// SPDX-License-Identifier: GPL-2.0 /* * Configfs interface for the NVMe target. * Copyright (c) 2015-2016 HGST, a Western Digital Company. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #ifdef CONFIG_NVME_TARGET_AUTH #include #endif #include #include #include #include #include "nvmet.h" static const struct config_item_type nvmet_host_type; static const struct config_item_type nvmet_subsys_type; static LIST_HEAD(nvmet_ports_list); struct list_head *nvmet_ports = &nvmet_ports_list; struct nvmet_type_name_map { u8 type; const char *name; }; static struct nvmet_type_name_map nvmet_transport[] = { { NVMF_TRTYPE_RDMA, "rdma" }, { NVMF_TRTYPE_FC, "fc" }, { NVMF_TRTYPE_TCP, "tcp" }, { NVMF_TRTYPE_LOOP, "loop" }, }; static const struct nvmet_type_name_map nvmet_addr_family[] = { { NVMF_ADDR_FAMILY_PCI, "pcie" }, { NVMF_ADDR_FAMILY_IP4, "ipv4" }, { NVMF_ADDR_FAMILY_IP6, "ipv6" }, { NVMF_ADDR_FAMILY_IB, "ib" }, { NVMF_ADDR_FAMILY_FC, "fc" }, { NVMF_ADDR_FAMILY_LOOP, "loop" }, }; static bool nvmet_is_port_enabled(struct nvmet_port *p, const char *caller) { if (p->enabled) pr_err("Disable port '%u' before changing attribute in %s\n", le16_to_cpu(p->disc_addr.portid), caller); return p->enabled; } /* * nvmet_port Generic ConfigFS definitions. * Used in any place in the ConfigFS tree that refers to an address. */ static ssize_t nvmet_addr_adrfam_show(struct config_item *item, char *page) { u8 adrfam = to_nvmet_port(item)->disc_addr.adrfam; int i; for (i = 1; i < ARRAY_SIZE(nvmet_addr_family); i++) { if (nvmet_addr_family[i].type == adrfam) return snprintf(page, PAGE_SIZE, "%s\n", nvmet_addr_family[i].name); } return snprintf(page, PAGE_SIZE, "\n"); } static ssize_t nvmet_addr_adrfam_store(struct config_item *item, const char *page, size_t count) { struct nvmet_port *port = to_nvmet_port(item); int i; if (nvmet_is_port_enabled(port, __func__)) return -EACCES; for (i = 1; i < ARRAY_SIZE(nvmet_addr_family); i++) { if (sysfs_streq(page, nvmet_addr_family[i].name)) goto found; } pr_err("Invalid value '%s' for adrfam\n", page); return -EINVAL; found: port->disc_addr.adrfam = nvmet_addr_family[i].type; return count; } CONFIGFS_ATTR(nvmet_, addr_adrfam); static ssize_t nvmet_addr_portid_show(struct config_item *item, char *page) { __le16 portid = to_nvmet_port(item)->disc_addr.portid; return snprintf(page, PAGE_SIZE, "%d\n", le16_to_cpu(portid)); } static ssize_t nvmet_addr_portid_store(struct config_item *item, const char *page, size_t count) { struct nvmet_port *port = to_nvmet_port(item); u16 portid = 0; if (kstrtou16(page, 0, &portid)) { pr_err("Invalid value '%s' for portid\n", page); return -EINVAL; } if (nvmet_is_port_enabled(port, __func__)) return -EACCES; port->disc_addr.portid = cpu_to_le16(portid); return count; } CONFIGFS_ATTR(nvmet_, addr_portid); static ssize_t nvmet_addr_traddr_show(struct config_item *item, char *page) { struct nvmet_port *port = to_nvmet_port(item); return snprintf(page, PAGE_SIZE, "%s\n", port->disc_addr.traddr); } static ssize_t nvmet_addr_traddr_store(struct config_item *item, const char *page, size_t count) { struct nvmet_port *port = to_nvmet_port(item); if (count > NVMF_TRADDR_SIZE) { pr_err("Invalid value '%s' for traddr\n", page); return -EINVAL; } if (nvmet_is_port_enabled(port, __func__)) return -EACCES; if (sscanf(page, "%s\n", port->disc_addr.traddr) != 1) return -EINVAL; return count; } CONFIGFS_ATTR(nvmet_, addr_traddr); static const struct nvmet_type_name_map nvmet_addr_treq[] = { { NVMF_TREQ_NOT_SPECIFIED, "not specified" }, { NVMF_TREQ_REQUIRED, "required" }, { NVMF_TREQ_NOT_REQUIRED, "not required" }, }; static inline u8 nvmet_port_disc_addr_treq_mask(struct nvmet_port *port) { return (port->disc_addr.treq & ~NVME_TREQ_SECURE_CHANNEL_MASK); } static ssize_t nvmet_addr_treq_show(struct config_item *item, char *page) { u8 treq = nvmet_port_disc_addr_treq_secure_channel(to_nvmet_port(item)); int i; for (i = 0; i < ARRAY_SIZE(nvmet_addr_treq); i++) { if (treq == nvmet_addr_treq[i].type) return snprintf(page, PAGE_SIZE, "%s\n", nvmet_addr_treq[i].name); } return snprintf(page, PAGE_SIZE, "\n"); } static ssize_t nvmet_addr_treq_store(struct config_item *item, const char *page, size_t count) { struct nvmet_port *port = to_nvmet_port(item); u8 treq = nvmet_port_disc_addr_treq_mask(port); int i; if (nvmet_is_port_enabled(port, __func__)) return -EACCES; for (i = 0; i < ARRAY_SIZE(nvmet_addr_treq); i++) { if (sysfs_streq(page, nvmet_addr_treq[i].name)) goto found; } pr_err("Invalid value '%s' for treq\n", page); return -EINVAL; found: if (port->disc_addr.trtype == NVMF_TRTYPE_TCP && port->disc_addr.tsas.tcp.sectype == NVMF_TCP_SECTYPE_TLS13) { switch (nvmet_addr_treq[i].type) { case NVMF_TREQ_NOT_SPECIFIED: pr_debug("treq '%s' not allowed for TLS1.3\n", nvmet_addr_treq[i].name); return -EINVAL; case NVMF_TREQ_NOT_REQUIRED: pr_warn("Allow non-TLS connections while TLS1.3 is enabled\n"); break; default: break; } } treq |= nvmet_addr_treq[i].type; port->disc_addr.treq = treq; return count; } CONFIGFS_ATTR(nvmet_, addr_treq); static ssize_t nvmet_addr_trsvcid_show(struct config_item *item, char *page) { struct nvmet_port *port = to_nvmet_port(item); return snprintf(page, PAGE_SIZE, "%s\n", port->disc_addr.trsvcid); } static ssize_t nvmet_addr_trsvcid_store(struct config_item *item, const char *page, size_t count) { struct nvmet_port *port = to_nvmet_port(item); if (count > NVMF_TRSVCID_SIZE) { pr_err("Invalid value '%s' for trsvcid\n", page); return -EINVAL; } if (nvmet_is_port_enabled(port, __func__)) return -EACCES; if (sscanf(page, "%s\n", port->disc_addr.trsvcid) != 1) return -EINVAL; return count; } CONFIGFS_ATTR(nvmet_, addr_trsvcid); static ssize_t nvmet_param_inline_data_size_show(struct config_item *item, char *page) { struct nvmet_port *port = to_nvmet_port(item); return snprintf(page, PAGE_SIZE, "%d\n", port->inline_data_size); } static ssize_t nvmet_param_inline_data_size_store(struct config_item *item, const char *page, size_t count) { struct nvmet_port *port = to_nvmet_port(item); int ret; if (nvmet_is_port_enabled(port, __func__)) return -EACCES; ret = kstrtoint(page, 0, &port->inline_data_size); if (ret) { pr_err("Invalid value '%s' for inline_data_size\n", page); return -EINVAL; } return count; } CONFIGFS_ATTR(nvmet_, param_inline_data_size); static ssize_t nvmet_param_max_queue_size_show(struct config_item *item, char *page) { struct nvmet_port *port = to_nvmet_port(item); return snprintf(page, PAGE_SIZE, "%d\n", port->max_queue_size); } static ssize_t nvmet_param_max_queue_size_store(struct config_item *item, const char *page, size_t count) { struct nvmet_port *port = to_nvmet_port(item); int ret; if (nvmet_is_port_enabled(port, __func__)) return -EACCES; ret = kstrtoint(page, 0, &port->max_queue_size); if (ret) { pr_err("Invalid value '%s' for max_queue_size\n", page); return -EINVAL; } return count; } CONFIGFS_ATTR(nvmet_, param_max_queue_size); #ifdef CONFIG_BLK_DEV_INTEGRITY static ssize_t nvmet_param_pi_enable_show(struct config_item *item, char *page) { struct nvmet_port *port = to_nvmet_port(item); return snprintf(page, PAGE_SIZE, "%d\n", port->pi_enable); } static ssize_t nvmet_param_pi_enable_store(struct config_item *item, const char *page, size_t count) { struct nvmet_port *port = to_nvmet_port(item); bool val; if (kstrtobool(page, &val)) return -EINVAL; if (nvmet_is_port_enabled(port, __func__)) return -EACCES; port->pi_enable = val; return count; } CONFIGFS_ATTR(nvmet_, param_pi_enable); #endif static ssize_t nvmet_addr_trtype_show(struct config_item *item, char *page) { struct nvmet_port *port = to_nvmet_port(item); int i; for (i = 0; i < ARRAY_SIZE(nvmet_transport); i++) { if (port->disc_addr.trtype == nvmet_transport[i].type) return snprintf(page, PAGE_SIZE, "%s\n", nvmet_transport[i].name); } return sprintf(page, "\n"); } static void nvmet_port_init_tsas_rdma(struct nvmet_port *port) { port->disc_addr.tsas.rdma.qptype = NVMF_RDMA_QPTYPE_CONNECTED; port->disc_addr.tsas.rdma.prtype = NVMF_RDMA_PRTYPE_NOT_SPECIFIED; port->disc_addr.tsas.rdma.cms = NVMF_RDMA_CMS_RDMA_CM; } static void nvmet_port_init_tsas_tcp(struct nvmet_port *port, int sectype) { port->disc_addr.tsas.tcp.sectype = sectype; } static ssize_t nvmet_addr_trtype_store(struct config_item *item, const char *page, size_t count) { struct nvmet_port *port = to_nvmet_port(item); int i; if (nvmet_is_port_enabled(port, __func__)) return -EACCES; for (i = 0; i < ARRAY_SIZE(nvmet_transport); i++) { if (sysfs_streq(page, nvmet_transport[i].name)) goto found; } pr_err("Invalid value '%s' for trtype\n", page); return -EINVAL; found: memset(&port->disc_addr.tsas, 0, NVMF_TSAS_SIZE); port->disc_addr.trtype = nvmet_transport[i].type; if (port->disc_addr.trtype == NVMF_TRTYPE_RDMA) nvmet_port_init_tsas_rdma(port); else if (port->disc_addr.trtype == NVMF_TRTYPE_TCP) nvmet_port_init_tsas_tcp(port, NVMF_TCP_SECTYPE_NONE); return count; } CONFIGFS_ATTR(nvmet_, addr_trtype); static const struct nvmet_type_name_map nvmet_addr_tsas_tcp[] = { { NVMF_TCP_SECTYPE_NONE, "none" }, { NVMF_TCP_SECTYPE_TLS13, "tls1.3" }, }; static const struct nvmet_type_name_map nvmet_addr_tsas_rdma[] = { { NVMF_RDMA_QPTYPE_CONNECTED, "connected" }, { NVMF_RDMA_QPTYPE_DATAGRAM, "datagram" }, }; static ssize_t nvmet_addr_tsas_show(struct config_item *item, char *page) { struct nvmet_port *port = to_nvmet_port(item); int i; if (port->disc_addr.trtype == NVMF_TRTYPE_TCP) { for (i = 0; i < ARRAY_SIZE(nvmet_addr_tsas_tcp); i++) { if (port->disc_addr.tsas.tcp.sectype == nvmet_addr_tsas_tcp[i].type) return sprintf(page, "%s\n", nvmet_addr_tsas_tcp[i].name); } } else if (port->disc_addr.trtype == NVMF_TRTYPE_RDMA) { for (i = 0; i < ARRAY_SIZE(nvmet_addr_tsas_rdma); i++) { if (port->disc_addr.tsas.rdma.qptype == nvmet_addr_tsas_rdma[i].type) return sprintf(page, "%s\n", nvmet_addr_tsas_rdma[i].name); } } return sprintf(page, "\n"); } static u8 nvmet_addr_tsas_rdma_store(const char *page) { int i; for (i = 0; i < ARRAY_SIZE(nvmet_addr_tsas_rdma); i++) { if (sysfs_streq(page, nvmet_addr_tsas_rdma[i].name)) return nvmet_addr_tsas_rdma[i].type; } return NVMF_RDMA_QPTYPE_INVALID; } static u8 nvmet_addr_tsas_tcp_store(const char *page) { int i; for (i = 0; i < ARRAY_SIZE(nvmet_addr_tsas_tcp); i++) { if (sysfs_streq(page, nvmet_addr_tsas_tcp[i].name)) return nvmet_addr_tsas_tcp[i].type; } return NVMF_TCP_SECTYPE_INVALID; } static ssize_t nvmet_addr_tsas_store(struct config_item *item, const char *page, size_t count) { struct nvmet_port *port = to_nvmet_port(item); u8 treq = nvmet_port_disc_addr_treq_mask(port); u8 sectype, qptype; if (nvmet_is_port_enabled(port, __func__)) return -EACCES; if (port->disc_addr.trtype == NVMF_TRTYPE_RDMA) { qptype = nvmet_addr_tsas_rdma_store(page); if (qptype == port->disc_addr.tsas.rdma.qptype) return count; } else if (port->disc_addr.trtype == NVMF_TRTYPE_TCP) { sectype = nvmet_addr_tsas_tcp_store(page); if (sectype != NVMF_TCP_SECTYPE_INVALID) goto found; } pr_err("Invalid value '%s' for tsas\n", page); return -EINVAL; found: if (sectype == NVMF_TCP_SECTYPE_TLS13) { if (!IS_ENABLED(CONFIG_NVME_TARGET_TCP_TLS)) { pr_err("TLS is not supported\n"); return -EINVAL; } if (!port->keyring) { pr_err("TLS keyring not configured\n"); return -EINVAL; } } nvmet_port_init_tsas_tcp(port, sectype); /* * If TLS is enabled TREQ should be set to 'required' per default */ if (sectype == NVMF_TCP_SECTYPE_TLS13) { u8 sc = nvmet_port_disc_addr_treq_secure_channel(port); if (sc == NVMF_TREQ_NOT_SPECIFIED) treq |= NVMF_TREQ_REQUIRED; else treq |= sc; } else { treq |= NVMF_TREQ_NOT_SPECIFIED; } port->disc_addr.treq = treq; return count; } CONFIGFS_ATTR(nvmet_, addr_tsas); /* * Namespace structures & file operation functions below */ static ssize_t nvmet_ns_device_path_show(struct config_item *item, char *page) { return sprintf(page, "%s\n", to_nvmet_ns(item)->device_path); } static ssize_t nvmet_ns_device_path_store(struct config_item *item, const char *page, size_t count) { struct nvmet_ns *ns = to_nvmet_ns(item); struct nvmet_subsys *subsys = ns->subsys; size_t len; int ret; mutex_lock(&subsys->lock); ret = -EBUSY; if (ns->enabled) goto out_unlock; ret = -EINVAL; len = strcspn(page, "\n"); if (!len) goto out_unlock; kfree(ns->device_path); ret = -ENOMEM; ns->device_path = kmemdup_nul(page, len, GFP_KERNEL); if (!ns->device_path) goto out_unlock; mutex_unlock(&subsys->lock); return count; out_unlock: mutex_unlock(&subsys->lock); return ret; } CONFIGFS_ATTR(nvmet_ns_, device_path); #ifdef CONFIG_PCI_P2PDMA static ssize_t nvmet_ns_p2pmem_show(struct config_item *item, char *page) { struct nvmet_ns *ns = to_nvmet_ns(item); return pci_p2pdma_enable_show(page, ns->p2p_dev, ns->use_p2pmem); } static ssize_t nvmet_ns_p2pmem_store(struct config_item *item, const char *page, size_t count) { struct nvmet_ns *ns = to_nvmet_ns(item); struct pci_dev *p2p_dev = NULL; bool use_p2pmem; int ret = count; int error; mutex_lock(&ns->subsys->lock); if (ns->enabled) { ret = -EBUSY; goto out_unlock; } error = pci_p2pdma_enable_store(page, &p2p_dev, &use_p2pmem); if (error) { ret = error; goto out_unlock; } ns->use_p2pmem = use_p2pmem; pci_dev_put(ns->p2p_dev); ns->p2p_dev = p2p_dev; out_unlock: mutex_unlock(&ns->subsys->lock); return ret; } CONFIGFS_ATTR(nvmet_ns_, p2pmem); #endif /* CONFIG_PCI_P2PDMA */ static ssize_t nvmet_ns_device_uuid_show(struct config_item *item, char *page) { return sprintf(page, "%pUb\n", &to_nvmet_ns(item)->uuid); } static ssize_t nvmet_ns_device_uuid_store(struct config_item *item, const char *page, size_t count) { struct nvmet_ns *ns = to_nvmet_ns(item); struct nvmet_subsys *subsys = ns->subsys; int ret = 0; mutex_lock(&subsys->lock); if (ns->enabled) { ret = -EBUSY; goto out_unlock; } if (uuid_parse(page, &ns->uuid)) ret = -EINVAL; out_unlock: mutex_unlock(&subsys->lock); return ret ? ret : count; } CONFIGFS_ATTR(nvmet_ns_, device_uuid); static ssize_t nvmet_ns_device_nguid_show(struct config_item *item, char *page) { return sprintf(page, "%pUb\n", &to_nvmet_ns(item)->nguid); } static ssize_t nvmet_ns_device_nguid_store(struct config_item *item, const char *page, size_t count) { struct nvmet_ns *ns = to_nvmet_ns(item); struct nvmet_subsys *subsys = ns->subsys; u8 nguid[16]; const char *p = page; int i; int ret = 0; mutex_lock(&subsys->lock); if (ns->enabled) { ret = -EBUSY; goto out_unlock; } for (i = 0; i < 16; i++) { if (p + 2 > page + count) { ret = -EINVAL; goto out_unlock; } if (!isxdigit(p[0]) || !isxdigit(p[1])) { ret = -EINVAL; goto out_unlock; } nguid[i] = (hex_to_bin(p[0]) << 4) | hex_to_bin(p[1]); p += 2; if (*p == '-' || *p == ':') p++; } memcpy(&ns->nguid, nguid, sizeof(nguid)); out_unlock: mutex_unlock(&subsys->lock); return ret ? ret : count; } CONFIGFS_ATTR(nvmet_ns_, device_nguid); static ssize_t nvmet_ns_ana_grpid_show(struct config_item *item, char *page) { return sprintf(page, "%u\n", to_nvmet_ns(item)->anagrpid); } static ssize_t nvmet_ns_ana_grpid_store(struct config_item *item, const char *page, size_t count) { struct nvmet_ns *ns = to_nvmet_ns(item); u32 oldgrpid, newgrpid; int ret; ret = kstrtou32(page, 0, &newgrpid); if (ret) return ret; if (newgrpid < 1 || newgrpid > NVMET_MAX_ANAGRPS) return -EINVAL; down_write(&nvmet_ana_sem); oldgrpid = ns->anagrpid; newgrpid = array_index_nospec(newgrpid, NVMET_MAX_ANAGRPS); nvmet_ana_group_enabled[newgrpid]++; ns->anagrpid = newgrpid; nvmet_ana_group_enabled[oldgrpid]--; nvmet_ana_chgcnt++; up_write(&nvmet_ana_sem); nvmet_send_ana_event(ns->subsys, NULL); return count; } CONFIGFS_ATTR(nvmet_ns_, ana_grpid); static ssize_t nvmet_ns_enable_show(struct config_item *item, char *page) { return sprintf(page, "%d\n", to_nvmet_ns(item)->enabled); } static ssize_t nvmet_ns_enable_store(struct config_item *item, const char *page, size_t count) { struct nvmet_ns *ns = to_nvmet_ns(item); bool enable; int ret = 0; if (kstrtobool(page, &enable)) return -EINVAL; /* * take a global nvmet_config_sem because the disable routine has a * window where it releases the subsys-lock, giving a chance to * a parallel enable to concurrently execute causing the disable to * have a misaccounting of the ns percpu_ref. */ down_write(&nvmet_config_sem); if (enable) ret = nvmet_ns_enable(ns); else nvmet_ns_disable(ns); up_write(&nvmet_config_sem); return ret ? ret : count; } CONFIGFS_ATTR(nvmet_ns_, enable); static ssize_t nvmet_ns_buffered_io_show(struct config_item *item, char *page) { return sprintf(page, "%d\n", to_nvmet_ns(item)->buffered_io); } static ssize_t nvmet_ns_buffered_io_store(struct config_item *item, const char *page, size_t count) { struct nvmet_ns *ns = to_nvmet_ns(item); bool val; if (kstrtobool(page, &val)) return -EINVAL; mutex_lock(&ns->subsys->lock); if (ns->enabled) { pr_err("disable ns before setting buffered_io value.\n"); mutex_unlock(&ns->subsys->lock); return -EINVAL; } ns->buffered_io = val; mutex_unlock(&ns->subsys->lock); return count; } CONFIGFS_ATTR(nvmet_ns_, buffered_io); static ssize_t nvmet_ns_revalidate_size_store(struct config_item *item, const char *page, size_t count) { struct nvmet_ns *ns = to_nvmet_ns(item); bool val; if (kstrtobool(page, &val)) return -EINVAL; if (!val) return -EINVAL; mutex_lock(&ns->subsys->lock); if (!ns->enabled) { pr_err("enable ns before revalidate.\n"); mutex_unlock(&ns->subsys->lock); return -EINVAL; } if (nvmet_ns_revalidate(ns)) nvmet_ns_changed(ns->subsys, ns->nsid); mutex_unlock(&ns->subsys->lock); return count; } CONFIGFS_ATTR_WO(nvmet_ns_, revalidate_size); static ssize_t nvmet_ns_resv_enable_show(struct config_item *item, char *page) { return sysfs_emit(page, "%d\n", to_nvmet_ns(item)->pr.enable); } static ssize_t nvmet_ns_resv_enable_store(struct config_item *item, const char *page, size_t count) { struct nvmet_ns *ns = to_nvmet_ns(item); bool val; if (kstrtobool(page, &val)) return -EINVAL; mutex_lock(&ns->subsys->lock); if (ns->enabled) { pr_err("the ns:%d is already enabled.\n", ns->nsid); mutex_unlock(&ns->subsys->lock); return -EINVAL; } ns->pr.enable = val; mutex_unlock(&ns->subsys->lock); return count; } CONFIGFS_ATTR(nvmet_ns_, resv_enable); static struct configfs_attribute *nvmet_ns_attrs[] = { &nvmet_ns_attr_device_path, &nvmet_ns_attr_device_nguid, &nvmet_ns_attr_device_uuid, &nvmet_ns_attr_ana_grpid, &nvmet_ns_attr_enable, &nvmet_ns_attr_buffered_io, &nvmet_ns_attr_revalidate_size, &nvmet_ns_attr_resv_enable, #ifdef CONFIG_PCI_P2PDMA &nvmet_ns_attr_p2pmem, #endif NULL, }; bool nvmet_subsys_nsid_exists(struct nvmet_subsys *subsys, u32 nsid) { struct config_item *ns_item; char name[12]; snprintf(name, sizeof(name), "%u", nsid); mutex_lock(&subsys->namespaces_group.cg_subsys->su_mutex); ns_item = config_group_find_item(&subsys->namespaces_group, name); mutex_unlock(&subsys->namespaces_group.cg_subsys->su_mutex); return ns_item != NULL; } static void nvmet_ns_release(struct config_item *item) { struct nvmet_ns *ns = to_nvmet_ns(item); nvmet_ns_free(ns); } static struct configfs_item_operations nvmet_ns_item_ops = { .release = nvmet_ns_release, }; static const struct config_item_type nvmet_ns_type = { .ct_item_ops = &nvmet_ns_item_ops, .ct_attrs = nvmet_ns_attrs, .ct_owner = THIS_MODULE, }; static struct config_group *nvmet_ns_make(struct config_group *group, const char *name) { struct nvmet_subsys *subsys = namespaces_to_subsys(&group->cg_item); struct nvmet_ns *ns; int ret; u32 nsid; ret = kstrtou32(name, 0, &nsid); if (ret) goto out; ret = -EINVAL; if (nsid == 0 || nsid == NVME_NSID_ALL) { pr_err("invalid nsid %#x", nsid); goto out; } ret = -ENOMEM; ns = nvmet_ns_alloc(subsys, nsid); if (!ns) goto out; config_group_init_type_name(&ns->group, name, &nvmet_ns_type); pr_info("adding nsid %d to subsystem %s\n", nsid, subsys->subsysnqn); return &ns->group; out: return ERR_PTR(ret); } static struct configfs_group_operations nvmet_namespaces_group_ops = { .make_group = nvmet_ns_make, }; static const struct config_item_type nvmet_namespaces_type = { .ct_group_ops = &nvmet_namespaces_group_ops, .ct_owner = THIS_MODULE, }; #ifdef CONFIG_NVME_TARGET_PASSTHRU static ssize_t nvmet_passthru_device_path_show(struct config_item *item, char *page) { struct nvmet_subsys *subsys = to_subsys(item->ci_parent); return snprintf(page, PAGE_SIZE, "%s\n", subsys->passthru_ctrl_path); } static ssize_t nvmet_passthru_device_path_store(struct config_item *item, const char *page, size_t count) { struct nvmet_subsys *subsys = to_subsys(item->ci_parent); size_t len; int ret; mutex_lock(&subsys->lock); ret = -EBUSY; if (subsys->passthru_ctrl) goto out_unlock; ret = -EINVAL; len = strcspn(page, "\n"); if (!len) goto out_unlock; kfree(subsys->passthru_ctrl_path); ret = -ENOMEM; subsys->passthru_ctrl_path = kstrndup(page, len, GFP_KERNEL); if (!subsys->passthru_ctrl_path) goto out_unlock; mutex_unlock(&subsys->lock); return count; out_unlock: mutex_unlock(&subsys->lock); return ret; } CONFIGFS_ATTR(nvmet_passthru_, device_path); static ssize_t nvmet_passthru_enable_show(struct config_item *item, char *page) { struct nvmet_subsys *subsys = to_subsys(item->ci_parent); return sprintf(page, "%d\n", subsys->passthru_ctrl ? 1 : 0); } static ssize_t nvmet_passthru_enable_store(struct config_item *item, const char *page, size_t count) { struct nvmet_subsys *subsys = to_subsys(item->ci_parent); bool enable; int ret = 0; if (kstrtobool(page, &enable)) return -EINVAL; if (enable) ret = nvmet_passthru_ctrl_enable(subsys); else nvmet_passthru_ctrl_disable(subsys); return ret ? ret : count; } CONFIGFS_ATTR(nvmet_passthru_, enable); static ssize_t nvmet_passthru_admin_timeout_show(struct config_item *item, char *page) { return sprintf(page, "%u\n", to_subsys(item->ci_parent)->admin_timeout); } static ssize_t nvmet_passthru_admin_timeout_store(struct config_item *item, const char *page, size_t count) { struct nvmet_subsys *subsys = to_subsys(item->ci_parent); unsigned int timeout; if (kstrtouint(page, 0, &timeout)) return -EINVAL; subsys->admin_timeout = timeout; return count; } CONFIGFS_ATTR(nvmet_passthru_, admin_timeout); static ssize_t nvmet_passthru_io_timeout_show(struct config_item *item, char *page) { return sprintf(page, "%u\n", to_subsys(item->ci_parent)->io_timeout); } static ssize_t nvmet_passthru_io_timeout_store(struct config_item *item, const char *page, size_t count) { struct nvmet_subsys *subsys = to_subsys(item->ci_parent); unsigned int timeout; if (kstrtouint(page, 0, &timeout)) return -EINVAL; subsys->io_timeout = timeout; return count; } CONFIGFS_ATTR(nvmet_passthru_, io_timeout); static ssize_t nvmet_passthru_clear_ids_show(struct config_item *item, char *page) { return sprintf(page, "%u\n", to_subsys(item->ci_parent)->clear_ids); } static ssize_t nvmet_passthru_clear_ids_store(struct config_item *item, const char *page, size_t count) { struct nvmet_subsys *subsys = to_subsys(item->ci_parent); unsigned int clear_ids; if (kstrtouint(page, 0, &clear_ids)) return -EINVAL; subsys->clear_ids = clear_ids; return count; } CONFIGFS_ATTR(nvmet_passthru_, clear_ids); static struct configfs_attribute *nvmet_passthru_attrs[] = { &nvmet_passthru_attr_device_path, &nvmet_passthru_attr_enable, &nvmet_passthru_attr_admin_timeout, &nvmet_passthru_attr_io_timeout, &nvmet_passthru_attr_clear_ids, NULL, }; static const struct config_item_type nvmet_passthru_type = { .ct_attrs = nvmet_passthru_attrs, .ct_owner = THIS_MODULE, }; static void nvmet_add_passthru_group(struct nvmet_subsys *subsys) { config_group_init_type_name(&subsys->passthru_group, "passthru", &nvmet_passthru_type); configfs_add_default_group(&subsys->passthru_group, &subsys->group); } #else /* CONFIG_NVME_TARGET_PASSTHRU */ static void nvmet_add_passthru_group(struct nvmet_subsys *subsys) { } #endif /* CONFIG_NVME_TARGET_PASSTHRU */ static int nvmet_port_subsys_allow_link(struct config_item *parent, struct config_item *target) { struct nvmet_port *port = to_nvmet_port(parent->ci_parent); struct nvmet_subsys *subsys; struct nvmet_subsys_link *link, *p; int ret; if (target->ci_type != &nvmet_subsys_type) { pr_err("can only link subsystems into the subsystems dir.!\n"); return -EINVAL; } subsys = to_subsys(target); link = kmalloc(sizeof(*link), GFP_KERNEL); if (!link) return -ENOMEM; link->subsys = subsys; down_write(&nvmet_config_sem); ret = -EEXIST; list_for_each_entry(p, &port->subsystems, entry) { if (p->subsys == subsys) goto out_free_link; } if (list_empty(&port->subsystems)) { ret = nvmet_enable_port(port); if (ret) goto out_free_link; } list_add_tail(&link->entry, &port->subsystems); nvmet_port_disc_changed(port, subsys); up_write(&nvmet_config_sem); return 0; out_free_link: up_write(&nvmet_config_sem); kfree(link); return ret; } static void nvmet_port_subsys_drop_link(struct config_item *parent, struct config_item *target) { struct nvmet_port *port = to_nvmet_port(parent->ci_parent); struct nvmet_subsys *subsys = to_subsys(target); struct nvmet_subsys_link *p; down_write(&nvmet_config_sem); list_for_each_entry(p, &port->subsystems, entry) { if (p->subsys == subsys) goto found; } up_write(&nvmet_config_sem); return; found: list_del(&p->entry); nvmet_port_del_ctrls(port, subsys); nvmet_port_disc_changed(port, subsys); if (list_empty(&port->subsystems)) nvmet_disable_port(port); up_write(&nvmet_config_sem); kfree(p); } static struct configfs_item_operations nvmet_port_subsys_item_ops = { .allow_link = nvmet_port_subsys_allow_link, .drop_link = nvmet_port_subsys_drop_link, }; static const struct config_item_type nvmet_port_subsys_type = { .ct_item_ops = &nvmet_port_subsys_item_ops, .ct_owner = THIS_MODULE, }; static int nvmet_allowed_hosts_allow_link(struct config_item *parent, struct config_item *target) { struct nvmet_subsys *subsys = to_subsys(parent->ci_parent); struct nvmet_host *host; struct nvmet_host_link *link, *p; int ret; if (target->ci_type != &nvmet_host_type) { pr_err("can only link hosts into the allowed_hosts directory!\n"); return -EINVAL; } host = to_host(target); link = kmalloc(sizeof(*link), GFP_KERNEL); if (!link) return -ENOMEM; link->host = host; down_write(&nvmet_config_sem); ret = -EINVAL; if (subsys->allow_any_host) { pr_err("can't add hosts when allow_any_host is set!\n"); goto out_free_link; } ret = -EEXIST; list_for_each_entry(p, &subsys->hosts, entry) { if (!strcmp(nvmet_host_name(p->host), nvmet_host_name(host))) goto out_free_link; } list_add_tail(&link->entry, &subsys->hosts); nvmet_subsys_disc_changed(subsys, host); up_write(&nvmet_config_sem); return 0; out_free_link: up_write(&nvmet_config_sem); kfree(link); return ret; } static void nvmet_allowed_hosts_drop_link(struct config_item *parent, struct config_item *target) { struct nvmet_subsys *subsys = to_subsys(parent->ci_parent); struct nvmet_host *host = to_host(target); struct nvmet_host_link *p; down_write(&nvmet_config_sem); list_for_each_entry(p, &subsys->hosts, entry) { if (!strcmp(nvmet_host_name(p->host), nvmet_host_name(host))) goto found; } up_write(&nvmet_config_sem); return; found: list_del(&p->entry); nvmet_subsys_disc_changed(subsys, host); up_write(&nvmet_config_sem); kfree(p); } static struct configfs_item_operations nvmet_allowed_hosts_item_ops = { .allow_link = nvmet_allowed_hosts_allow_link, .drop_link = nvmet_allowed_hosts_drop_link, }; static const struct config_item_type nvmet_allowed_hosts_type = { .ct_item_ops = &nvmet_allowed_hosts_item_ops, .ct_owner = THIS_MODULE, }; static ssize_t nvmet_subsys_attr_allow_any_host_show(struct config_item *item, char *page) { return snprintf(page, PAGE_SIZE, "%d\n", to_subsys(item)->allow_any_host); } static ssize_t nvmet_subsys_attr_allow_any_host_store(struct config_item *item, const char *page, size_t count) { struct nvmet_subsys *subsys = to_subsys(item); bool allow_any_host; int ret = 0; if (kstrtobool(page, &allow_any_host)) return -EINVAL; down_write(&nvmet_config_sem); if (allow_any_host && !list_empty(&subsys->hosts)) { pr_err("Can't set allow_any_host when explicit hosts are set!\n"); ret = -EINVAL; goto out_unlock; } if (subsys->allow_any_host != allow_any_host) { subsys->allow_any_host = allow_any_host; nvmet_subsys_disc_changed(subsys, NULL); } out_unlock: up_write(&nvmet_config_sem); return ret ? ret : count; } CONFIGFS_ATTR(nvmet_subsys_, attr_allow_any_host); static ssize_t nvmet_subsys_attr_version_show(struct config_item *item, char *page) { struct nvmet_subsys *subsys = to_subsys(item); if (NVME_TERTIARY(subsys->ver)) return snprintf(page, PAGE_SIZE, "%llu.%llu.%llu\n", NVME_MAJOR(subsys->ver), NVME_MINOR(subsys->ver), NVME_TERTIARY(subsys->ver)); return snprintf(page, PAGE_SIZE, "%llu.%llu\n", NVME_MAJOR(subsys->ver), NVME_MINOR(subsys->ver)); } static ssize_t nvmet_subsys_attr_version_store_locked(struct nvmet_subsys *subsys, const char *page, size_t count) { int major, minor, tertiary = 0; int ret; if (subsys->subsys_discovered) { if (NVME_TERTIARY(subsys->ver)) pr_err("Can't set version number. %llu.%llu.%llu is already assigned\n", NVME_MAJOR(subsys->ver), NVME_MINOR(subsys->ver), NVME_TERTIARY(subsys->ver)); else pr_err("Can't set version number. %llu.%llu is already assigned\n", NVME_MAJOR(subsys->ver), NVME_MINOR(subsys->ver)); return -EINVAL; } /* passthru subsystems use the underlying controller's version */ if (nvmet_is_passthru_subsys(subsys)) return -EINVAL; ret = sscanf(page, "%d.%d.%d\n", &major, &minor, &tertiary); if (ret != 2 && ret != 3) return -EINVAL; subsys->ver = NVME_VS(major, minor, tertiary); return count; } static ssize_t nvmet_subsys_attr_version_store(struct config_item *item, const char *page, size_t count) { struct nvmet_subsys *subsys = to_subsys(item); ssize_t ret; down_write(&nvmet_config_sem); mutex_lock(&subsys->lock); ret = nvmet_subsys_attr_version_store_locked(subsys, page, count); mutex_unlock(&subsys->lock); up_write(&nvmet_config_sem); return ret; } CONFIGFS_ATTR(nvmet_subsys_, attr_version); /* See Section 1.5 of NVMe 1.4 */ static bool nvmet_is_ascii(const char c) { return c >= 0x20 && c <= 0x7e; } static ssize_t nvmet_subsys_attr_serial_show(struct config_item *item, char *page) { struct nvmet_subsys *subsys = to_subsys(item); return snprintf(page, PAGE_SIZE, "%.*s\n", NVMET_SN_MAX_SIZE, subsys->serial); } static ssize_t nvmet_subsys_attr_serial_store_locked(struct nvmet_subsys *subsys, const char *page, size_t count) { int pos, len = strcspn(page, "\n"); if (subsys->subsys_discovered) { pr_err("Can't set serial number. %s is already assigned\n", subsys->serial); return -EINVAL; } if (!len || len > NVMET_SN_MAX_SIZE) { pr_err("Serial Number can not be empty or exceed %d Bytes\n", NVMET_SN_MAX_SIZE); return -EINVAL; } for (pos = 0; pos < len; pos++) { if (!nvmet_is_ascii(page[pos])) { pr_err("Serial Number must contain only ASCII strings\n"); return -EINVAL; } } memcpy_and_pad(subsys->serial, NVMET_SN_MAX_SIZE, page, len, ' '); return count; } static ssize_t nvmet_subsys_attr_serial_store(struct config_item *item, const char *page, size_t count) { struct nvmet_subsys *subsys = to_subsys(item); ssize_t ret; down_write(&nvmet_config_sem); mutex_lock(&subsys->lock); ret = nvmet_subsys_attr_serial_store_locked(subsys, page, count); mutex_unlock(&subsys->lock); up_write(&nvmet_config_sem); return ret; } CONFIGFS_ATTR(nvmet_subsys_, attr_serial); static ssize_t nvmet_subsys_attr_cntlid_min_show(struct config_item *item, char *page) { return snprintf(page, PAGE_SIZE, "%u\n", to_subsys(item)->cntlid_min); } static ssize_t nvmet_subsys_attr_cntlid_min_store(struct config_item *item, const char *page, size_t cnt) { u16 cntlid_min; if (sscanf(page, "%hu\n", &cntlid_min) != 1) return -EINVAL; if (cntlid_min == 0) return -EINVAL; down_write(&nvmet_config_sem); if (cntlid_min > to_subsys(item)->cntlid_max) goto out_unlock; to_subsys(item)->cntlid_min = cntlid_min; up_write(&nvmet_config_sem); return cnt; out_unlock: up_write(&nvmet_config_sem); return -EINVAL; } CONFIGFS_ATTR(nvmet_subsys_, attr_cntlid_min); static ssize_t nvmet_subsys_attr_cntlid_max_show(struct config_item *item, char *page) { return snprintf(page, PAGE_SIZE, "%u\n", to_subsys(item)->cntlid_max); } static ssize_t nvmet_subsys_attr_cntlid_max_store(struct config_item *item, const char *page, size_t cnt) { u16 cntlid_max; if (sscanf(page, "%hu\n", &cntlid_max) != 1) return -EINVAL; if (cntlid_max == 0) return -EINVAL; down_write(&nvmet_config_sem); if (cntlid_max < to_subsys(item)->cntlid_min) goto out_unlock; to_subsys(item)->cntlid_max = cntlid_max; up_write(&nvmet_config_sem); return cnt; out_unlock: up_write(&nvmet_config_sem); return -EINVAL; } CONFIGFS_ATTR(nvmet_subsys_, attr_cntlid_max); static ssize_t nvmet_subsys_attr_model_show(struct config_item *item, char *page) { struct nvmet_subsys *subsys = to_subsys(item); return snprintf(page, PAGE_SIZE, "%s\n", subsys->model_number); } static ssize_t nvmet_subsys_attr_model_store_locked(struct nvmet_subsys *subsys, const char *page, size_t count) { int pos = 0, len; char *val; if (subsys->subsys_discovered) { pr_err("Can't set model number. %s is already assigned\n", subsys->model_number); return -EINVAL; } len = strcspn(page, "\n"); if (!len) return -EINVAL; if (len > NVMET_MN_MAX_SIZE) { pr_err("Model number size can not exceed %d Bytes\n", NVMET_MN_MAX_SIZE); return -EINVAL; } for (pos = 0; pos < len; pos++) { if (!nvmet_is_ascii(page[pos])) return -EINVAL; } val = kmemdup_nul(page, len, GFP_KERNEL); if (!val) return -ENOMEM; kfree(subsys->model_number); subsys->model_number = val; return count; } static ssize_t nvmet_subsys_attr_model_store(struct config_item *item, const char *page, size_t count) { struct nvmet_subsys *subsys = to_subsys(item); ssize_t ret; down_write(&nvmet_config_sem); mutex_lock(&subsys->lock); ret = nvmet_subsys_attr_model_store_locked(subsys, page, count); mutex_unlock(&subsys->lock); up_write(&nvmet_config_sem); return ret; } CONFIGFS_ATTR(nvmet_subsys_, attr_model); static ssize_t nvmet_subsys_attr_ieee_oui_show(struct config_item *item, char *page) { struct nvmet_subsys *subsys = to_subsys(item); return sysfs_emit(page, "0x%06x\n", subsys->ieee_oui); } static ssize_t nvmet_subsys_attr_ieee_oui_store_locked(struct nvmet_subsys *subsys, const char *page, size_t count) { uint32_t val = 0; int ret; if (subsys->subsys_discovered) { pr_err("Can't set IEEE OUI. 0x%06x is already assigned\n", subsys->ieee_oui); return -EINVAL; } ret = kstrtou32(page, 0, &val); if (ret < 0) return ret; if (val >= 0x1000000) return -EINVAL; subsys->ieee_oui = val; return count; } static ssize_t nvmet_subsys_attr_ieee_oui_store(struct config_item *item, const char *page, size_t count) { struct nvmet_subsys *subsys = to_subsys(item); ssize_t ret; down_write(&nvmet_config_sem); mutex_lock(&subsys->lock); ret = nvmet_subsys_attr_ieee_oui_store_locked(subsys, page, count); mutex_unlock(&subsys->lock); up_write(&nvmet_config_sem); return ret; } CONFIGFS_ATTR(nvmet_subsys_, attr_ieee_oui); static ssize_t nvmet_subsys_attr_firmware_show(struct config_item *item, char *page) { struct nvmet_subsys *subsys = to_subsys(item); return sysfs_emit(page, "%s\n", subsys->firmware_rev); } static ssize_t nvmet_subsys_attr_firmware_store_locked(struct nvmet_subsys *subsys, const char *page, size_t count) { int pos = 0, len; char *val; if (subsys->subsys_discovered) { pr_err("Can't set firmware revision. %s is already assigned\n", subsys->firmware_rev); return -EINVAL; } len = strcspn(page, "\n"); if (!len) return -EINVAL; if (len > NVMET_FR_MAX_SIZE) { pr_err("Firmware revision size can not exceed %d Bytes\n", NVMET_FR_MAX_SIZE); return -EINVAL; } for (pos = 0; pos < len; pos++) { if (!nvmet_is_ascii(page[pos])) return -EINVAL; } val = kmemdup_nul(page, len, GFP_KERNEL); if (!val) return -ENOMEM; kfree(subsys->firmware_rev); subsys->firmware_rev = val; return count; } static ssize_t nvmet_subsys_attr_firmware_store(struct config_item *item, const char *page, size_t count) { struct nvmet_subsys *subsys = to_subsys(item); ssize_t ret; down_write(&nvmet_config_sem); mutex_lock(&subsys->lock); ret = nvmet_subsys_attr_firmware_store_locked(subsys, page, count); mutex_unlock(&subsys->lock); up_write(&nvmet_config_sem); return ret; } CONFIGFS_ATTR(nvmet_subsys_, attr_firmware); #ifdef CONFIG_BLK_DEV_INTEGRITY static ssize_t nvmet_subsys_attr_pi_enable_show(struct config_item *item, char *page) { return snprintf(page, PAGE_SIZE, "%d\n", to_subsys(item)->pi_support); } static ssize_t nvmet_subsys_attr_pi_enable_store(struct config_item *item, const char *page, size_t count) { struct nvmet_subsys *subsys = to_subsys(item); bool pi_enable; if (kstrtobool(page, &pi_enable)) return -EINVAL; subsys->pi_support = pi_enable; return count; } CONFIGFS_ATTR(nvmet_subsys_, attr_pi_enable); #endif static ssize_t nvmet_subsys_attr_qid_max_show(struct config_item *item, char *page) { return snprintf(page, PAGE_SIZE, "%u\n", to_subsys(item)->max_qid); } static ssize_t nvmet_subsys_attr_qid_max_store(struct config_item *item, const char *page, size_t cnt) { struct nvmet_subsys *subsys = to_subsys(item); struct nvmet_ctrl *ctrl; u16 qid_max; if (sscanf(page, "%hu\n", &qid_max) != 1) return -EINVAL; if (qid_max < 1 || qid_max > NVMET_NR_QUEUES) return -EINVAL; down_write(&nvmet_config_sem); subsys->max_qid = qid_max; /* Force reconnect */ list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) ctrl->ops->delete_ctrl(ctrl); up_write(&nvmet_config_sem); return cnt; } CONFIGFS_ATTR(nvmet_subsys_, attr_qid_max); static struct configfs_attribute *nvmet_subsys_attrs[] = { &nvmet_subsys_attr_attr_allow_any_host, &nvmet_subsys_attr_attr_version, &nvmet_subsys_attr_attr_serial, &nvmet_subsys_attr_attr_cntlid_min, &nvmet_subsys_attr_attr_cntlid_max, &nvmet_subsys_attr_attr_model, &nvmet_subsys_attr_attr_qid_max, &nvmet_subsys_attr_attr_ieee_oui, &nvmet_subsys_attr_attr_firmware, #ifdef CONFIG_BLK_DEV_INTEGRITY &nvmet_subsys_attr_attr_pi_enable, #endif NULL, }; /* * Subsystem structures & folder operation functions below */ static void nvmet_subsys_release(struct config_item *item) { struct nvmet_subsys *subsys = to_subsys(item); nvmet_subsys_del_ctrls(subsys); nvmet_subsys_put(subsys); } static struct configfs_item_operations nvmet_subsys_item_ops = { .release = nvmet_subsys_release, }; static const struct config_item_type nvmet_subsys_type = { .ct_item_ops = &nvmet_subsys_item_ops, .ct_attrs = nvmet_subsys_attrs, .ct_owner = THIS_MODULE, }; static struct config_group *nvmet_subsys_make(struct config_group *group, const char *name) { struct nvmet_subsys *subsys; if (sysfs_streq(name, NVME_DISC_SUBSYS_NAME)) { pr_err("can't create discovery subsystem through configfs\n"); return ERR_PTR(-EINVAL); } if (sysfs_streq(name, nvmet_disc_subsys->subsysnqn)) { pr_err("can't create subsystem using unique discovery NQN\n"); return ERR_PTR(-EINVAL); } subsys = nvmet_subsys_alloc(name, NVME_NQN_NVME); if (IS_ERR(subsys)) return ERR_CAST(subsys); config_group_init_type_name(&subsys->group, name, &nvmet_subsys_type); config_group_init_type_name(&subsys->namespaces_group, "namespaces", &nvmet_namespaces_type); configfs_add_default_group(&subsys->namespaces_group, &subsys->group); config_group_init_type_name(&subsys->allowed_hosts_group, "allowed_hosts", &nvmet_allowed_hosts_type); configfs_add_default_group(&subsys->allowed_hosts_group, &subsys->group); nvmet_add_passthru_group(subsys); return &subsys->group; } static struct configfs_group_operations nvmet_subsystems_group_ops = { .make_group = nvmet_subsys_make, }; static const struct config_item_type nvmet_subsystems_type = { .ct_group_ops = &nvmet_subsystems_group_ops, .ct_owner = THIS_MODULE, }; static ssize_t nvmet_referral_enable_show(struct config_item *item, char *page) { return snprintf(page, PAGE_SIZE, "%d\n", to_nvmet_port(item)->enabled); } static ssize_t nvmet_referral_enable_store(struct config_item *item, const char *page, size_t count) { struct nvmet_port *parent = to_nvmet_port(item->ci_parent->ci_parent); struct nvmet_port *port = to_nvmet_port(item); bool enable; if (kstrtobool(page, &enable)) goto inval; if (enable) nvmet_referral_enable(parent, port); else nvmet_referral_disable(parent, port); return count; inval: pr_err("Invalid value '%s' for enable\n", page); return -EINVAL; } CONFIGFS_ATTR(nvmet_referral_, enable); /* * Discovery Service subsystem definitions */ static struct configfs_attribute *nvmet_referral_attrs[] = { &nvmet_attr_addr_adrfam, &nvmet_attr_addr_portid, &nvmet_attr_addr_treq, &nvmet_attr_addr_traddr, &nvmet_attr_addr_trsvcid, &nvmet_attr_addr_trtype, &nvmet_referral_attr_enable, NULL, }; static void nvmet_referral_notify(struct config_group *group, struct config_item *item) { struct nvmet_port *parent = to_nvmet_port(item->ci_parent->ci_parent); struct nvmet_port *port = to_nvmet_port(item); nvmet_referral_disable(parent, port); } static void nvmet_referral_release(struct config_item *item) { struct nvmet_port *port = to_nvmet_port(item); kfree(port); } static struct configfs_item_operations nvmet_referral_item_ops = { .release = nvmet_referral_release, }; static const struct config_item_type nvmet_referral_type = { .ct_owner = THIS_MODULE, .ct_attrs = nvmet_referral_attrs, .ct_item_ops = &nvmet_referral_item_ops, }; static struct config_group *nvmet_referral_make( struct config_group *group, const char *name) { struct nvmet_port *port; port = kzalloc(sizeof(*port), GFP_KERNEL); if (!port) return ERR_PTR(-ENOMEM); INIT_LIST_HEAD(&port->entry); config_group_init_type_name(&port->group, name, &nvmet_referral_type); return &port->group; } static struct configfs_group_operations nvmet_referral_group_ops = { .make_group = nvmet_referral_make, .disconnect_notify = nvmet_referral_notify, }; static const struct config_item_type nvmet_referrals_type = { .ct_owner = THIS_MODULE, .ct_group_ops = &nvmet_referral_group_ops, }; static struct nvmet_type_name_map nvmet_ana_state[] = { { NVME_ANA_OPTIMIZED, "optimized" }, { NVME_ANA_NONOPTIMIZED, "non-optimized" }, { NVME_ANA_INACCESSIBLE, "inaccessible" }, { NVME_ANA_PERSISTENT_LOSS, "persistent-loss" }, { NVME_ANA_CHANGE, "change" }, }; static ssize_t nvmet_ana_group_ana_state_show(struct config_item *item, char *page) { struct nvmet_ana_group *grp = to_ana_group(item); enum nvme_ana_state state = grp->port->ana_state[grp->grpid]; int i; for (i = 0; i < ARRAY_SIZE(nvmet_ana_state); i++) { if (state == nvmet_ana_state[i].type) return sprintf(page, "%s\n", nvmet_ana_state[i].name); } return sprintf(page, "\n"); } static ssize_t nvmet_ana_group_ana_state_store(struct config_item *item, const char *page, size_t count) { struct nvmet_ana_group *grp = to_ana_group(item); enum nvme_ana_state *ana_state = grp->port->ana_state; int i; for (i = 0; i < ARRAY_SIZE(nvmet_ana_state); i++) { if (sysfs_streq(page, nvmet_ana_state[i].name)) goto found; } pr_err("Invalid value '%s' for ana_state\n", page); return -EINVAL; found: down_write(&nvmet_ana_sem); ana_state[grp->grpid] = (enum nvme_ana_state) nvmet_ana_state[i].type; nvmet_ana_chgcnt++; up_write(&nvmet_ana_sem); nvmet_port_send_ana_event(grp->port); return count; } CONFIGFS_ATTR(nvmet_ana_group_, ana_state); static struct configfs_attribute *nvmet_ana_group_attrs[] = { &nvmet_ana_group_attr_ana_state, NULL, }; static void nvmet_ana_group_release(struct config_item *item) { struct nvmet_ana_group *grp = to_ana_group(item); if (grp == &grp->port->ana_default_group) return; down_write(&nvmet_ana_sem); grp->port->ana_state[grp->grpid] = NVME_ANA_INACCESSIBLE; nvmet_ana_group_enabled[grp->grpid]--; up_write(&nvmet_ana_sem); nvmet_port_send_ana_event(grp->port); kfree(grp); } static struct configfs_item_operations nvmet_ana_group_item_ops = { .release = nvmet_ana_group_release, }; static const struct config_item_type nvmet_ana_group_type = { .ct_item_ops = &nvmet_ana_group_item_ops, .ct_attrs = nvmet_ana_group_attrs, .ct_owner = THIS_MODULE, }; static struct config_group *nvmet_ana_groups_make_group( struct config_group *group, const char *name) { struct nvmet_port *port = ana_groups_to_port(&group->cg_item); struct nvmet_ana_group *grp; u32 grpid; int ret; ret = kstrtou32(name, 0, &grpid); if (ret) goto out; ret = -EINVAL; if (grpid <= 1 || grpid > NVMET_MAX_ANAGRPS) goto out; ret = -ENOMEM; grp = kzalloc(sizeof(*grp), GFP_KERNEL); if (!grp) goto out; grp->port = port; grp->grpid = grpid; down_write(&nvmet_ana_sem); grpid = array_index_nospec(grpid, NVMET_MAX_ANAGRPS); nvmet_ana_group_enabled[grpid]++; up_write(&nvmet_ana_sem); nvmet_port_send_ana_event(grp->port); config_group_init_type_name(&grp->group, name, &nvmet_ana_group_type); return &grp->group; out: return ERR_PTR(ret); } static struct configfs_group_operations nvmet_ana_groups_group_ops = { .make_group = nvmet_ana_groups_make_group, }; static const struct config_item_type nvmet_ana_groups_type = { .ct_group_ops = &nvmet_ana_groups_group_ops, .ct_owner = THIS_MODULE, }; /* * Ports definitions. */ static void nvmet_port_release(struct config_item *item) { struct nvmet_port *port = to_nvmet_port(item); /* Let inflight controllers teardown complete */ flush_workqueue(nvmet_wq); list_del(&port->global_entry); key_put(port->keyring); kfree(port->ana_state); kfree(port); } static struct configfs_attribute *nvmet_port_attrs[] = { &nvmet_attr_addr_adrfam, &nvmet_attr_addr_treq, &nvmet_attr_addr_traddr, &nvmet_attr_addr_trsvcid, &nvmet_attr_addr_trtype, &nvmet_attr_addr_tsas, &nvmet_attr_param_inline_data_size, &nvmet_attr_param_max_queue_size, #ifdef CONFIG_BLK_DEV_INTEGRITY &nvmet_attr_param_pi_enable, #endif NULL, }; static struct configfs_item_operations nvmet_port_item_ops = { .release = nvmet_port_release, }; static const struct config_item_type nvmet_port_type = { .ct_attrs = nvmet_port_attrs, .ct_item_ops = &nvmet_port_item_ops, .ct_owner = THIS_MODULE, }; static struct config_group *nvmet_ports_make(struct config_group *group, const char *name) { struct nvmet_port *port; u16 portid; u32 i; if (kstrtou16(name, 0, &portid)) return ERR_PTR(-EINVAL); port = kzalloc(sizeof(*port), GFP_KERNEL); if (!port) return ERR_PTR(-ENOMEM); port->ana_state = kcalloc(NVMET_MAX_ANAGRPS + 1, sizeof(*port->ana_state), GFP_KERNEL); if (!port->ana_state) { kfree(port); return ERR_PTR(-ENOMEM); } if (IS_ENABLED(CONFIG_NVME_TARGET_TCP_TLS) && nvme_keyring_id()) { port->keyring = key_lookup(nvme_keyring_id()); if (IS_ERR(port->keyring)) { pr_warn("NVMe keyring not available, disabling TLS\n"); port->keyring = NULL; } } for (i = 1; i <= NVMET_MAX_ANAGRPS; i++) { if (i == NVMET_DEFAULT_ANA_GRPID) port->ana_state[1] = NVME_ANA_OPTIMIZED; else port->ana_state[i] = NVME_ANA_INACCESSIBLE; } list_add(&port->global_entry, &nvmet_ports_list); INIT_LIST_HEAD(&port->entry); INIT_LIST_HEAD(&port->subsystems); INIT_LIST_HEAD(&port->referrals); port->inline_data_size = -1; /* < 0 == let the transport choose */ port->max_queue_size = -1; /* < 0 == let the transport choose */ port->disc_addr.portid = cpu_to_le16(portid); port->disc_addr.adrfam = NVMF_ADDR_FAMILY_MAX; port->disc_addr.treq = NVMF_TREQ_DISABLE_SQFLOW; config_group_init_type_name(&port->group, name, &nvmet_port_type); config_group_init_type_name(&port->subsys_group, "subsystems", &nvmet_port_subsys_type); configfs_add_default_group(&port->subsys_group, &port->group); config_group_init_type_name(&port->referrals_group, "referrals", &nvmet_referrals_type); configfs_add_default_group(&port->referrals_group, &port->group); config_group_init_type_name(&port->ana_groups_group, "ana_groups", &nvmet_ana_groups_type); configfs_add_default_group(&port->ana_groups_group, &port->group); port->ana_default_group.port = port; port->ana_default_group.grpid = NVMET_DEFAULT_ANA_GRPID; config_group_init_type_name(&port->ana_default_group.group, __stringify(NVMET_DEFAULT_ANA_GRPID), &nvmet_ana_group_type); configfs_add_default_group(&port->ana_default_group.group, &port->ana_groups_group); return &port->group; } static struct configfs_group_operations nvmet_ports_group_ops = { .make_group = nvmet_ports_make, }; static const struct config_item_type nvmet_ports_type = { .ct_group_ops = &nvmet_ports_group_ops, .ct_owner = THIS_MODULE, }; static struct config_group nvmet_subsystems_group; static struct config_group nvmet_ports_group; #ifdef CONFIG_NVME_TARGET_AUTH static ssize_t nvmet_host_dhchap_key_show(struct config_item *item, char *page) { u8 *dhchap_secret; ssize_t ret; down_read(&nvmet_config_sem); dhchap_secret = to_host(item)->dhchap_secret; if (!dhchap_secret) ret = sprintf(page, "\n"); else ret = sprintf(page, "%s\n", dhchap_secret); up_read(&nvmet_config_sem); return ret; } static ssize_t nvmet_host_dhchap_key_store(struct config_item *item, const char *page, size_t count) { struct nvmet_host *host = to_host(item); int ret; ret = nvmet_auth_set_key(host, page, false); /* * Re-authentication is a soft state, so keep the * current authentication valid until the host * requests re-authentication. */ return ret < 0 ? ret : count; } CONFIGFS_ATTR(nvmet_host_, dhchap_key); static ssize_t nvmet_host_dhchap_ctrl_key_show(struct config_item *item, char *page) { u8 *dhchap_secret = to_host(item)->dhchap_ctrl_secret; ssize_t ret; down_read(&nvmet_config_sem); dhchap_secret = to_host(item)->dhchap_ctrl_secret; if (!dhchap_secret) ret = sprintf(page, "\n"); else ret = sprintf(page, "%s\n", dhchap_secret); up_read(&nvmet_config_sem); return ret; } static ssize_t nvmet_host_dhchap_ctrl_key_store(struct config_item *item, const char *page, size_t count) { struct nvmet_host *host = to_host(item); int ret; ret = nvmet_auth_set_key(host, page, true); /* * Re-authentication is a soft state, so keep the * current authentication valid until the host * requests re-authentication. */ return ret < 0 ? ret : count; } CONFIGFS_ATTR(nvmet_host_, dhchap_ctrl_key); static ssize_t nvmet_host_dhchap_hash_show(struct config_item *item, char *page) { struct nvmet_host *host = to_host(item); const char *hash_name = nvme_auth_hmac_name(host->dhchap_hash_id); return sprintf(page, "%s\n", hash_name ? hash_name : "none"); } static ssize_t nvmet_host_dhchap_hash_store(struct config_item *item, const char *page, size_t count) { struct nvmet_host *host = to_host(item); u8 hmac_id; hmac_id = nvme_auth_hmac_id(page); if (hmac_id == NVME_AUTH_HASH_INVALID) return -EINVAL; if (!crypto_has_shash(nvme_auth_hmac_name(hmac_id), 0, 0)) return -ENOTSUPP; host->dhchap_hash_id = hmac_id; return count; } CONFIGFS_ATTR(nvmet_host_, dhchap_hash); static ssize_t nvmet_host_dhchap_dhgroup_show(struct config_item *item, char *page) { struct nvmet_host *host = to_host(item); const char *dhgroup = nvme_auth_dhgroup_name(host->dhchap_dhgroup_id); return sprintf(page, "%s\n", dhgroup ? dhgroup : "none"); } static ssize_t nvmet_host_dhchap_dhgroup_store(struct config_item *item, const char *page, size_t count) { struct nvmet_host *host = to_host(item); int dhgroup_id; dhgroup_id = nvme_auth_dhgroup_id(page); if (dhgroup_id == NVME_AUTH_DHGROUP_INVALID) return -EINVAL; if (dhgroup_id != NVME_AUTH_DHGROUP_NULL) { const char *kpp = nvme_auth_dhgroup_kpp(dhgroup_id); if (!crypto_has_kpp(kpp, 0, 0)) return -EINVAL; } host->dhchap_dhgroup_id = dhgroup_id; return count; } CONFIGFS_ATTR(nvmet_host_, dhchap_dhgroup); static struct configfs_attribute *nvmet_host_attrs[] = { &nvmet_host_attr_dhchap_key, &nvmet_host_attr_dhchap_ctrl_key, &nvmet_host_attr_dhchap_hash, &nvmet_host_attr_dhchap_dhgroup, NULL, }; #endif /* CONFIG_NVME_TARGET_AUTH */ static void nvmet_host_release(struct config_item *item) { struct nvmet_host *host = to_host(item); #ifdef CONFIG_NVME_TARGET_AUTH kfree(host->dhchap_secret); kfree(host->dhchap_ctrl_secret); #endif kfree(host); } static struct configfs_item_operations nvmet_host_item_ops = { .release = nvmet_host_release, }; static const struct config_item_type nvmet_host_type = { .ct_item_ops = &nvmet_host_item_ops, #ifdef CONFIG_NVME_TARGET_AUTH .ct_attrs = nvmet_host_attrs, #endif .ct_owner = THIS_MODULE, }; static struct config_group *nvmet_hosts_make_group(struct config_group *group, const char *name) { struct nvmet_host *host; host = kzalloc(sizeof(*host), GFP_KERNEL); if (!host) return ERR_PTR(-ENOMEM); #ifdef CONFIG_NVME_TARGET_AUTH /* Default to SHA256 */ host->dhchap_hash_id = NVME_AUTH_HASH_SHA256; #endif config_group_init_type_name(&host->group, name, &nvmet_host_type); return &host->group; } static struct configfs_group_operations nvmet_hosts_group_ops = { .make_group = nvmet_hosts_make_group, }; static const struct config_item_type nvmet_hosts_type = { .ct_group_ops = &nvmet_hosts_group_ops, .ct_owner = THIS_MODULE, }; static struct config_group nvmet_hosts_group; static ssize_t nvmet_root_discovery_nqn_show(struct config_item *item, char *page) { return snprintf(page, PAGE_SIZE, "%s\n", nvmet_disc_subsys->subsysnqn); } static ssize_t nvmet_root_discovery_nqn_store(struct config_item *item, const char *page, size_t count) { struct list_head *entry; size_t len; len = strcspn(page, "\n"); if (!len || len > NVMF_NQN_FIELD_LEN - 1) return -EINVAL; down_write(&nvmet_config_sem); list_for_each(entry, &nvmet_subsystems_group.cg_children) { struct config_item *item = container_of(entry, struct config_item, ci_entry); if (!strncmp(config_item_name(item), page, len)) { pr_err("duplicate NQN %s\n", config_item_name(item)); up_write(&nvmet_config_sem); return -EINVAL; } } memset(nvmet_disc_subsys->subsysnqn, 0, NVMF_NQN_FIELD_LEN); memcpy(nvmet_disc_subsys->subsysnqn, page, len); up_write(&nvmet_config_sem); return len; } CONFIGFS_ATTR(nvmet_root_, discovery_nqn); static struct configfs_attribute *nvmet_root_attrs[] = { &nvmet_root_attr_discovery_nqn, NULL, }; static const struct config_item_type nvmet_root_type = { .ct_attrs = nvmet_root_attrs, .ct_owner = THIS_MODULE, }; static struct configfs_subsystem nvmet_configfs_subsystem = { .su_group = { .cg_item = { .ci_namebuf = "nvmet", .ci_type = &nvmet_root_type, }, }, }; int __init nvmet_init_configfs(void) { int ret; config_group_init(&nvmet_configfs_subsystem.su_group); mutex_init(&nvmet_configfs_subsystem.su_mutex); config_group_init_type_name(&nvmet_subsystems_group, "subsystems", &nvmet_subsystems_type); configfs_add_default_group(&nvmet_subsystems_group, &nvmet_configfs_subsystem.su_group); config_group_init_type_name(&nvmet_ports_group, "ports", &nvmet_ports_type); configfs_add_default_group(&nvmet_ports_group, &nvmet_configfs_subsystem.su_group); config_group_init_type_name(&nvmet_hosts_group, "hosts", &nvmet_hosts_type); configfs_add_default_group(&nvmet_hosts_group, &nvmet_configfs_subsystem.su_group); ret = configfs_register_subsystem(&nvmet_configfs_subsystem); if (ret) { pr_err("configfs_register_subsystem: %d\n", ret); return ret; } return 0; } void __exit nvmet_exit_configfs(void) { configfs_unregister_subsystem(&nvmet_configfs_subsystem); }