// SPDX-License-Identifier: GPL-2.0-only /* * i2c-exynos5.c - Samsung Exynos5 I2C Controller Driver * * Copyright (C) 2013 Samsung Electronics Co., Ltd. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * HSI2C controller from Samsung supports 2 modes of operation * 1. Auto mode: Where in master automatically controls the whole transaction * 2. Manual mode: Software controls the transaction by issuing commands * START, READ, WRITE, STOP, RESTART in I2C_MANUAL_CMD register. * * Operation mode can be selected by setting AUTO_MODE bit in I2C_CONF register * * Special bits are available for both modes of operation to set commands * and for checking transfer status */ /* Register Map */ #define HSI2C_CTL 0x00 #define HSI2C_FIFO_CTL 0x04 #define HSI2C_TRAILIG_CTL 0x08 #define HSI2C_CLK_CTL 0x0C #define HSI2C_CLK_SLOT 0x10 #define HSI2C_INT_ENABLE 0x20 #define HSI2C_INT_STATUS 0x24 #define HSI2C_ERR_STATUS 0x2C #define HSI2C_FIFO_STATUS 0x30 #define HSI2C_TX_DATA 0x34 #define HSI2C_RX_DATA 0x38 #define HSI2C_CONF 0x40 #define HSI2C_AUTO_CONF 0x44 #define HSI2C_TIMEOUT 0x48 #define HSI2C_MANUAL_CMD 0x4C #define HSI2C_TRANS_STATUS 0x50 #define HSI2C_TIMING_HS1 0x54 #define HSI2C_TIMING_HS2 0x58 #define HSI2C_TIMING_HS3 0x5C #define HSI2C_TIMING_FS1 0x60 #define HSI2C_TIMING_FS2 0x64 #define HSI2C_TIMING_FS3 0x68 #define HSI2C_TIMING_SLA 0x6C #define HSI2C_ADDR 0x70 /* I2C_CTL Register bits */ #define HSI2C_FUNC_MODE_I2C (1u << 0) #define HSI2C_MASTER (1u << 3) #define HSI2C_RXCHON (1u << 6) #define HSI2C_TXCHON (1u << 7) #define HSI2C_SW_RST (1u << 31) /* I2C_FIFO_CTL Register bits */ #define HSI2C_RXFIFO_EN (1u << 0) #define HSI2C_TXFIFO_EN (1u << 1) #define HSI2C_RXFIFO_TRIGGER_LEVEL(x) ((x) << 4) #define HSI2C_TXFIFO_TRIGGER_LEVEL(x) ((x) << 16) /* I2C_TRAILING_CTL Register bits */ #define HSI2C_TRAILING_COUNT (0xf) /* I2C_INT_EN Register bits */ #define HSI2C_INT_TX_ALMOSTEMPTY_EN (1u << 0) #define HSI2C_INT_RX_ALMOSTFULL_EN (1u << 1) #define HSI2C_INT_TRAILING_EN (1u << 6) /* I2C_INT_STAT Register bits */ #define HSI2C_INT_TX_ALMOSTEMPTY (1u << 0) #define HSI2C_INT_RX_ALMOSTFULL (1u << 1) #define HSI2C_INT_TX_UNDERRUN (1u << 2) #define HSI2C_INT_TX_OVERRUN (1u << 3) #define HSI2C_INT_RX_UNDERRUN (1u << 4) #define HSI2C_INT_RX_OVERRUN (1u << 5) #define HSI2C_INT_TRAILING (1u << 6) #define HSI2C_INT_I2C (1u << 9) #define HSI2C_INT_TRANS_DONE (1u << 7) #define HSI2C_INT_TRANS_ABORT (1u << 8) #define HSI2C_INT_NO_DEV_ACK (1u << 9) #define HSI2C_INT_NO_DEV (1u << 10) #define HSI2C_INT_TIMEOUT (1u << 11) #define HSI2C_INT_I2C_TRANS (HSI2C_INT_TRANS_DONE | \ HSI2C_INT_TRANS_ABORT | \ HSI2C_INT_NO_DEV_ACK | \ HSI2C_INT_NO_DEV | \ HSI2C_INT_TIMEOUT) /* I2C_FIFO_STAT Register bits */ #define HSI2C_RX_FIFO_EMPTY (1u << 24) #define HSI2C_RX_FIFO_FULL (1u << 23) #define HSI2C_RX_FIFO_LVL(x) ((x >> 16) & 0x7f) #define HSI2C_TX_FIFO_EMPTY (1u << 8) #define HSI2C_TX_FIFO_FULL (1u << 7) #define HSI2C_TX_FIFO_LVL(x) ((x >> 0) & 0x7f) /* I2C_CONF Register bits */ #define HSI2C_AUTO_MODE (1u << 31) #define HSI2C_10BIT_ADDR_MODE (1u << 30) #define HSI2C_HS_MODE (1u << 29) /* I2C_AUTO_CONF Register bits */ #define HSI2C_READ_WRITE (1u << 16) #define HSI2C_STOP_AFTER_TRANS (1u << 17) #define HSI2C_MASTER_RUN (1u << 31) /* I2C_TIMEOUT Register bits */ #define HSI2C_TIMEOUT_EN (1u << 31) #define HSI2C_TIMEOUT_MASK 0xff /* I2C_MANUAL_CMD register bits */ #define HSI2C_CMD_READ_DATA (1u << 4) #define HSI2C_CMD_SEND_STOP (1u << 2) /* I2C_TRANS_STATUS register bits */ #define HSI2C_MASTER_BUSY (1u << 17) #define HSI2C_SLAVE_BUSY (1u << 16) /* I2C_TRANS_STATUS register bits for Exynos5 variant */ #define HSI2C_TIMEOUT_AUTO (1u << 4) #define HSI2C_NO_DEV (1u << 3) #define HSI2C_NO_DEV_ACK (1u << 2) #define HSI2C_TRANS_ABORT (1u << 1) #define HSI2C_TRANS_DONE (1u << 0) /* I2C_TRANS_STATUS register bits for Exynos7 variant */ #define HSI2C_MASTER_ST_MASK 0xf #define HSI2C_MASTER_ST_IDLE 0x0 #define HSI2C_MASTER_ST_START 0x1 #define HSI2C_MASTER_ST_RESTART 0x2 #define HSI2C_MASTER_ST_STOP 0x3 #define HSI2C_MASTER_ST_MASTER_ID 0x4 #define HSI2C_MASTER_ST_ADDR0 0x5 #define HSI2C_MASTER_ST_ADDR1 0x6 #define HSI2C_MASTER_ST_ADDR2 0x7 #define HSI2C_MASTER_ST_ADDR_SR 0x8 #define HSI2C_MASTER_ST_READ 0x9 #define HSI2C_MASTER_ST_WRITE 0xa #define HSI2C_MASTER_ST_NO_ACK 0xb #define HSI2C_MASTER_ST_LOSE 0xc #define HSI2C_MASTER_ST_WAIT 0xd #define HSI2C_MASTER_ST_WAIT_CMD 0xe /* I2C_ADDR register bits */ #define HSI2C_SLV_ADDR_SLV(x) ((x & 0x3ff) << 0) #define HSI2C_SLV_ADDR_MAS(x) ((x & 0x3ff) << 10) #define HSI2C_MASTER_ID(x) ((x & 0xff) << 24) #define MASTER_ID(x) ((x & 0x7) + 0x08) #define EXYNOS5_I2C_TIMEOUT (msecs_to_jiffies(100)) enum i2c_type_exynos { I2C_TYPE_EXYNOS5, I2C_TYPE_EXYNOS7, I2C_TYPE_EXYNOSAUTOV9, }; struct exynos5_i2c { struct i2c_adapter adap; struct i2c_msg *msg; struct completion msg_complete; unsigned int msg_ptr; unsigned int irq; void __iomem *regs; struct clk *clk; /* operating clock */ struct clk *pclk; /* bus clock */ struct device *dev; int state; spinlock_t lock; /* IRQ synchronization */ /* * Since the TRANS_DONE bit is cleared on read, and we may read it * either during an IRQ or after a transaction, keep track of its * state here. */ int trans_done; /* * Called from atomic context, don't use interrupts. */ unsigned int atomic; /* Controller operating frequency */ unsigned int op_clock; /* Version of HS-I2C Hardware */ const struct exynos_hsi2c_variant *variant; }; /** * struct exynos_hsi2c_variant - platform specific HSI2C driver data * @fifo_depth: the fifo depth supported by the HSI2C module * @hw: the hardware variant of Exynos I2C controller * * Specifies platform specific configuration of HSI2C module. * Note: A structure for driver specific platform data is used for future * expansion of its usage. */ struct exynos_hsi2c_variant { unsigned int fifo_depth; enum i2c_type_exynos hw; }; static const struct exynos_hsi2c_variant exynos5250_hsi2c_data = { .fifo_depth = 64, .hw = I2C_TYPE_EXYNOS5, }; static const struct exynos_hsi2c_variant exynos5260_hsi2c_data = { .fifo_depth = 16, .hw = I2C_TYPE_EXYNOS5, }; static const struct exynos_hsi2c_variant exynos7_hsi2c_data = { .fifo_depth = 16, .hw = I2C_TYPE_EXYNOS7, }; static const struct exynos_hsi2c_variant exynosautov9_hsi2c_data = { .fifo_depth = 64, .hw = I2C_TYPE_EXYNOSAUTOV9, }; static const struct of_device_id exynos5_i2c_match[] = { { .compatible = "samsung,exynos5-hsi2c", .data = &exynos5250_hsi2c_data }, { .compatible = "samsung,exynos5250-hsi2c", .data = &exynos5250_hsi2c_data }, { .compatible = "samsung,exynos5260-hsi2c", .data = &exynos5260_hsi2c_data }, { .compatible = "samsung,exynos7-hsi2c", .data = &exynos7_hsi2c_data }, { .compatible = "samsung,exynosautov9-hsi2c", .data = &exynosautov9_hsi2c_data }, {}, }; MODULE_DEVICE_TABLE(of, exynos5_i2c_match); static void exynos5_i2c_clr_pend_irq(struct exynos5_i2c *i2c) { writel(readl(i2c->regs + HSI2C_INT_STATUS), i2c->regs + HSI2C_INT_STATUS); } /* * exynos5_i2c_set_timing: updates the registers with appropriate * timing values calculated * * Timing values for operation are calculated against 100kHz, 400kHz * or 1MHz controller operating frequency. * * Returns 0 on success, -EINVAL if the cycle length cannot * be calculated. */ static int exynos5_i2c_set_timing(struct exynos5_i2c *i2c, bool hs_timings) { u32 i2c_timing_s1; u32 i2c_timing_s2; u32 i2c_timing_s3; u32 i2c_timing_sla; unsigned int t_start_su, t_start_hd; unsigned int t_stop_su; unsigned int t_data_su, t_data_hd; unsigned int t_scl_l, t_scl_h; unsigned int t_sr_release; unsigned int t_ftl_cycle; unsigned int clkin = clk_get_rate(i2c->clk); unsigned int op_clk = hs_timings ? i2c->op_clock : (i2c->op_clock >= I2C_MAX_FAST_MODE_PLUS_FREQ) ? I2C_MAX_STANDARD_MODE_FREQ : i2c->op_clock; int div, clk_cycle, temp; /* * In case of HSI2C controllers in ExynosAutoV9: * * FSCL = IPCLK / ((CLK_DIV + 1) * 16) * T_SCL_LOW = IPCLK * (CLK_DIV + 1) * (N + M) * [N : number of 0's in the TSCL_H_HS] * [M : number of 0's in the TSCL_L_HS] * T_SCL_HIGH = IPCLK * (CLK_DIV + 1) * (N + M) * [N : number of 1's in the TSCL_H_HS] * [M : number of 1's in the TSCL_L_HS] * * Result of (N + M) is always 8. * In general case, we don't need to control timing_s1 and timing_s2. */ if (i2c->variant->hw == I2C_TYPE_EXYNOSAUTOV9) { div = ((clkin / (16 * i2c->op_clock)) - 1); i2c_timing_s3 = div << 16; if (hs_timings) writel(i2c_timing_s3, i2c->regs + HSI2C_TIMING_HS3); else writel(i2c_timing_s3, i2c->regs + HSI2C_TIMING_FS3); return 0; } /* * In case of HSI2C controller in Exynos5 series * FPCLK / FI2C = * (CLK_DIV + 1) * (TSCLK_L + TSCLK_H + 2) + 8 + 2 * FLT_CYCLE * * In case of HSI2C controllers in Exynos7 series * FPCLK / FI2C = * (CLK_DIV + 1) * (TSCLK_L + TSCLK_H + 2) + 8 + FLT_CYCLE * * clk_cycle := TSCLK_L + TSCLK_H * temp := (CLK_DIV + 1) * (clk_cycle + 2) * * Constraints: 4 <= temp, 0 <= CLK_DIV < 256, 2 <= clk_cycle <= 510 * * To split SCL clock into low, high periods appropriately, one * proportion factor for each I2C mode is used, which is calculated * using this formula. * ``` * ((t_low_min + (scl_clock - t_low_min - t_high_min) / 2) / scl_clock) * ``` * where: * t_low_min is the minimal value of low period of the SCL clock in us; * t_high_min is the minimal value of high period of the SCL clock in us; * scl_clock is converted from SCL clock frequency into us. * * Below are the proportion factors for these I2C modes: * t_low_min, t_high_min, scl_clock, proportion * Standard Mode: 4.7us, 4.0us, 10us, 0.535 * Fast Mode: 1.3us, 0.6us, 2.5us, 0.64 * Fast-Plus Mode: 0.5us, 0.26us, 1us, 0.62 * */ t_ftl_cycle = (readl(i2c->regs + HSI2C_CONF) >> 16) & 0x7; temp = clkin / op_clk - 8 - t_ftl_cycle; if (i2c->variant->hw != I2C_TYPE_EXYNOS7) temp -= t_ftl_cycle; div = temp / 512; clk_cycle = temp / (div + 1) - 2; if (temp < 4 || div >= 256 || clk_cycle < 2) { dev_err(i2c->dev, "%s clock set-up failed\n", hs_timings ? "HS" : "FS"); return -EINVAL; } /* * Scale clk_cycle to get t_scl_l using the proption factors for individual I2C modes. */ if (op_clk <= I2C_MAX_STANDARD_MODE_FREQ) t_scl_l = clk_cycle * 535 / 1000; else if (op_clk <= I2C_MAX_FAST_MODE_FREQ) t_scl_l = clk_cycle * 64 / 100; else t_scl_l = clk_cycle * 62 / 100; if (t_scl_l > 0xFF) t_scl_l = 0xFF; t_scl_h = clk_cycle - t_scl_l; t_start_su = t_scl_l; t_start_hd = t_scl_l; t_stop_su = t_scl_l; t_data_su = t_scl_l / 2; t_data_hd = t_scl_l / 2; t_sr_release = clk_cycle; i2c_timing_s1 = t_start_su << 24 | t_start_hd << 16 | t_stop_su << 8; i2c_timing_s2 = t_data_su << 24 | t_scl_l << 8 | t_scl_h << 0; i2c_timing_s3 = div << 16 | t_sr_release << 0; i2c_timing_sla = t_data_hd << 0; dev_dbg(i2c->dev, "tSTART_SU: %X, tSTART_HD: %X, tSTOP_SU: %X\n", t_start_su, t_start_hd, t_stop_su); dev_dbg(i2c->dev, "tDATA_SU: %X, tSCL_L: %X, tSCL_H: %X\n", t_data_su, t_scl_l, t_scl_h); dev_dbg(i2c->dev, "nClkDiv: %X, tSR_RELEASE: %X\n", div, t_sr_release); dev_dbg(i2c->dev, "tDATA_HD: %X\n", t_data_hd); if (hs_timings) { writel(i2c_timing_s1, i2c->regs + HSI2C_TIMING_HS1); writel(i2c_timing_s2, i2c->regs + HSI2C_TIMING_HS2); writel(i2c_timing_s3, i2c->regs + HSI2C_TIMING_HS3); } else { writel(i2c_timing_s1, i2c->regs + HSI2C_TIMING_FS1); writel(i2c_timing_s2, i2c->regs + HSI2C_TIMING_FS2); writel(i2c_timing_s3, i2c->regs + HSI2C_TIMING_FS3); } writel(i2c_timing_sla, i2c->regs + HSI2C_TIMING_SLA); return 0; } static int exynos5_hsi2c_clock_setup(struct exynos5_i2c *i2c) { /* always set Fast Speed timings */ int ret = exynos5_i2c_set_timing(i2c, false); if (ret < 0 || i2c->op_clock < I2C_MAX_FAST_MODE_PLUS_FREQ) return ret; return exynos5_i2c_set_timing(i2c, true); } /* * exynos5_i2c_init: configures the controller for I2C functionality * Programs I2C controller for Master mode operation */ static void exynos5_i2c_init(struct exynos5_i2c *i2c) { u32 i2c_conf = readl(i2c->regs + HSI2C_CONF); u32 i2c_timeout = readl(i2c->regs + HSI2C_TIMEOUT); /* Clear to disable Timeout */ i2c_timeout &= ~HSI2C_TIMEOUT_EN; writel(i2c_timeout, i2c->regs + HSI2C_TIMEOUT); writel((HSI2C_FUNC_MODE_I2C | HSI2C_MASTER), i2c->regs + HSI2C_CTL); writel(HSI2C_TRAILING_COUNT, i2c->regs + HSI2C_TRAILIG_CTL); if (i2c->op_clock >= I2C_MAX_FAST_MODE_PLUS_FREQ) { writel(HSI2C_MASTER_ID(MASTER_ID(i2c->adap.nr)), i2c->regs + HSI2C_ADDR); i2c_conf |= HSI2C_HS_MODE; } writel(i2c_conf | HSI2C_AUTO_MODE, i2c->regs + HSI2C_CONF); } static void exynos5_i2c_reset(struct exynos5_i2c *i2c) { u32 i2c_ctl; /* Set and clear the bit for reset */ i2c_ctl = readl(i2c->regs + HSI2C_CTL); i2c_ctl |= HSI2C_SW_RST; writel(i2c_ctl, i2c->regs + HSI2C_CTL); i2c_ctl = readl(i2c->regs + HSI2C_CTL); i2c_ctl &= ~HSI2C_SW_RST; writel(i2c_ctl, i2c->regs + HSI2C_CTL); /* We don't expect calculations to fail during the run */ exynos5_hsi2c_clock_setup(i2c); /* Initialize the configure registers */ exynos5_i2c_init(i2c); } /* * exynos5_i2c_irq: top level IRQ servicing routine * * INT_STATUS registers gives the interrupt details. Further, * FIFO_STATUS or TRANS_STATUS registers are to be check for detailed * state of the bus. */ static irqreturn_t exynos5_i2c_irq(int irqno, void *dev_id) { struct exynos5_i2c *i2c = dev_id; u32 fifo_level, int_status, fifo_status, trans_status; unsigned char byte; int len = 0; i2c->state = -EINVAL; spin_lock(&i2c->lock); int_status = readl(i2c->regs + HSI2C_INT_STATUS); writel(int_status, i2c->regs + HSI2C_INT_STATUS); /* handle interrupt related to the transfer status */ switch (i2c->variant->hw) { case I2C_TYPE_EXYNOSAUTOV9: fallthrough; case I2C_TYPE_EXYNOS7: if (int_status & HSI2C_INT_TRANS_DONE) { i2c->trans_done = 1; i2c->state = 0; } else if (int_status & HSI2C_INT_TRANS_ABORT) { dev_dbg(i2c->dev, "Deal with arbitration lose\n"); i2c->state = -EAGAIN; goto stop; } else if (int_status & HSI2C_INT_NO_DEV_ACK) { dev_dbg(i2c->dev, "No ACK from device\n"); i2c->state = -ENXIO; goto stop; } else if (int_status & HSI2C_INT_NO_DEV) { dev_dbg(i2c->dev, "No device\n"); i2c->state = -ENXIO; goto stop; } else if (int_status & HSI2C_INT_TIMEOUT) { dev_dbg(i2c->dev, "Accessing device timed out\n"); i2c->state = -ETIMEDOUT; goto stop; } break; case I2C_TYPE_EXYNOS5: if (!(int_status & HSI2C_INT_I2C)) break; trans_status = readl(i2c->regs + HSI2C_TRANS_STATUS); if (trans_status & HSI2C_NO_DEV_ACK) { dev_dbg(i2c->dev, "No ACK from device\n"); i2c->state = -ENXIO; goto stop; } else if (trans_status & HSI2C_NO_DEV) { dev_dbg(i2c->dev, "No device\n"); i2c->state = -ENXIO; goto stop; } else if (trans_status & HSI2C_TRANS_ABORT) { dev_dbg(i2c->dev, "Deal with arbitration lose\n"); i2c->state = -EAGAIN; goto stop; } else if (trans_status & HSI2C_TIMEOUT_AUTO) { dev_dbg(i2c->dev, "Accessing device timed out\n"); i2c->state = -ETIMEDOUT; goto stop; } else if (trans_status & HSI2C_TRANS_DONE) { i2c->trans_done = 1; i2c->state = 0; } break; } if ((i2c->msg->flags & I2C_M_RD) && (int_status & (HSI2C_INT_TRAILING | HSI2C_INT_RX_ALMOSTFULL))) { fifo_status = readl(i2c->regs + HSI2C_FIFO_STATUS); fifo_level = HSI2C_RX_FIFO_LVL(fifo_status); len = min(fifo_level, i2c->msg->len - i2c->msg_ptr); while (len > 0) { byte = (unsigned char) readl(i2c->regs + HSI2C_RX_DATA); i2c->msg->buf[i2c->msg_ptr++] = byte; len--; } i2c->state = 0; } else if (int_status & HSI2C_INT_TX_ALMOSTEMPTY) { fifo_status = readl(i2c->regs + HSI2C_FIFO_STATUS); fifo_level = HSI2C_TX_FIFO_LVL(fifo_status); len = i2c->variant->fifo_depth - fifo_level; if (len > (i2c->msg->len - i2c->msg_ptr)) { u32 int_en = readl(i2c->regs + HSI2C_INT_ENABLE); int_en &= ~HSI2C_INT_TX_ALMOSTEMPTY_EN; writel(int_en, i2c->regs + HSI2C_INT_ENABLE); len = i2c->msg->len - i2c->msg_ptr; } while (len > 0) { byte = i2c->msg->buf[i2c->msg_ptr++]; writel(byte, i2c->regs + HSI2C_TX_DATA); len--; } i2c->state = 0; } stop: if ((i2c->trans_done && (i2c->msg->len == i2c->msg_ptr)) || (i2c->state < 0)) { writel(0, i2c->regs + HSI2C_INT_ENABLE); exynos5_i2c_clr_pend_irq(i2c); complete(&i2c->msg_complete); } spin_unlock(&i2c->lock); return IRQ_HANDLED; } /* * exynos5_i2c_wait_bus_idle * * Wait for the bus to go idle, indicated by the MASTER_BUSY bit being * cleared. * * Returns -EBUSY if the bus cannot be bought to idle */ static int exynos5_i2c_wait_bus_idle(struct exynos5_i2c *i2c) { unsigned long stop_time; u32 trans_status; /* wait for 100 milli seconds for the bus to be idle */ stop_time = jiffies + msecs_to_jiffies(100) + 1; do { trans_status = readl(i2c->regs + HSI2C_TRANS_STATUS); if (!(trans_status & HSI2C_MASTER_BUSY)) return 0; usleep_range(50, 200); } while (time_before(jiffies, stop_time)); return -EBUSY; } static void exynos5_i2c_bus_recover(struct exynos5_i2c *i2c) { u32 val; val = readl(i2c->regs + HSI2C_CTL) | HSI2C_RXCHON; writel(val, i2c->regs + HSI2C_CTL); val = readl(i2c->regs + HSI2C_CONF) & ~HSI2C_AUTO_MODE; writel(val, i2c->regs + HSI2C_CONF); /* * Specification says master should send nine clock pulses. It can be * emulated by sending manual read command (nine pulses for read eight * bits + one pulse for NACK). */ writel(HSI2C_CMD_READ_DATA, i2c->regs + HSI2C_MANUAL_CMD); exynos5_i2c_wait_bus_idle(i2c); writel(HSI2C_CMD_SEND_STOP, i2c->regs + HSI2C_MANUAL_CMD); exynos5_i2c_wait_bus_idle(i2c); val = readl(i2c->regs + HSI2C_CTL) & ~HSI2C_RXCHON; writel(val, i2c->regs + HSI2C_CTL); val = readl(i2c->regs + HSI2C_CONF) | HSI2C_AUTO_MODE; writel(val, i2c->regs + HSI2C_CONF); } static void exynos5_i2c_bus_check(struct exynos5_i2c *i2c) { unsigned long timeout; if (i2c->variant->hw == I2C_TYPE_EXYNOS5) return; /* * HSI2C_MASTER_ST_LOSE state (in Exynos7 and ExynosAutoV9 variants) * before transaction indicates that bus is stuck (SDA is low). * In such case bus recovery can be performed. */ timeout = jiffies + msecs_to_jiffies(100); for (;;) { u32 st = readl(i2c->regs + HSI2C_TRANS_STATUS); if ((st & HSI2C_MASTER_ST_MASK) != HSI2C_MASTER_ST_LOSE) return; if (time_is_before_jiffies(timeout)) return; exynos5_i2c_bus_recover(i2c); } } /* * exynos5_i2c_message_start: Configures the bus and starts the xfer * i2c: struct exynos5_i2c pointer for the current bus * stop: Enables stop after transfer if set. Set for last transfer of * in the list of messages. * * Configures the bus for read/write function * Sets chip address to talk to, message length to be sent. * Enables appropriate interrupts and sends start xfer command. */ static void exynos5_i2c_message_start(struct exynos5_i2c *i2c, int stop) { u32 i2c_ctl; u32 int_en = 0; u32 i2c_auto_conf = 0; u32 i2c_addr = 0; u32 fifo_ctl; unsigned long flags; unsigned short trig_lvl; if (i2c->variant->hw == I2C_TYPE_EXYNOS5) int_en |= HSI2C_INT_I2C; else int_en |= HSI2C_INT_I2C_TRANS; i2c_ctl = readl(i2c->regs + HSI2C_CTL); i2c_ctl &= ~(HSI2C_TXCHON | HSI2C_RXCHON); fifo_ctl = HSI2C_RXFIFO_EN | HSI2C_TXFIFO_EN; if (i2c->msg->flags & I2C_M_RD) { i2c_ctl |= HSI2C_RXCHON; i2c_auto_conf |= HSI2C_READ_WRITE; trig_lvl = (i2c->msg->len > i2c->variant->fifo_depth) ? (i2c->variant->fifo_depth * 3 / 4) : i2c->msg->len; fifo_ctl |= HSI2C_RXFIFO_TRIGGER_LEVEL(trig_lvl); int_en |= (HSI2C_INT_RX_ALMOSTFULL_EN | HSI2C_INT_TRAILING_EN); } else { i2c_ctl |= HSI2C_TXCHON; trig_lvl = (i2c->msg->len > i2c->variant->fifo_depth) ? (i2c->variant->fifo_depth * 1 / 4) : i2c->msg->len; fifo_ctl |= HSI2C_TXFIFO_TRIGGER_LEVEL(trig_lvl); int_en |= HSI2C_INT_TX_ALMOSTEMPTY_EN; } i2c_addr = HSI2C_SLV_ADDR_MAS(i2c->msg->addr); if (i2c->op_clock >= I2C_MAX_FAST_MODE_PLUS_FREQ) i2c_addr |= HSI2C_MASTER_ID(MASTER_ID(i2c->adap.nr)); writel(i2c_addr, i2c->regs + HSI2C_ADDR); writel(fifo_ctl, i2c->regs + HSI2C_FIFO_CTL); writel(i2c_ctl, i2c->regs + HSI2C_CTL); exynos5_i2c_bus_check(i2c); /* * Enable interrupts before starting the transfer so that we don't * miss any INT_I2C interrupts. */ spin_lock_irqsave(&i2c->lock, flags); writel(int_en, i2c->regs + HSI2C_INT_ENABLE); if (stop == 1) i2c_auto_conf |= HSI2C_STOP_AFTER_TRANS; i2c_auto_conf |= i2c->msg->len; i2c_auto_conf |= HSI2C_MASTER_RUN; writel(i2c_auto_conf, i2c->regs + HSI2C_AUTO_CONF); spin_unlock_irqrestore(&i2c->lock, flags); } static bool exynos5_i2c_poll_irqs_timeout(struct exynos5_i2c *i2c, unsigned long timeout) { unsigned long time_left = jiffies + timeout; while (time_before(jiffies, time_left) && !((i2c->trans_done && (i2c->msg->len == i2c->msg_ptr)) || (i2c->state < 0))) { while (readl(i2c->regs + HSI2C_INT_ENABLE) & readl(i2c->regs + HSI2C_INT_STATUS)) exynos5_i2c_irq(i2c->irq, i2c); usleep_range(100, 200); } return time_before(jiffies, time_left); } static int exynos5_i2c_xfer_msg(struct exynos5_i2c *i2c, struct i2c_msg *msgs, int stop) { unsigned long time_left; int ret; i2c->msg = msgs; i2c->msg_ptr = 0; i2c->trans_done = 0; reinit_completion(&i2c->msg_complete); exynos5_i2c_message_start(i2c, stop); if (!i2c->atomic) time_left = wait_for_completion_timeout(&i2c->msg_complete, EXYNOS5_I2C_TIMEOUT); else time_left = exynos5_i2c_poll_irqs_timeout(i2c, EXYNOS5_I2C_TIMEOUT); if (time_left == 0) ret = -ETIMEDOUT; else ret = i2c->state; /* * If this is the last message to be transfered (stop == 1) * Then check if the bus can be brought back to idle. */ if (ret == 0 && stop) ret = exynos5_i2c_wait_bus_idle(i2c); if (ret < 0) { exynos5_i2c_reset(i2c); if (ret == -ETIMEDOUT) dev_warn(i2c->dev, "%s timeout\n", (msgs->flags & I2C_M_RD) ? "rx" : "tx"); } /* Return the state as in interrupt routine */ return ret; } static int exynos5_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num) { struct exynos5_i2c *i2c = adap->algo_data; int i, ret; ret = clk_enable(i2c->pclk); if (ret) return ret; ret = clk_enable(i2c->clk); if (ret) goto err_pclk; for (i = 0; i < num; ++i) { ret = exynos5_i2c_xfer_msg(i2c, msgs + i, i + 1 == num); if (ret) break; } clk_disable(i2c->clk); err_pclk: clk_disable(i2c->pclk); return ret ?: num; } static int exynos5_i2c_xfer_atomic(struct i2c_adapter *adap, struct i2c_msg *msgs, int num) { struct exynos5_i2c *i2c = adap->algo_data; int ret; disable_irq(i2c->irq); i2c->atomic = true; ret = exynos5_i2c_xfer(adap, msgs, num); i2c->atomic = false; enable_irq(i2c->irq); return ret; } static u32 exynos5_i2c_func(struct i2c_adapter *adap) { return I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK); } static const struct i2c_algorithm exynos5_i2c_algorithm = { .master_xfer = exynos5_i2c_xfer, .master_xfer_atomic = exynos5_i2c_xfer_atomic, .functionality = exynos5_i2c_func, }; static int exynos5_i2c_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; struct exynos5_i2c *i2c; int ret; i2c = devm_kzalloc(&pdev->dev, sizeof(struct exynos5_i2c), GFP_KERNEL); if (!i2c) return -ENOMEM; if (of_property_read_u32(np, "clock-frequency", &i2c->op_clock)) i2c->op_clock = I2C_MAX_STANDARD_MODE_FREQ; strscpy(i2c->adap.name, "exynos5-i2c", sizeof(i2c->adap.name)); i2c->adap.owner = THIS_MODULE; i2c->adap.algo = &exynos5_i2c_algorithm; i2c->adap.retries = 3; i2c->dev = &pdev->dev; i2c->clk = devm_clk_get(&pdev->dev, "hsi2c"); if (IS_ERR(i2c->clk)) { dev_err(&pdev->dev, "cannot get clock\n"); return -ENOENT; } i2c->pclk = devm_clk_get_optional(&pdev->dev, "hsi2c_pclk"); if (IS_ERR(i2c->pclk)) { return dev_err_probe(&pdev->dev, PTR_ERR(i2c->pclk), "cannot get pclk"); } ret = clk_prepare_enable(i2c->pclk); if (ret) return ret; ret = clk_prepare_enable(i2c->clk); if (ret) goto err_pclk; i2c->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(i2c->regs)) { ret = PTR_ERR(i2c->regs); goto err_clk; } i2c->adap.dev.of_node = np; i2c->adap.algo_data = i2c; i2c->adap.dev.parent = &pdev->dev; /* Clear pending interrupts from u-boot or misc causes */ exynos5_i2c_clr_pend_irq(i2c); spin_lock_init(&i2c->lock); init_completion(&i2c->msg_complete); i2c->irq = ret = platform_get_irq(pdev, 0); if (ret < 0) goto err_clk; ret = devm_request_irq(&pdev->dev, i2c->irq, exynos5_i2c_irq, IRQF_NO_SUSPEND, dev_name(&pdev->dev), i2c); if (ret != 0) { dev_err(&pdev->dev, "cannot request HS-I2C IRQ %d\n", i2c->irq); goto err_clk; } i2c->variant = of_device_get_match_data(&pdev->dev); ret = exynos5_hsi2c_clock_setup(i2c); if (ret) goto err_clk; exynos5_i2c_reset(i2c); ret = i2c_add_adapter(&i2c->adap); if (ret < 0) goto err_clk; platform_set_drvdata(pdev, i2c); clk_disable(i2c->clk); clk_disable(i2c->pclk); return 0; err_clk: clk_disable_unprepare(i2c->clk); err_pclk: clk_disable_unprepare(i2c->pclk); return ret; } static void exynos5_i2c_remove(struct platform_device *pdev) { struct exynos5_i2c *i2c = platform_get_drvdata(pdev); i2c_del_adapter(&i2c->adap); clk_unprepare(i2c->clk); clk_unprepare(i2c->pclk); } static int exynos5_i2c_suspend_noirq(struct device *dev) { struct exynos5_i2c *i2c = dev_get_drvdata(dev); i2c_mark_adapter_suspended(&i2c->adap); clk_unprepare(i2c->clk); clk_unprepare(i2c->pclk); return 0; } static int exynos5_i2c_resume_noirq(struct device *dev) { struct exynos5_i2c *i2c = dev_get_drvdata(dev); int ret = 0; ret = clk_prepare_enable(i2c->pclk); if (ret) return ret; ret = clk_prepare_enable(i2c->clk); if (ret) goto err_pclk; ret = exynos5_hsi2c_clock_setup(i2c); if (ret) goto err_clk; exynos5_i2c_init(i2c); clk_disable(i2c->clk); clk_disable(i2c->pclk); i2c_mark_adapter_resumed(&i2c->adap); return 0; err_clk: clk_disable_unprepare(i2c->clk); err_pclk: clk_disable_unprepare(i2c->pclk); return ret; } static const struct dev_pm_ops exynos5_i2c_dev_pm_ops = { NOIRQ_SYSTEM_SLEEP_PM_OPS(exynos5_i2c_suspend_noirq, exynos5_i2c_resume_noirq) }; static struct platform_driver exynos5_i2c_driver = { .probe = exynos5_i2c_probe, .remove = exynos5_i2c_remove, .driver = { .name = "exynos5-hsi2c", .pm = pm_sleep_ptr(&exynos5_i2c_dev_pm_ops), .of_match_table = exynos5_i2c_match, }, }; module_platform_driver(exynos5_i2c_driver); MODULE_DESCRIPTION("Exynos5 HS-I2C Bus driver"); MODULE_AUTHOR("Naveen Krishna Chatradhi "); MODULE_AUTHOR("Taekgyun Ko "); MODULE_LICENSE("GPL v2");