// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2015 Intel Corporation * Keith Busch */ #include #include #include #include "nvme.h" static enum nvme_pr_type nvme_pr_type_from_blk(enum pr_type type) { switch (type) { case PR_WRITE_EXCLUSIVE: return NVME_PR_WRITE_EXCLUSIVE; case PR_EXCLUSIVE_ACCESS: return NVME_PR_EXCLUSIVE_ACCESS; case PR_WRITE_EXCLUSIVE_REG_ONLY: return NVME_PR_WRITE_EXCLUSIVE_REG_ONLY; case PR_EXCLUSIVE_ACCESS_REG_ONLY: return NVME_PR_EXCLUSIVE_ACCESS_REG_ONLY; case PR_WRITE_EXCLUSIVE_ALL_REGS: return NVME_PR_WRITE_EXCLUSIVE_ALL_REGS; case PR_EXCLUSIVE_ACCESS_ALL_REGS: return NVME_PR_EXCLUSIVE_ACCESS_ALL_REGS; } return 0; } static enum pr_type block_pr_type_from_nvme(enum nvme_pr_type type) { switch (type) { case NVME_PR_WRITE_EXCLUSIVE: return PR_WRITE_EXCLUSIVE; case NVME_PR_EXCLUSIVE_ACCESS: return PR_EXCLUSIVE_ACCESS; case NVME_PR_WRITE_EXCLUSIVE_REG_ONLY: return PR_WRITE_EXCLUSIVE_REG_ONLY; case NVME_PR_EXCLUSIVE_ACCESS_REG_ONLY: return PR_EXCLUSIVE_ACCESS_REG_ONLY; case NVME_PR_WRITE_EXCLUSIVE_ALL_REGS: return PR_WRITE_EXCLUSIVE_ALL_REGS; case NVME_PR_EXCLUSIVE_ACCESS_ALL_REGS: return PR_EXCLUSIVE_ACCESS_ALL_REGS; } return 0; } static int nvme_send_ns_head_pr_command(struct block_device *bdev, struct nvme_command *c, void *data, unsigned int data_len) { struct nvme_ns_head *head = bdev->bd_disk->private_data; int srcu_idx = srcu_read_lock(&head->srcu); struct nvme_ns *ns = nvme_find_path(head); int ret = -EWOULDBLOCK; if (ns) { c->common.nsid = cpu_to_le32(ns->head->ns_id); ret = nvme_submit_sync_cmd(ns->queue, c, data, data_len); } srcu_read_unlock(&head->srcu, srcu_idx); return ret; } static int nvme_send_ns_pr_command(struct nvme_ns *ns, struct nvme_command *c, void *data, unsigned int data_len) { c->common.nsid = cpu_to_le32(ns->head->ns_id); return nvme_submit_sync_cmd(ns->queue, c, data, data_len); } static int nvme_status_to_pr_err(int status) { if (nvme_is_path_error(status)) return PR_STS_PATH_FAILED; switch (status & NVME_SCT_SC_MASK) { case NVME_SC_SUCCESS: return PR_STS_SUCCESS; case NVME_SC_RESERVATION_CONFLICT: return PR_STS_RESERVATION_CONFLICT; case NVME_SC_ONCS_NOT_SUPPORTED: return -EOPNOTSUPP; case NVME_SC_BAD_ATTRIBUTES: case NVME_SC_INVALID_OPCODE: case NVME_SC_INVALID_FIELD: case NVME_SC_INVALID_NS: return -EINVAL; default: return PR_STS_IOERR; } } static int __nvme_send_pr_command(struct block_device *bdev, u32 cdw10, u32 cdw11, u8 op, void *data, unsigned int data_len) { struct nvme_command c = { 0 }; c.common.opcode = op; c.common.cdw10 = cpu_to_le32(cdw10); c.common.cdw11 = cpu_to_le32(cdw11); if (nvme_disk_is_ns_head(bdev->bd_disk)) return nvme_send_ns_head_pr_command(bdev, &c, data, data_len); return nvme_send_ns_pr_command(bdev->bd_disk->private_data, &c, data, data_len); } static int nvme_send_pr_command(struct block_device *bdev, u32 cdw10, u32 cdw11, u8 op, void *data, unsigned int data_len) { int ret; ret = __nvme_send_pr_command(bdev, cdw10, cdw11, op, data, data_len); return ret < 0 ? ret : nvme_status_to_pr_err(ret); } static int nvme_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, unsigned int flags) { struct nvmet_pr_register_data data = { 0 }; u32 cdw10; if (flags & ~PR_FL_IGNORE_KEY) return -EOPNOTSUPP; data.crkey = cpu_to_le64(old_key); data.nrkey = cpu_to_le64(new_key); cdw10 = old_key ? NVME_PR_REGISTER_ACT_REPLACE : NVME_PR_REGISTER_ACT_REG; cdw10 |= (flags & PR_FL_IGNORE_KEY) ? NVME_PR_IGNORE_KEY : 0; cdw10 |= NVME_PR_CPTPL_PERSIST; return nvme_send_pr_command(bdev, cdw10, 0, nvme_cmd_resv_register, &data, sizeof(data)); } static int nvme_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, unsigned flags) { struct nvmet_pr_acquire_data data = { 0 }; u32 cdw10; if (flags & ~PR_FL_IGNORE_KEY) return -EOPNOTSUPP; data.crkey = cpu_to_le64(key); cdw10 = NVME_PR_ACQUIRE_ACT_ACQUIRE; cdw10 |= nvme_pr_type_from_blk(type) << 8; cdw10 |= (flags & PR_FL_IGNORE_KEY) ? NVME_PR_IGNORE_KEY : 0; return nvme_send_pr_command(bdev, cdw10, 0, nvme_cmd_resv_acquire, &data, sizeof(data)); } static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new, enum pr_type type, bool abort) { struct nvmet_pr_acquire_data data = { 0 }; u32 cdw10; data.crkey = cpu_to_le64(old); data.prkey = cpu_to_le64(new); cdw10 = abort ? NVME_PR_ACQUIRE_ACT_PREEMPT_AND_ABORT : NVME_PR_ACQUIRE_ACT_PREEMPT; cdw10 |= nvme_pr_type_from_blk(type) << 8; return nvme_send_pr_command(bdev, cdw10, 0, nvme_cmd_resv_acquire, &data, sizeof(data)); } static int nvme_pr_clear(struct block_device *bdev, u64 key) { struct nvmet_pr_release_data data = { 0 }; u32 cdw10; data.crkey = cpu_to_le64(key); cdw10 = NVME_PR_RELEASE_ACT_CLEAR; cdw10 |= key ? 0 : NVME_PR_IGNORE_KEY; return nvme_send_pr_command(bdev, cdw10, 0, nvme_cmd_resv_release, &data, sizeof(data)); } static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type) { struct nvmet_pr_release_data data = { 0 }; u32 cdw10; data.crkey = cpu_to_le64(key); cdw10 = NVME_PR_RELEASE_ACT_RELEASE; cdw10 |= nvme_pr_type_from_blk(type) << 8; cdw10 |= key ? 0 : NVME_PR_IGNORE_KEY; return nvme_send_pr_command(bdev, cdw10, 0, nvme_cmd_resv_release, &data, sizeof(data)); } static int nvme_pr_resv_report(struct block_device *bdev, void *data, u32 data_len, bool *eds) { u32 cdw10, cdw11; int ret; cdw10 = nvme_bytes_to_numd(data_len); cdw11 = NVME_EXTENDED_DATA_STRUCT; *eds = true; retry: ret = __nvme_send_pr_command(bdev, cdw10, cdw11, nvme_cmd_resv_report, data, data_len); if (ret == NVME_SC_HOST_ID_INCONSIST && cdw11 == NVME_EXTENDED_DATA_STRUCT) { cdw11 = 0; *eds = false; goto retry; } return ret < 0 ? ret : nvme_status_to_pr_err(ret); } static int nvme_pr_read_keys(struct block_device *bdev, struct pr_keys *keys_info) { u32 rse_len, num_keys = keys_info->num_keys; struct nvme_reservation_status_ext *rse; int ret, i; bool eds; /* * Assume we are using 128-bit host IDs and allocate a buffer large * enough to get enough keys to fill the return keys buffer. */ rse_len = struct_size(rse, regctl_eds, num_keys); rse = kzalloc(rse_len, GFP_KERNEL); if (!rse) return -ENOMEM; ret = nvme_pr_resv_report(bdev, rse, rse_len, &eds); if (ret) goto free_rse; keys_info->generation = le32_to_cpu(rse->gen); keys_info->num_keys = get_unaligned_le16(&rse->regctl); num_keys = min(num_keys, keys_info->num_keys); for (i = 0; i < num_keys; i++) { if (eds) { keys_info->keys[i] = le64_to_cpu(rse->regctl_eds[i].rkey); } else { struct nvme_reservation_status *rs; rs = (struct nvme_reservation_status *)rse; keys_info->keys[i] = le64_to_cpu(rs->regctl_ds[i].rkey); } } free_rse: kfree(rse); return ret; } static int nvme_pr_read_reservation(struct block_device *bdev, struct pr_held_reservation *resv) { struct nvme_reservation_status_ext tmp_rse, *rse; int ret, i, num_regs; u32 rse_len; bool eds; get_num_regs: /* * Get the number of registrations so we know how big to allocate * the response buffer. */ ret = nvme_pr_resv_report(bdev, &tmp_rse, sizeof(tmp_rse), &eds); if (ret) return ret; num_regs = get_unaligned_le16(&tmp_rse.regctl); if (!num_regs) { resv->generation = le32_to_cpu(tmp_rse.gen); return 0; } rse_len = struct_size(rse, regctl_eds, num_regs); rse = kzalloc(rse_len, GFP_KERNEL); if (!rse) return -ENOMEM; ret = nvme_pr_resv_report(bdev, rse, rse_len, &eds); if (ret) goto free_rse; if (num_regs != get_unaligned_le16(&rse->regctl)) { kfree(rse); goto get_num_regs; } resv->generation = le32_to_cpu(rse->gen); resv->type = block_pr_type_from_nvme(rse->rtype); for (i = 0; i < num_regs; i++) { if (eds) { if (rse->regctl_eds[i].rcsts) { resv->key = le64_to_cpu(rse->regctl_eds[i].rkey); break; } } else { struct nvme_reservation_status *rs; rs = (struct nvme_reservation_status *)rse; if (rs->regctl_ds[i].rcsts) { resv->key = le64_to_cpu(rs->regctl_ds[i].rkey); break; } } } free_rse: kfree(rse); return ret; } const struct pr_ops nvme_pr_ops = { .pr_register = nvme_pr_register, .pr_reserve = nvme_pr_reserve, .pr_release = nvme_pr_release, .pr_preempt = nvme_pr_preempt, .pr_clear = nvme_pr_clear, .pr_read_keys = nvme_pr_read_keys, .pr_read_reservation = nvme_pr_read_reservation, };