRT_MASTER_DIS] = "trying to use disabled adapter", [ARB_LOST] = "lost arbitration", [ABRT_SLAVE_FLUSH_TXFIFO] = "read command so flush old data in the TX FIFO", [ABRT_SLAVE_ARBLOST] = "slave lost the bus while transmitting data to a remote master", [ABRT_SLAVE_RD_INTX] = "incorrect slave-transmitter mode configuration", }; static int dw_reg_read(void *context, unsigned int reg, unsigned int *val) { struct dw_i2c_dev *dev = context; *val = readl(dev->base + reg); return 0; } static int dw_reg_write(void *context, unsigned int reg, unsigned int val) { struct dw_i2c_dev *dev = context; writel(val, dev->base + reg); return 0; } static int dw_reg_read_swab(void *context, unsigned int reg, unsigned int *val) { struct dw_i2c_dev *dev = context; *val = swab32(readl(dev->base + reg)); return 0; } static int dw_reg_write_swab(void *context, unsigned int reg, unsigned int val) { struct dw_i2c_dev *dev = context; writel(swab32(val), dev->base + reg); return 0; } static int dw_reg_read_word(void *context, unsigned int reg, unsigned int *val) { struct dw_i2c_dev *dev = context; *val = readw(dev->base + reg) | (readw(dev->base + reg + 2) << 16); return 0; } static int dw_reg_write_word(void *context, unsigned int reg, unsigned int val) { struct dw_i2c_dev *dev = context; writew(val, dev->base + reg); writew(val >> 16, dev->base + reg + 2); return 0; } /** * i2c_dw_init_regmap() - Initialize registers map * @dev: device private data * * Autodetects needed register access mode and creates the regmap with * corresponding read/write callbacks. This must be called before doing any * other register access. * * Return: 0 on success, or negative errno otherwise. */ int i2c_dw_init_regmap(struct dw_i2c_dev *dev) { struct regmap_config map_cfg = { .reg_bits = 32, .val_bits = 32, .reg_stride = 4, .disable_locking = true, .reg_read = dw_reg_read, .reg_write = dw_reg_write, .max_register = DW_IC_COMP_TYPE, }; u32 reg; int ret; /* * Skip detecting the registers map configuration if the regmap has * already been provided by a higher code. */ if (dev->map) return 0; ret = i2c_dw_acquire_lock(dev); if (ret) return ret; reg = readl(dev->base + DW_IC_COMP_TYPE); i2c_dw_release_lock(dev); if ((dev->flags & MODEL_MASK) == MODEL_AMD_NAVI_GPU) map_cfg.max_register = AMD_UCSI_INTR_REG; if (reg == swab32(DW_IC_COMP_TYPE_VALUE)) { map_cfg.reg_read = dw_reg_read_swab; map_cfg.reg_write = dw_reg_write_swab; } else if (reg == (DW_IC_COMP_TYPE_VALUE & 0x0000ffff)) { map_cfg.reg_read = dw_reg_read_word; map_cfg.reg_write = dw_reg_write_word; } else if (reg != DW_IC_COMP_TYPE_VALUE) { dev_err(dev->dev, "Unknown Synopsys component type: 0x%08x\n", reg); return -ENODEV; } /* * Note we'll check the return value of the regmap IO accessors only * at the probe stage. The rest of the code won't do this because * basically we have MMIO-based regmap, so none of the read/write methods * can fail. */ dev->map = devm_regmap_init(dev->dev, NULL, dev, &map_cfg); if (IS_ERR(dev->map)) { dev_err(dev->dev, "Failed to init the registers map\n"); return PTR_ERR(dev->map); } return 0; } static const u32 supported_speeds[] = { I2C_MAX_HIGH_SPEED_MODE_FREQ, I2C_MAX_FAST_MODE_PLUS_FREQ, I2C_MAX_FAST_MODE_FREQ, I2C_MAX_STANDARD_MODE_FREQ, }; static int i2c_dw_validate_speed(struct dw_i2c_dev *dev) { struct i2c_timings *t = &dev->timings; unsigned int i; /* * Only standard mode at 100kHz, fast mode at 400kHz, * fast mode plus at 1MHz and high speed mode at 3.4MHz are supported. */ for (i = 0; i < ARRAY_SIZE(supported_speeds); i++) { if (t->bus_freq_hz == supported_speeds[i]) return 0; } dev_err(dev->dev, "%d Hz is unsupported, only 100kHz, 400kHz, 1MHz and 3.4MHz are supported\n", t->bus_freq_hz); return -EINVAL; } #ifdef CONFIG_OF #include #define MSCC_ICPU_CFG_TWI_DELAY 0x0 #define MSCC_ICPU_CFG_TWI_DELAY_ENABLE BIT(0) #define MSCC_ICPU_CFG_TWI_SPIKE_FILTER 0x4 static int mscc_twi_set_sda_hold_time(struct dw_i2c_dev *dev) { writel((dev->sda_hold_time << 1) | MSCC_ICPU_CFG_TWI_DELAY_ENABLE, dev->ext + MSCC_ICPU_CFG_TWI_DELAY); return 0; } static void i2c_dw_of_configure(struct device *device) { struct platform_device *pdev = to_platform_device(device); struct dw_i2c_dev *dev = dev_get_drvdata(device); switch (dev->flags & MODEL_MASK) { case MODEL_MSCC_OCELOT: dev->ext = devm_platform_ioremap_resource(pdev, 1); if (!IS_ERR(dev->ext)) dev->set_sda_hold_time = mscc_twi_set_sda_hold_time; break; default: break; } } #else /* CONFIG_OF */ static inline void i2c_dw_of_configure(struct device *device) { } #endif /* CONFIG_OF */ #ifdef CONFIG_ACPI #include /* * The HCNT/LCNT information coming from ACPI should be the most accurate * for given platform. However, some systems get it wrong. On such systems * we get better results by calculating those based on the input clock. */ static const struct dmi_system_id i2c_dw_no_acpi_params[] = { { .ident = "Dell Inspiron 7348", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."), DMI_MATCH(DMI_PRODUCT_NAME, "Inspiron 7348"), }, }, {} }; static void i2c_dw_acpi_params(struct device *device, char method[], u16 *hcnt, u16 *lcnt, u32 *sda_hold) { struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER }; acpi_handle handle = ACPI_HANDLE(device); union acpi_object *obj; if (dmi_check_system(i2c_dw_no_acpi_params)) return; if (ACPI_FAILURE(acpi_evaluate_object(handle, method, NULL, &buf))) return; obj = (union acpi_object *)buf.pointer; if (obj->type == ACPI_TYPE_PACKAGE && obj->package.count == 3) { const union acpi_object *objs = obj->package.elements; *hcnt = (u16)objs[0].integer.value; *lcnt = (u16)objs[1].integer.value; *sda_hold = (u32)objs[2].integer.value; } kfree(buf.pointer); } static void i2c_dw_acpi_configure(struct device *device) { struct dw_i2c_dev *dev = dev_get_drvdata(device); struct i2c_timings *t = &dev->timings; u32 ss_ht = 0, fp_ht = 0, hs_ht = 0, fs_ht = 0; /* * Try to get SDA hold time and *CNT values from an ACPI method for * selected speed modes. */ i2c_dw_acpi_params(device, "SSCN", &dev->ss_hcnt, &dev->ss_lcnt, &ss_ht); i2c_dw_acpi_params(device, "FMCN", &dev->fs_hcnt, &dev->fs_lcnt, &fs_ht); i2c_dw_acpi_params(device, "FPCN", &dev->fp_hcnt, &dev->fp_lcnt, &fp_ht); i2c_dw_acpi_params(device, "HSCN", &dev->hs_hcnt, &dev->hs_lcnt, &hs_ht); switch (t->bus_freq_hz) { case I2C_MAX_STANDARD_MODE_FREQ: dev->sda_hold_time = ss_ht; break; case I2C_MAX_FAST_MODE_PLUS_FREQ: dev->sda_hold_time = fp_ht; break; case I2C_MAX_HIGH_SPEED_MODE_FREQ: dev->sda_hold_time = hs_ht; break; case I2C_MAX_FAST_MODE_FREQ: default: dev->sda_hold_time = fs_ht; break; } } static u32 i2c_dw_acpi_round_bus_speed(struct device *device) { u32 acpi_speed; int i; acpi_speed = i2c_acpi_find_bus_speed(device); /* * Some DSDTs use a non standard speed, round down to the lowest * standard speed. */ for (i = 0; i < ARRAY_SIZE(supported_speeds); i++) { if (acpi_speed >= supported_speeds[i]) return supported_speeds[i]; } return 0; } #else /* CONFIG_ACPI */ static inline void i2c_dw_acpi_configure(struct device *device) { } static inline u32 i2c_dw_acpi_round_bus_speed(struct device *device) { return 0; } #endif /* CONFIG_ACPI */ static void i2c_dw_adjust_bus_speed(struct dw_i2c_dev *dev) { u32 acpi_speed = i2c_dw_acpi_round_bus_speed(dev->dev); struct i2c_timings *t = &dev->timings; /* * Find bus speed from the "clock-frequency" device property, ACPI * or by using fast mode if neither is set. */ if (acpi_speed && t->bus_freq_hz) t->bus_freq_hz = min(t->bus_freq_hz, acpi_speed); else if (acpi_speed || t->bus_freq_hz) t->bus_freq_hz = max(t->bus_freq_hz, acpi_speed); else t->bus_freq_hz = I2C_MAX_FAST_MODE_FREQ; } int i2c_dw_fw_parse_and_configure(struct dw_i2c_dev *dev) { struct i2c_timings *t = &dev->timings; struct device *device = dev->dev; struct fwnode_handle *fwnode = dev_fwnode(device); i2c_parse_fw_timings(device, t, false); if (device_property_read_u32(device, "snps,bus-capacitance-pf", &dev->bus_capacitance_pF)) dev->bus_capacitance_pF = 100; dev->clk_freq_optimized = device_property_read_bool(device, "snps,clk-freq-optimized"); i2c_dw_adjust_bus_speed(dev); if (is_of_node(fwnode)) i2c_dw_of_configure(device); else if (is_acpi_node(fwnode)) i2c_dw_acpi_configure(device); return i2c_dw_validate_speed(dev); } EXPORT_SYMBOL_GPL(i2c_dw_fw_parse_and_configure); static u32 i2c_dw_read_scl_reg(struct dw_i2c_dev *dev, u32 reg) { u32 val; int ret; ret = i2c_dw_acquire_lock(dev); if (ret) return 0; ret = regmap_read(dev->map, reg, &val); i2c_dw_release_lock(dev); return ret ? 0 : val; } u32 i2c_dw_scl_hcnt(struct dw_i2c_dev *dev, unsigned int reg, u32 ic_clk, u32 tSYMBOL, u32 tf, int offset) { if (!ic_clk) return i2c_dw_read_scl_reg(dev, reg); /* * Conditional expression: * * IC_[FS]S_SCL_HCNT + 3 >= IC_CLK * (tHD;STA + tf) * * This is just experimental rule; the tHD;STA period turned * out to be proportinal to (_HCNT + 3). With this setting, * we could meet both tHIGH and tHD;STA timing specs. * * If unsure, you'd better to take this alternative. * * The reason why we need to take into account "tf" here, * is the same as described in i2c_dw_scl_lcnt(). */ return DIV_ROUND_CLOSEST_ULL((u64)ic_clk * (tSYMBOL + tf), MICRO) - 3 + offset; } u32 i2c_dw_scl_lcnt(struct dw_i2c_dev *dev, unsigned int reg, u32 ic_clk, u32 tLOW, u32 tf, int offset) { if (!ic_clk) return i2c_dw_read_scl_reg(dev, reg); /* * Conditional expression: * * IC_[FS]S_SCL_LCNT + 1 >= IC_CLK * (tLOW + tf) * * DW I2C core starts counting the SCL CNTs for the LOW period * of the SCL clock (tLOW) as soon as it pulls the SCL line. * In order to meet the tLOW timing spec, we need to take into * account the fall time of SCL signal (tf). Default tf value * should be 0.3 us, for safety. */ return DIV_ROUND_CLOSEST_ULL((u64)ic_clk * (tLOW + tf), MICRO) - 1 + offset; } int i2c_dw_set_sda_hold(struct dw_i2c_dev *dev) { unsigned int reg; int ret; ret = i2c_dw_acquire_lock(dev); if (ret) return ret; /* Configure SDA Hold Time if required */ ret = regmap_read(dev->map, DW_IC_COMP_VERSION, ®); if (ret) goto err_release_lock; if (reg >= DW_IC_SDA_HOLD_MIN_VERS) { if (!dev->sda_hold_time) { /* Keep previous hold time setting if no one set it */ ret = regmap_read(dev->map, DW_IC_SDA_HOLD, &dev->sda_hold_time); if (ret) goto err_release_lock; } /* * Workaround for avoiding TX arbitration lost in case I2C * slave pulls SDA down "too quickly" after falling edge of * SCL by enabling non-zero SDA RX hold. Specification says it * extends incoming SDA low to high transition while SCL is * high but it appears to help also above issue. */ if (!(dev->sda_hold_time & DW_IC_SDA_HOLD_RX_MASK)) dev->sda_hold_time |= 1 << DW_IC_SDA_HOLD_RX_SHIFT; dev_dbg(dev->dev, "SDA Hold Time TX:RX = %d:%d\n", dev->sda_hold_time & ~(u32)DW_IC_SDA_HOLD_RX_MASK, dev->sda_hold_time >> DW_IC_SDA_HOLD_RX_SHIFT); } else if (dev->set_sda_hold_time) { dev->set_sda_hold_time(dev); } else if (dev->sda_hold_time) { dev_warn(dev->dev, "Hardware too old to adjust SDA hold time.\n"); dev->sda_hold_time = 0; } err_release_lock: i2c_dw_release_lock(dev); return ret; } void __i2c_dw_disable(struct dw_i2c_dev *dev) { struct i2c_timings *t = &dev->timings; unsigned int raw_intr_stats, ic_stats; unsigned int enable; int timeout = 100; bool abort_needed; unsigned int status; int ret; regmap_read(dev->map, DW_IC_RAW_INTR_STAT, &raw_intr_stats); regmap_read(dev->map, DW_IC_STATUS, &ic_stats); regmap_read(dev->map, DW_IC_ENABLE, &enable); abort_needed = (raw_intr_stats & DW_IC_INTR_MST_ON_HOLD) || (ic_stats & DW_IC_STATUS_MASTER_HOLD_TX_FIFO_EMPTY); if (abort_needed) { if (!(enable & DW_IC_ENABLE_ENABLE)) { regmap_write(dev->map, DW_IC_ENABLE, DW_IC_ENABLE_ENABLE); /* * Wait 10 times the signaling period of the highest I2C * transfer supported by the driver (for 400KHz this is * 25us) to ensure the I2C ENABLE bit is already set * as described in the DesignWare I2C databook. */ fsleep(DIV_ROUND_CLOSEST_ULL(10 * MICRO, t->bus_freq_hz)); /* Set ENABLE bit before setting ABORT */ enable |= DW_IC_ENABLE_ENABLE; } regmap_write(dev->map, DW_IC_ENABLE, enable | DW_IC_ENABLE_ABORT); ret = regmap_read_poll_timeout(dev->map, DW_IC_ENABLE, enable, !(enable & DW_IC_ENABLE_ABORT), 10, 100); if (ret) dev_err(dev->dev, "timeout while trying to abort current transfer\n"); } do { __i2c_dw_disable_nowait(dev); /* * The enable status register may be unimplemented, but * in that case this test reads zero and exits the loop. */ regmap_read(dev->map, DW_IC_ENABLE_STATUS, &status); if ((status & 1) == 0) return; /* * Wait 10 times the signaling period of the highest I2C * transfer supported by the driver (for 400kHz this is * 25us) as described in the DesignWare I2C databook. */ usleep_range(25, 250); } while (timeout--); dev_warn(dev->dev, "timeout in disabling adapter\n"); } u32 i2c_dw_clk_rate(struct dw_i2c_dev *dev) { /* * Clock is not necessary if we got LCNT/HCNT values directly from * the platform code. */ if (WARN_ON_ONCE(!dev->get_clk_rate_khz)) return 0; return dev->get_clk_rate_khz(dev); } int i2c_dw_prepare_clk(struct dw_i2c_dev *dev, bool prepare) { int ret; if (prepare) { /* Optional interface clock */ ret = clk_prepare_enable(dev->pclk); if (ret) return ret; ret = clk_prepare_enable(dev->clk); if (ret) clk_disable_unprepare(dev->pclk); return ret; } clk_disable_unprepare(dev->clk); clk_disable_unprepare(dev->pclk); return 0; } EXPORT_SYMBOL_GPL(i2c_dw_prepare_clk); int i2c_dw_acquire_lock(struct dw_i2c_dev *dev) { int ret; if (!dev->acquire_lock) return 0; ret = dev->acquire_lock(); if (!ret) return 0; dev_err(dev->dev, "couldn't acquire bus ownership\n"); return ret; } void i2c_dw_release_lock(struct dw_i2c_dev *dev) { if (dev->release_lock) dev->release_lock(); } /* * Waiting for bus not busy */ int i2c_dw_wait_bus_not_busy(struct dw_i2c_dev *dev) { unsigned int status; int ret; ret = regmap_read_poll_timeout(dev->map, DW_IC_STATUS, status, !(status & DW_IC_STATUS_ACTIVITY), 1100, 20000); if (ret) { dev_warn(dev->dev, "timeout waiting for bus ready\n"); i2c_recover_bus(&dev->adapter); regmap_read(dev->map, DW_IC_STATUS, &status); if (!(status & DW_IC_STATUS_ACTIVITY)) ret = 0; } return ret; } int i2c_dw_handle_tx_abort(struct dw_i2c_dev *dev) { unsigned long abort_source = dev->abort_source; int i; if (abort_source & DW_IC_TX_ABRT_NOACK) { for_each_set_bit(i, &abort_source, ARRAY_SIZE(abort_sources)) dev_dbg(dev->dev, "%s: %s\n", __func__, abort_sources[i]); return -EREMOTEIO; } for_each_set_bit(i, &abort_source, ARRAY_SIZE(abort_sources)) dev_err(dev->dev, "%s: %s\n", __func__, abort_sources[i]); if (abort_source & DW_IC_TX_ARB_LOST) return -EAGAIN; if (abort_source & DW_IC_TX_ABRT_GCALL_READ) return -EINVAL; /* wrong msgs[] data */ return -EIO; } int i2c_dw_set_fifo_size(struct dw_i2c_dev *dev) { u32 tx_fifo_depth, rx_fifo_depth; unsigned int param; int ret; /* DW_IC_COMP_PARAM_1 not implement for IP issue */ if ((dev->flags & MODEL_MASK) == MODEL_WANGXUN_SP) { dev->tx_fifo_depth = TXGBE_TX_FIFO_DEPTH; dev->rx_fifo_depth = TXGBE_RX_FIFO_DEPTH; return 0; } /* * Try to detect the FIFO depth if not set by interface driver, * the depth could be from 2 to 256 from HW spec. */ ret = i2c_dw_acquire_lock(dev); if (ret) return ret; ret = regmap_read(dev->map, DW_IC_COMP_PARAM_1, ¶m); i2c_dw_release_lock(dev); if (ret) return ret; tx_fifo_depth = ((param >> 16) & 0xff) + 1; rx_fifo_depth = ((param >> 8) & 0xff) + 1; if (!dev->tx_fifo_depth) { dev->tx_fifo_depth = tx_fifo_depth; dev->rx_fifo_depth = rx_fifo_depth; } else if (tx_fifo_depth >= 2) { dev->tx_fifo_depth = min_t(u32, dev->tx_fifo_depth, tx_fifo_depth); dev->rx_fifo_depth = min_t(u32, dev->rx_fifo_depth, rx_fifo_depth); } return 0; } u32 i2c_dw_func(struct i2c_adapter *adap) { struct dw_i2c_dev *dev = i2c_get_adapdata(adap); return dev->functionality; } void i2c_dw_disable(struct dw_i2c_dev *dev) { unsigned int dummy; int ret; ret = i2c_dw_acquire_lock(dev); if (ret) return; /* Disable controller */ __i2c_dw_disable(dev); /* Disable all interrupts */ __i2c_dw_write_intr_mask(dev, 0); regmap_read(dev->map, DW_IC_CLR_INTR, &dummy); i2c_dw_release_lock(dev); } EXPORT_SYMBOL_GPL(i2c_dw_disable); int i2c_dw_probe(struct dw_i2c_dev *dev) { device_set_node(&dev->adapter.dev, dev_fwnode(dev->dev)); switch (dev->mode) { case DW_IC_SLAVE: return i2c_dw_probe_slave(dev); case DW_IC_MASTER: return i2c_dw_probe_master(dev); default: dev_err(dev->dev, "Wrong operation mode: %d\n", dev->mode); return -EINVAL; } } EXPORT_SYMBOL_GPL(i2c_dw_probe); static int i2c_dw_prepare(struct device *device) { /* * If the ACPI companion device object is present for this device, * it may be accessed during suspend and resume of other devices via * I2C operation regions, so tell the PM core and middle layers to * avoid skipping system suspend/resume callbacks for it in that case. */ return !has_acpi_companion(device); } static int i2c_dw_runtime_suspend(struct device *device) { struct dw_i2c_dev *dev = dev_get_drvdata(device); if (dev->shared_with_punit) return 0; i2c_dw_disable(dev); i2c_dw_prepare_clk(dev, false); return 0; } static int i2c_dw_suspend(struct device *device) { struct dw_i2c_dev *dev = dev_get_drvdata(device); i2c_mark_adapter_suspended(&dev->adapter); return i2c_dw_runtime_suspend(device); } static int i2c_dw_runtime_resume(struct device *device) { struct dw_i2c_dev *dev = dev_get_drvdata(device); if (!dev->shared_with_punit) i2c_dw_prepare_clk(dev, true); dev->init(dev); return 0; } static int i2c_dw_resume(struct device *device) { struct dw_i2c_dev *dev = dev_get_drvdata(device); i2c_dw_runtime_resume(device); i2c_mark_adapter_resumed(&dev->adapter); return 0; } EXPORT_GPL_DEV_PM_OPS(i2c_dw_dev_pm_ops) = { .prepare = pm_sleep_ptr(i2c_dw_prepare), LATE_SYSTEM_SLEEP_PM_OPS(i2c_dw_suspend, i2c_dw_resume) RUNTIME_PM_OPS(i2c_dw_runtime_suspend, i2c_dw_runtime_resume, NULL) }; MODULE_DESCRIPTION("Synopsys DesignWare I2C bus adapter core"); MODULE_LICENSE("GPL");