// SPDX-License-Identifier: GPL-2.0 /* * Intel pinctrl/GPIO core driver. * * Copyright (C) 2015, Intel Corporation * Authors: Mathias Nyman * Mika Westerberg */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../core.h" #include "pinctrl-intel.h" /* Offset from regs */ #define REVID 0x000 #define REVID_SHIFT 16 #define REVID_MASK GENMASK(31, 16) #define CAPLIST 0x004 #define CAPLIST_ID_SHIFT 16 #define CAPLIST_ID_MASK GENMASK(23, 16) #define CAPLIST_ID_GPIO_HW_INFO 1 #define CAPLIST_ID_PWM 2 #define CAPLIST_ID_BLINK 3 #define CAPLIST_ID_EXP 4 #define CAPLIST_NEXT_SHIFT 0 #define CAPLIST_NEXT_MASK GENMASK(15, 0) #define PADBAR 0x00c #define PADOWN_BITS 4 #define PADOWN_SHIFT(p) ((p) % 8 * PADOWN_BITS) #define PADOWN_MASK(p) (GENMASK(3, 0) << PADOWN_SHIFT(p)) #define PADOWN_GPP(p) ((p) / 8) #define PWMC 0x204 /* Offset from pad_regs */ #define PADCFG0 0x000 #define PADCFG0_RXEVCFG_MASK GENMASK(26, 25) #define PADCFG0_RXEVCFG_LEVEL (0 << 25) #define PADCFG0_RXEVCFG_EDGE (1 << 25) #define PADCFG0_RXEVCFG_DISABLED (2 << 25) #define PADCFG0_RXEVCFG_EDGE_BOTH (3 << 25) #define PADCFG0_PREGFRXSEL BIT(24) #define PADCFG0_RXINV BIT(23) #define PADCFG0_GPIROUTIOXAPIC BIT(20) #define PADCFG0_GPIROUTSCI BIT(19) #define PADCFG0_GPIROUTSMI BIT(18) #define PADCFG0_GPIROUTNMI BIT(17) #define PADCFG0_PMODE_SHIFT 10 #define PADCFG0_PMODE_MASK GENMASK(13, 10) #define PADCFG0_PMODE_GPIO 0 #define PADCFG0_GPIODIS_SHIFT 8 #define PADCFG0_GPIODIS_MASK GENMASK(9, 8) #define PADCFG0_GPIODIS_NONE 0 #define PADCFG0_GPIODIS_OUTPUT 1 #define PADCFG0_GPIODIS_INPUT 2 #define PADCFG0_GPIODIS_FULL 3 #define PADCFG0_GPIORXDIS BIT(9) #define PADCFG0_GPIOTXDIS BIT(8) #define PADCFG0_GPIORXSTATE BIT(1) #define PADCFG0_GPIOTXSTATE BIT(0) #define PADCFG1 0x004 #define PADCFG1_TERM_UP BIT(13) #define PADCFG1_TERM_SHIFT 10 #define PADCFG1_TERM_MASK GENMASK(12, 10) /* * Bit 0 Bit 1 Bit 2 Value, Ohms * * 0 0 0 - * 0 0 1 20000 * 0 1 0 5000 * 0 1 1 ~4000 * 1 0 0 1000 (if supported) * 1 0 1 ~952 (if supported) * 1 1 0 ~833 (if supported) * 1 1 1 ~800 (if supported) */ #define PADCFG1_TERM_20K BIT(2) #define PADCFG1_TERM_5K BIT(1) #define PADCFG1_TERM_4K (BIT(2) | BIT(1)) #define PADCFG1_TERM_1K BIT(0) #define PADCFG1_TERM_952 (BIT(2) | BIT(0)) #define PADCFG1_TERM_833 (BIT(1) | BIT(0)) #define PADCFG1_TERM_800 (BIT(2) | BIT(1) | BIT(0)) #define PADCFG2 0x008 #define PADCFG2_DEBOUNCE_SHIFT 1 #define PADCFG2_DEBOUNCE_MASK GENMASK(4, 1) #define PADCFG2_DEBEN BIT(0) #define DEBOUNCE_PERIOD_NSEC 31250 struct intel_pad_context { u32 padcfg0; u32 padcfg1; u32 padcfg2; }; struct intel_community_context { u32 *intmask; u32 *hostown; }; #define pin_to_padno(c, p) ((p) - (c)->pin_base) #define padgroup_offset(g, p) ((p) - (g)->base) #define for_each_intel_pin_community(pctrl, community) \ for (unsigned int __ci = 0; \ __ci < pctrl->ncommunities && (community = &pctrl->communities[__ci]); \ __ci++) \ #define for_each_intel_community_pad_group(community, grp) \ for (unsigned int __gi = 0; \ __gi < community->ngpps && (grp = &community->gpps[__gi]); \ __gi++) \ #define for_each_intel_pad_group(pctrl, community, grp) \ for_each_intel_pin_community(pctrl, community) \ for_each_intel_community_pad_group(community, grp) #define for_each_intel_gpio_group(pctrl, community, grp) \ for_each_intel_pad_group(pctrl, community, grp) \ if (grp->gpio_base == INTEL_GPIO_BASE_NOMAP) {} else const struct intel_community *intel_get_community(const struct intel_pinctrl *pctrl, unsigned int pin) { const struct intel_community *community; for_each_intel_pin_community(pctrl, community) { if (pin >= community->pin_base && pin < community->pin_base + community->npins) return community; } dev_warn(pctrl->dev, "failed to find community for pin %u\n", pin); return NULL; } EXPORT_SYMBOL_NS_GPL(intel_get_community, "PINCTRL_INTEL"); static const struct intel_padgroup * intel_community_get_padgroup(const struct intel_community *community, unsigned int pin) { const struct intel_padgroup *padgrp; for_each_intel_community_pad_group(community, padgrp) { if (pin >= padgrp->base && pin < padgrp->base + padgrp->size) return padgrp; } return NULL; } static void __iomem *intel_get_padcfg(struct intel_pinctrl *pctrl, unsigned int pin, unsigned int reg) { const struct intel_community *community; unsigned int padno; size_t nregs; community = intel_get_community(pctrl, pin); if (!community) return NULL; padno = pin_to_padno(community, pin); nregs = (community->features & PINCTRL_FEATURE_DEBOUNCE) ? 4 : 2; if (reg >= nregs * 4) return NULL; return community->pad_regs + reg + padno * nregs * 4; } static bool intel_pad_owned_by_host(const struct intel_pinctrl *pctrl, unsigned int pin) { const struct intel_community *community; const struct intel_padgroup *padgrp; unsigned int gpp, offset, gpp_offset; void __iomem *padown; community = intel_get_community(pctrl, pin); if (!community) return false; if (!community->padown_offset) return true; padgrp = intel_community_get_padgroup(community, pin); if (!padgrp) return false; gpp_offset = padgroup_offset(padgrp, pin); gpp = PADOWN_GPP(gpp_offset); offset = community->padown_offset + padgrp->padown_num * 4 + gpp * 4; padown = community->regs + offset; return !(readl(padown) & PADOWN_MASK(gpp_offset)); } static bool intel_pad_acpi_mode(const struct intel_pinctrl *pctrl, unsigned int pin) { const struct intel_community *community; const struct intel_padgroup *padgrp; unsigned int offset, gpp_offset; void __iomem *hostown; community = intel_get_community(pctrl, pin); if (!community) return true; if (!community->hostown_offset) return false; padgrp = intel_community_get_padgroup(community, pin); if (!padgrp) return true; gpp_offset = padgroup_offset(padgrp, pin); offset = community->hostown_offset + padgrp->reg_num * 4; hostown = community->regs + offset; return !(readl(hostown) & BIT(gpp_offset)); } /** * enum - Locking variants of the pad configuration * @PAD_UNLOCKED: pad is fully controlled by the configuration registers * @PAD_LOCKED: pad configuration registers, except TX state, are locked * @PAD_LOCKED_TX: pad configuration TX state is locked * @PAD_LOCKED_FULL: pad configuration registers are locked completely * * Locking is considered as read-only mode for corresponding registers and * their respective fields. That said, TX state bit is locked separately from * the main locking scheme. */ enum { PAD_UNLOCKED = 0, PAD_LOCKED = 1, PAD_LOCKED_TX = 2, PAD_LOCKED_FULL = PAD_LOCKED | PAD_LOCKED_TX, }; static int intel_pad_locked(const struct intel_pinctrl *pctrl, unsigned int pin) { const struct intel_community *community; const struct intel_padgroup *padgrp; unsigned int offset, gpp_offset; u32 value; int ret = PAD_UNLOCKED; community = intel_get_community(pctrl, pin); if (!community) return PAD_LOCKED_FULL; if (!community->padcfglock_offset) return PAD_UNLOCKED; padgrp = intel_community_get_padgroup(community, pin); if (!padgrp) return PAD_LOCKED_FULL; gpp_offset = padgroup_offset(padgrp, pin); /* * If PADCFGLOCK and PADCFGLOCKTX bits are both clear for this pad, * the pad is considered unlocked. Any other case means that it is * either fully or partially locked. */ offset = community->padcfglock_offset + 0 + padgrp->reg_num * 8; value = readl(community->regs + offset); if (value & BIT(gpp_offset)) ret |= PAD_LOCKED; offset = community->padcfglock_offset + 4 + padgrp->reg_num * 8; value = readl(community->regs + offset); if (value & BIT(gpp_offset)) ret |= PAD_LOCKED_TX; return ret; } static bool intel_pad_is_unlocked(const struct intel_pinctrl *pctrl, unsigned int pin) { return (intel_pad_locked(pctrl, pin) & PAD_LOCKED) == PAD_UNLOCKED; } static bool intel_pad_usable(const struct intel_pinctrl *pctrl, unsigned int pin) { return intel_pad_owned_by_host(pctrl, pin) && intel_pad_is_unlocked(pctrl, pin); } int intel_get_groups_count(struct pinctrl_dev *pctldev) { const struct intel_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); return pctrl->soc->ngroups; } EXPORT_SYMBOL_NS_GPL(intel_get_groups_count, "PINCTRL_INTEL"); const char *intel_get_group_name(struct pinctrl_dev *pctldev, unsigned int group) { const struct intel_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); return pctrl->soc->groups[group].grp.name; } EXPORT_SYMBOL_NS_GPL(intel_get_group_name, "PINCTRL_INTEL"); int intel_get_group_pins(struct pinctrl_dev *pctldev, unsigned int group, const unsigned int **pins, unsigned int *npins) { const struct intel_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); *pins = pctrl->soc->groups[group].grp.pins; *npins = pctrl->soc->groups[group].grp.npins; return 0; } EXPORT_SYMBOL_NS_GPL(intel_get_group_pins, "PINCTRL_INTEL"); static void intel_pin_dbg_show(struct pinctrl_dev *pctldev, struct seq_file *s, unsigned int pin) { struct intel_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); void __iomem *padcfg; u32 cfg0, cfg1, mode; int locked; bool acpi; if (!intel_pad_owned_by_host(pctrl, pin)) { seq_puts(s, "not available"); return; } cfg0 = readl(intel_get_padcfg(pctrl, pin, PADCFG0)); cfg1 = readl(intel_get_padcfg(pctrl, pin, PADCFG1)); mode = (cfg0 & PADCFG0_PMODE_MASK) >> PADCFG0_PMODE_SHIFT; if (mode == PADCFG0_PMODE_GPIO) seq_puts(s, "GPIO "); else seq_printf(s, "mode %d ", mode); seq_printf(s, "0x%08x 0x%08x", cfg0, cfg1); /* Dump the additional PADCFG registers if available */ padcfg = intel_get_padcfg(pctrl, pin, PADCFG2); if (padcfg) seq_printf(s, " 0x%08x", readl(padcfg)); locked = intel_pad_locked(pctrl, pin); acpi = intel_pad_acpi_mode(pctrl, pin); if (locked || acpi) { seq_puts(s, " ["); if (locked) seq_puts(s, "LOCKED"); if ((locked & PAD_LOCKED_FULL) == PAD_LOCKED_TX) seq_puts(s, " tx"); else if ((locked & PAD_LOCKED_FULL) == PAD_LOCKED_FULL) seq_puts(s, " full"); if (locked && acpi) seq_puts(s, ", "); if (acpi) seq_puts(s, "ACPI"); seq_puts(s, "]"); } } static const struct pinctrl_ops intel_pinctrl_ops = { .get_groups_count = intel_get_groups_count, .get_group_name = intel_get_group_name, .get_group_pins = intel_get_group_pins, .pin_dbg_show = intel_pin_dbg_show, }; int intel_get_functions_count(struct pinctrl_dev *pctldev) { const struct intel_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); return pctrl->soc->nfunctions; } EXPORT_SYMBOL_NS_GPL(intel_get_functions_count, "PINCTRL_INTEL"); const char *intel_get_function_name(struct pinctrl_dev *pctldev, unsigned int function) { const struct intel_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); return pctrl->soc->functions[function].func.name; } EXPORT_SYMBOL_NS_GPL(intel_get_function_name, "PINCTRL_INTEL"); int intel_get_function_groups(struct pinctrl_dev *pctldev, unsigned int function, const char * const **groups, unsigned int * const ngroups) { const struct intel_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); *groups = pctrl->soc->functions[function].func.groups; *ngroups = pctrl->soc->functions[function].func.ngroups; return 0; } EXPORT_SYMBOL_NS_GPL(intel_get_function_groups, "PINCTRL_INTEL"); static int intel_pinmux_set_mux(struct pinctrl_dev *pctldev, unsigned int function, unsigned int group) { struct intel_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); const struct intel_pingroup *grp = &pctrl->soc->groups[group]; int i; guard(raw_spinlock_irqsave)(&pctrl->lock); /* * All pins in the groups needs to be accessible and writable * before we can enable the mux for this group. */ for (i = 0; i < grp->grp.npins; i++) { if (!intel_pad_usable(pctrl, grp->grp.pins[i])) return -EBUSY; } /* Now enable the mux setting for each pin in the group */ for (i = 0; i < grp->grp.npins; i++) { void __iomem *padcfg0; u32 value, pmode; padcfg0 = intel_get_padcfg(pctrl, grp->grp.pins[i], PADCFG0); value = readl(padcfg0); value &= ~PADCFG0_PMODE_MASK; if (grp->modes) pmode = grp->modes[i]; else pmode = grp->mode; value |= pmode << PADCFG0_PMODE_SHIFT; writel(value, padcfg0); } return 0; } /** * enum - Possible pad physical connections * @PAD_CONNECT_NONE: pad is fully disconnected * @PAD_CONNECT_INPUT: pad is in input only mode * @PAD_CONNECT_OUTPUT: pad is in output only mode * @PAD_CONNECT_FULL: pad is fully connected */ enum { PAD_CONNECT_NONE = 0, PAD_CONNECT_INPUT = 1, PAD_CONNECT_OUTPUT = 2, PAD_CONNECT_FULL = PAD_CONNECT_INPUT | PAD_CONNECT_OUTPUT, }; static int __intel_gpio_get_direction(u32 value) { switch ((value & PADCFG0_GPIODIS_MASK) >> PADCFG0_GPIODIS_SHIFT) { case PADCFG0_GPIODIS_FULL: return PAD_CONNECT_NONE; case PADCFG0_GPIODIS_OUTPUT: return PAD_CONNECT_INPUT; case PADCFG0_GPIODIS_INPUT: return PAD_CONNECT_OUTPUT; case PADCFG0_GPIODIS_NONE: return PAD_CONNECT_FULL; default: return -ENOTSUPP; }; } static u32 __intel_gpio_set_direction(u32 value, bool input, bool output) { if (input) value &= ~PADCFG0_GPIORXDIS; else value |= PADCFG0_GPIORXDIS; if (output) value &= ~PADCFG0_GPIOTXDIS; else value |= PADCFG0_GPIOTXDIS; return value; } static int __intel_gpio_get_gpio_mode(u32 value) { return (value & PADCFG0_PMODE_MASK) >> PADCFG0_PMODE_SHIFT; } static int intel_gpio_get_gpio_mode(void __iomem *padcfg0) { return __intel_gpio_get_gpio_mode(readl(padcfg0)); } static void intel_gpio_set_gpio_mode(void __iomem *padcfg0) { u32 value; value = readl(padcfg0); /* Put the pad into GPIO mode */ value &= ~PADCFG0_PMODE_MASK; value |= PADCFG0_PMODE_GPIO; /* Disable TX buffer and enable RX (this will be input) */ value = __intel_gpio_set_direction(value, true, false); /* Disable SCI/SMI/NMI generation */ value &= ~(PADCFG0_GPIROUTIOXAPIC | PADCFG0_GPIROUTSCI); value &= ~(PADCFG0_GPIROUTSMI | PADCFG0_GPIROUTNMI); writel(value, padcfg0); } static int intel_gpio_request_enable(struct pinctrl_dev *pctldev, struct pinctrl_gpio_range *range, unsigned int pin) { struct intel_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); void __iomem *padcfg0; padcfg0 = intel_get_padcfg(pctrl, pin, PADCFG0); guard(raw_spinlock_irqsave)(&pctrl->lock); if (!intel_pad_owned_by_host(pctrl, pin)) return -EBUSY; if (!intel_pad_is_unlocked(pctrl, pin)) return 0; /* * If pin is already configured in GPIO mode, we assume that * firmware provides correct settings. In such case we avoid * potential glitches on the pin. Otherwise, for the pin in * alternative mode, consumer has to supply respective flags. */ if (intel_gpio_get_gpio_mode(padcfg0) == PADCFG0_PMODE_GPIO) return 0; intel_gpio_set_gpio_mode(padcfg0); return 0; } static int intel_gpio_set_direction(struct pinctrl_dev *pctldev, struct pinctrl_gpio_range *range, unsigned int pin, bool input) { struct intel_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); void __iomem *padcfg0; u32 value; padcfg0 = intel_get_padcfg(pctrl, pin, PADCFG0); guard(raw_spinlock_irqsave)(&pctrl->lock); value = readl(padcfg0); if (input) value = __intel_gpio_set_direction(value, true, false); else value = __intel_gpio_set_direction(value, false, true); writel(value, padcfg0); return 0; } static const struct pinmux_ops intel_pinmux_ops = { .get_functions_count = intel_get_functions_count, .get_function_name = intel_get_function_name, .get_function_groups = intel_get_function_groups, .set_mux = intel_pinmux_set_mux, .gpio_request_enable = intel_gpio_request_enable, .gpio_set_direction = intel_gpio_set_direction, }; static int intel_config_get_pull(struct intel_pinctrl *pctrl, unsigned int pin, enum pin_config_param param, u32 *arg) { void __iomem *padcfg1; u32 value, term; padcfg1 = intel_get_padcfg(pctrl, pin, PADCFG1); scoped_guard(raw_spinlock_irqsave, &pctrl->lock) value = readl(padcfg1); term = (value & PADCFG1_TERM_MASK) >> PADCFG1_TERM_SHIFT; switch (param) { case PIN_CONFIG_BIAS_DISABLE: if (term) return -EINVAL; break; case PIN_CONFIG_BIAS_PULL_UP: if (!term || !(value & PADCFG1_TERM_UP)) return -EINVAL; switch (term) { case PADCFG1_TERM_833: *arg = 833; break; case PADCFG1_TERM_1K: *arg = 1000; break; case PADCFG1_TERM_4K: *arg = 4000; break; case PADCFG1_TERM_5K: *arg = 5000; break; case PADCFG1_TERM_20K: *arg = 20000; break; } break; case PIN_CONFIG_BIAS_PULL_DOWN: { const struct intel_community *community = intel_get_community(pctrl, pin); if (!term || value & PADCFG1_TERM_UP) return -EINVAL; switch (term) { case PADCFG1_TERM_833: if (!(community->features & PINCTRL_FEATURE_1K_PD)) return -EINVAL; *arg = 833; break; case PADCFG1_TERM_1K: if (!(community->features & PINCTRL_FEATURE_1K_PD)) return -EINVAL; *arg = 1000; break; case PADCFG1_TERM_4K: *arg = 4000; break; case PADCFG1_TERM_5K: *arg = 5000; break; case PADCFG1_TERM_20K: *arg = 20000; break; } break; } default: return -EINVAL; } return 0; } static int intel_config_get_high_impedance(struct intel_pinctrl *pctrl, unsigned int pin, enum pin_config_param param, u32 *arg) { void __iomem *padcfg0; u32 value; padcfg0 = intel_get_padcfg(pctrl, pin, PADCFG0); scoped_guard(raw_spinlock_irqsave, &pctrl->lock) value = readl(padcfg0); if (__intel_gpio_get_direction(value) != PAD_CONNECT_NONE) return -EINVAL; return 0; } static int intel_config_get_debounce(struct intel_pinctrl *pctrl, unsigned int pin, enum pin_config_param param, u32 *arg) { void __iomem *padcfg2; unsigned long v; u32 value2; padcfg2 = intel_get_padcfg(pctrl, pin, PADCFG2); if (!padcfg2) return -ENOTSUPP; scoped_guard(raw_spinlock_irqsave, &pctrl->lock) value2 = readl(padcfg2); if (!(value2 & PADCFG2_DEBEN)) return -EINVAL; v = (value2 & PADCFG2_DEBOUNCE_MASK) >> PADCFG2_DEBOUNCE_SHIFT; *arg = BIT(v) * DEBOUNCE_PERIOD_NSEC / NSEC_PER_USEC; return 0; } static int intel_config_get(struct pinctrl_dev *pctldev, unsigned int pin, unsigned long *config) { struct intel_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); enum pin_config_param param = pinconf_to_config_param(*config); u32 arg = 0; int ret; if (!intel_pad_owned_by_host(pctrl, pin)) return -ENOTSUPP; switch (param) { case PIN_CONFIG_BIAS_DISABLE: case PIN_CONFIG_BIAS_PULL_UP: case PIN_CONFIG_BIAS_PULL_DOWN: ret = intel_config_get_pull(pctrl, pin, param, &arg); if (ret) return ret; break; case PIN_CONFIG_BIAS_HIGH_IMPEDANCE: ret = intel_config_get_high_impedance(pctrl, pin, param, &arg); if (ret) return ret; break; case PIN_CONFIG_INPUT_DEBOUNCE: ret = intel_config_get_debounce(pctrl, pin, param, &arg); if (ret) return ret; break; default: return -ENOTSUPP; } *config = pinconf_to_config_packed(param, arg); return 0; } static int intel_config_set_pull(struct intel_pinctrl *pctrl, unsigned int pin, unsigned long config) { unsigned int param = pinconf_to_config_param(config); unsigned int arg = pinconf_to_config_argument(config); u32 term = 0, up = 0, value; void __iomem *padcfg1; switch (param) { case PIN_CONFIG_BIAS_DISABLE: break; case PIN_CONFIG_BIAS_PULL_UP: switch (arg) { case 20000: term = PADCFG1_TERM_20K; break; case 1: /* Set default strength value in case none is given */ case 5000: term = PADCFG1_TERM_5K; break; case 4000: term = PADCFG1_TERM_4K; break; case 1000: term = PADCFG1_TERM_1K; break; case 833: term = PADCFG1_TERM_833; break; default: return -EINVAL; } up = PADCFG1_TERM_UP; break; case PIN_CONFIG_BIAS_PULL_DOWN: { const struct intel_community *community = intel_get_community(pctrl, pin); switch (arg) { case 20000: term = PADCFG1_TERM_20K; break; case 1: /* Set default strength value in case none is given */ case 5000: term = PADCFG1_TERM_5K; break; case 4000: term = PADCFG1_TERM_4K; break; case 1000: if (!(community->features & PINCTRL_FEATURE_1K_PD)) return -EINVAL; term = PADCFG1_TERM_1K; break; case 833: if (!(community->features & PINCTRL_FEATURE_1K_PD)) return -EINVAL; term = PADCFG1_TERM_833; break; default: return -EINVAL; } break; } default: return -EINVAL; } padcfg1 = intel_get_padcfg(pctrl, pin, PADCFG1); guard(raw_spinlock_irqsave)(&pctrl->lock); value = readl(padcfg1); value = (value & ~PADCFG1_TERM_MASK) | (term << PADCFG1_TERM_SHIFT); value = (value & ~PADCFG1_TERM_UP) | up; writel(value, padcfg1); return 0; } static void intel_gpio_set_high_impedance(struct intel_pinctrl *pctrl, unsigned int pin) { void __iomem *padcfg0; u32 value; padcfg0 = intel_get_padcfg(pctrl, pin, PADCFG0); guard(raw_spinlock_irqsave)(&pctrl->lock); value = readl(padcfg0); value = __intel_gpio_set_direction(value, false, false); writel(value, padcfg0); } static int intel_config_set_debounce(struct intel_pinctrl *pctrl, unsigned int pin, unsigned int debounce) { void __iomem *padcfg0, *padcfg2; u32 value0, value2; unsigned long v; if (debounce) { v = order_base_2(debounce * NSEC_PER_USEC / DEBOUNCE_PERIOD_NSEC); if (v < 3 || v > 15) return -EINVAL; } else { v = 0; } padcfg2 = intel_get_padcfg(pctrl, pin, PADCFG2); if (!padcfg2) return -ENOTSUPP; padcfg0 = intel_get_padcfg(pctrl, pin, PADCFG0); guard(raw_spinlock_irqsave)(&pctrl->lock); value0 = readl(padcfg0); value2 = readl(padcfg2); value2 = (value2 & ~PADCFG2_DEBOUNCE_MASK) | (v << PADCFG2_DEBOUNCE_SHIFT); if (v) { /* Enable glitch filter and debouncer */ value0 |= PADCFG0_PREGFRXSEL; value2 |= PADCFG2_DEBEN; } else { /* Disable glitch filter and debouncer */ value0 &= ~PADCFG0_PREGFRXSEL; value2 &= ~PADCFG2_DEBEN; } writel(value0, padcfg0); writel(value2, padcfg2); return 0; } static int intel_config_set(struct pinctrl_dev *pctldev, unsigned int pin, unsigned long *configs, unsigned int nconfigs) { struct intel_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); int i, ret; if (!intel_pad_usable(pctrl, pin)) return -ENOTSUPP; for (i = 0; i < nconfigs; i++) { switch (pinconf_to_config_param(configs[i])) { case PIN_CONFIG_BIAS_DISABLE: case PIN_CONFIG_BIAS_PULL_UP: case PIN_CONFIG_BIAS_PULL_DOWN: ret = intel_config_set_pull(pctrl, pin, configs[i]); if (ret) return ret; break; case PIN_CONFIG_BIAS_HIGH_IMPEDANCE: intel_gpio_set_high_impedance(pctrl, pin); break; case PIN_CONFIG_INPUT_DEBOUNCE: ret = intel_config_set_debounce(pctrl, pin, pinconf_to_config_argument(configs[i])); if (ret) return ret; break; default: return -ENOTSUPP; } } return 0; } static const struct pinconf_ops intel_pinconf_ops = { .is_generic = true, .pin_config_get = intel_config_get, .pin_config_set = intel_config_set, }; static const struct pinctrl_desc intel_pinctrl_desc = { .pctlops = &intel_pinctrl_ops, .pmxops = &intel_pinmux_ops, .confops = &intel_pinconf_ops, .owner = THIS_MODULE, }; /** * intel_gpio_to_pin() - Translate from GPIO offset to pin number * @pctrl: Pinctrl structure * @offset: GPIO offset from gpiolib * @community: Community is filled here if not %NULL * @padgrp: Pad group is filled here if not %NULL * * When coming through gpiolib irqchip, the GPIO offset is not * automatically translated to pinctrl pin number. This function can be * used to find out the corresponding pinctrl pin. * * Return: a pin number and pointers to the community and pad group, which * the pin belongs to, or negative error code if translation can't be done. */ static int intel_gpio_to_pin(const struct intel_pinctrl *pctrl, unsigned int offset, const struct intel_community **community, const struct intel_padgroup **padgrp) { const struct intel_community *comm; const struct intel_padgroup *grp; for_each_intel_gpio_group(pctrl, comm, grp) { if (offset >= grp->gpio_base && offset < grp->gpio_base + grp->size) { if (community) *community = comm; if (padgrp) *padgrp = grp; return grp->base + offset - grp->gpio_base; } } return -EINVAL; } /** * intel_pin_to_gpio() - Translate from pin number to GPIO offset * @pctrl: Pinctrl structure * @pin: pin number * * Translate the pin number of pinctrl to GPIO offset * * Return: a GPIO offset, or negative error code if translation can't be done. */ static int intel_pin_to_gpio(const struct intel_pinctrl *pctrl, int pin) { const struct intel_community *community; const struct intel_padgroup *padgrp; community = intel_get_community(pctrl, pin); if (!community) return -EINVAL; padgrp = intel_community_get_padgroup(community, pin); if (!padgrp) return -EINVAL; return pin - padgrp->base + padgrp->gpio_base; } static int intel_gpio_get(struct gpio_chip *chip, unsigned int offset) { struct intel_pinctrl *pctrl = gpiochip_get_data(chip); void __iomem *reg; u32 padcfg0; int pin; pin = intel_gpio_to_pin(pctrl, offset, NULL, NULL); if (pin < 0) return -EINVAL; reg = intel_get_padcfg(pctrl, pin, PADCFG0); if (!reg) return -EINVAL; padcfg0 = readl(reg); if (__intel_gpio_get_direction(padcfg0) & PAD_CONNECT_OUTPUT) return !!(padcfg0 & PADCFG0_GPIOTXSTATE); return !!(padcfg0 & PADCFG0_GPIORXSTATE); } static void intel_gpio_set(struct gpio_chip *chip, unsigned int offset, int value) { struct intel_pinctrl *pctrl = gpiochip_get_data(chip); void __iomem *reg; u32 padcfg0; int pin; pin = intel_gpio_to_pin(pctrl, offset, NULL, NULL); if (pin < 0) return; reg = intel_get_padcfg(pctrl, pin, PADCFG0); if (!reg) return; guard(raw_spinlock_irqsave)(&pctrl->lock); padcfg0 = readl(reg); if (value) padcfg0 |= PADCFG0_GPIOTXSTATE; else padcfg0 &= ~PADCFG0_GPIOTXSTATE; writel(padcfg0, reg); } static int intel_gpio_get_direction(struct gpio_chip *chip, unsigned int offset) { struct intel_pinctrl *pctrl = gpiochip_get_data(chip); void __iomem *reg; u32 padcfg0; int pin; pin = intel_gpio_to_pin(pctrl, offset, NULL, NULL); if (pin < 0) return -EINVAL; reg = intel_get_padcfg(pctrl, pin, PADCFG0); if (!reg) return -EINVAL; scoped_guard(raw_spinlock_irqsave, &pctrl->lock) padcfg0 = readl(reg); if (padcfg0 & PADCFG0_PMODE_MASK) return -EINVAL; if (__intel_gpio_get_direction(padcfg0) & PAD_CONNECT_OUTPUT) return GPIO_LINE_DIRECTION_OUT; return GPIO_LINE_DIRECTION_IN; } static int intel_gpio_direction_input(struct gpio_chip *chip, unsigned int offset) { return pinctrl_gpio_direction_input(chip, offset); } static int intel_gpio_direction_output(struct gpio_chip *chip, unsigned int offset, int value) { intel_gpio_set(chip, offset, value); return pinctrl_gpio_direction_output(chip, offset); } static const struct gpio_chip intel_gpio_chip = { .owner = THIS_MODULE, .request = gpiochip_generic_request, .free = gpiochip_generic_free, .get_direction = intel_gpio_get_direction, .direction_input = intel_gpio_direction_input, .direction_output = intel_gpio_direction_output, .get = intel_gpio_get, .set = intel_gpio_set, .set_config = gpiochip_generic_config, }; static void intel_gpio_irq_ack(struct irq_data *d) { struct gpio_chip *gc = irq_data_get_irq_chip_data(d); struct intel_pinctrl *pctrl = gpiochip_get_data(gc); const struct intel_community *community; const struct intel_padgroup *padgrp; int pin; pin = intel_gpio_to_pin(pctrl, irqd_to_hwirq(d), &community, &padgrp); if (pin >= 0) { unsigned int gpp, gpp_offset; void __iomem *is; gpp = padgrp->reg_num; gpp_offset = padgroup_offset(padgrp, pin); is = community->regs + community->is_offset + gpp * 4; guard(raw_spinlock)(&pctrl->lock); writel(BIT(gpp_offset), is); } } static void intel_gpio_irq_mask_unmask(struct gpio_chip *gc, irq_hw_number_t hwirq, bool mask) { struct intel_pinctrl *pctrl = gpiochip_get_data(gc); const struct intel_community *community; const struct intel_padgroup *padgrp; int pin; pin = intel_gpio_to_pin(pctrl, hwirq, &community, &padgrp); if (pin >= 0) { unsigned int gpp, gpp_offset; void __iomem *reg, *is; u32 value; gpp = padgrp->reg_num; gpp_offset = padgroup_offset(padgrp, pin); reg = community->regs + community->ie_offset + gpp * 4; is = community->regs + community->is_offset + gpp * 4; guard(raw_spinlock_irqsave)(&pctrl->lock); /* Clear interrupt status first to avoid unexpected interrupt */ writel(BIT(gpp_offset), is); value = readl(reg); if (mask) value &= ~BIT(gpp_offset); else value |= BIT(gpp_offset); writel(value, reg); } } static void intel_gpio_irq_mask(struct irq_data *d) { struct gpio_chip *gc = irq_data_get_irq_chip_data(d); irq_hw_number_t hwirq = irqd_to_hwirq(d); intel_gpio_irq_mask_unmask(gc, hwirq, true); gpiochip_disable_irq(gc, hwirq); } static void intel_gpio_irq_unmask(struct irq_data *d) { struct gpio_chip *gc = irq_data_get_irq_chip_data(d); irq_hw_number_t hwirq = irqd_to_hwirq(d); gpiochip_enable_irq(gc, hwirq); intel_gpio_irq_mask_unmask(gc, hwirq, false); } static int intel_gpio_irq_type(struct irq_data *d, unsigned int type) { struct gpio_chip *gc = irq_data_get_irq_chip_data(d); struct intel_pinctrl *pctrl = gpiochip_get_data(gc); unsigned int pin = intel_gpio_to_pin(pctrl, irqd_to_hwirq(d), NULL, NULL); u32 rxevcfg, rxinv, value; void __iomem *reg; reg = intel_get_padcfg(pctrl, pin, PADCFG0); if (!reg) return -EINVAL; /* * If the pin is in ACPI mode it is still usable as a GPIO but it * cannot be used as IRQ because GPI_IS status bit will not be * updated by the host controller hardware. */ if (intel_pad_acpi_mode(pctrl, pin)) { dev_warn(pctrl->dev, "pin %u cannot be used as IRQ\n", pin); return -EPERM; } if ((type & IRQ_TYPE_EDGE_BOTH) == IRQ_TYPE_EDGE_BOTH) { rxevcfg = PADCFG0_RXEVCFG_EDGE_BOTH; } else if (type & IRQ_TYPE_EDGE_FALLING) { rxevcfg = PADCFG0_RXEVCFG_EDGE; } else if (type & IRQ_TYPE_EDGE_RISING) { rxevcfg = PADCFG0_RXEVCFG_EDGE; } else if (type & IRQ_TYPE_LEVEL_MASK) { rxevcfg = PADCFG0_RXEVCFG_LEVEL; } else { rxevcfg = PADCFG0_RXEVCFG_DISABLED; } if (type == IRQ_TYPE_EDGE_FALLING || type == IRQ_TYPE_LEVEL_LOW) rxinv = PADCFG0_RXINV; else rxinv = 0; guard(raw_spinlock_irqsave)(&pctrl->lock); intel_gpio_set_gpio_mode(reg); value = readl(reg); value = (value & ~PADCFG0_RXEVCFG_MASK) | rxevcfg; value = (value & ~PADCFG0_RXINV) | rxinv; writel(value, reg); if (type & IRQ_TYPE_EDGE_BOTH) irq_set_handler_locked(d, handle_edge_irq); else if (type & IRQ_TYPE_LEVEL_MASK) irq_set_handler_locked(d, handle_level_irq); return 0; } static int intel_gpio_irq_wake(struct irq_data *d, unsigned int on) { struct gpio_chip *gc = irq_data_get_irq_chip_data(d); struct intel_pinctrl *pctrl = gpiochip_get_data(gc); unsigned int pin = intel_gpio_to_pin(pctrl, irqd_to_hwirq(d), NULL, NULL); if (on) enable_irq_wake(pctrl->irq); else disable_irq_wake(pctrl->irq); dev_dbg(pctrl->dev, "%s wake for pin %u\n", str_enable_disable(on), pin); return 0; } static const struct irq_chip intel_gpio_irq_chip = { .name = "intel-gpio", .irq_ack = intel_gpio_irq_ack, .irq_mask = intel_gpio_irq_mask, .irq_unmask = intel_gpio_irq_unmask, .irq_set_type = intel_gpio_irq_type, .irq_set_wake = intel_gpio_irq_wake, .flags = IRQCHIP_MASK_ON_SUSPEND | IRQCHIP_IMMUTABLE, GPIOCHIP_IRQ_RESOURCE_HELPERS, }; static irqreturn_t intel_gpio_irq(int irq, void *data) { const struct intel_community *community; const struct intel_padgroup *padgrp; struct intel_pinctrl *pctrl = data; int ret = 0; /* Need to check all communities for pending interrupts */ for_each_intel_pad_group(pctrl, community, padgrp) { struct gpio_chip *gc = &pctrl->chip; unsigned long pending, enabled; unsigned int gpp, gpp_offset; void __iomem *reg, *is; gpp = padgrp->reg_num; reg = community->regs + community->ie_offset + gpp * 4; is = community->regs + community->is_offset + gpp * 4; scoped_guard(raw_spinlock, &pctrl->lock) { pending = readl(is); enabled = readl(reg); } /* Only interrupts that are enabled */ pending &= enabled; for_each_set_bit(gpp_offset, &pending, padgrp->size) generic_handle_domain_irq(gc->irq.domain, padgrp->gpio_base + gpp_offset); ret += pending ? 1 : 0; } return IRQ_RETVAL(ret); } static void intel_gpio_irq_init(struct intel_pinctrl *pctrl) { const struct intel_community *community; for_each_intel_pin_community(pctrl, community) { void __iomem *reg, *is; unsigned int gpp; for (gpp = 0; gpp < community->ngpps; gpp++) { reg = community->regs + community->ie_offset + gpp * 4; is = community->regs + community->is_offset + gpp * 4; /* Mask and clear all interrupts */ writel(0, reg); writel(0xffff, is); } } } static int intel_gpio_irq_init_hw(struct gpio_chip *gc) { struct intel_pinctrl *pctrl = gpiochip_get_data(gc); /* * Make sure the interrupt lines are in a proper state before * further configuration. */ intel_gpio_irq_init(pctrl); return 0; } static int intel_gpio_add_pin_ranges(struct gpio_chip *gc) { struct intel_pinctrl *pctrl = gpiochip_get_data(gc); const struct intel_community *community; const struct intel_padgroup *grp; int ret; for_each_intel_gpio_group(pctrl, community, grp) { ret = gpiochip_add_pin_range(&pctrl->chip, dev_name(pctrl->dev), grp->gpio_base, grp->base, grp->size); if (ret) { dev_err(pctrl->dev, "failed to add GPIO pin range\n"); return ret; } } return 0; } static unsigned int intel_gpio_ngpio(const struct intel_pinctrl *pctrl) { const struct intel_community *community; const struct intel_padgroup *grp; unsigned int ngpio = 0; for_each_intel_gpio_group(pctrl, community, grp) { if (grp->gpio_base + grp->size > ngpio) ngpio = grp->gpio_base + grp->size; } return ngpio; } static int intel_gpio_probe(struct intel_pinctrl *pctrl, int irq) { int ret; struct gpio_irq_chip *girq; pctrl->chip = intel_gpio_chip; /* Setup GPIO chip */ pctrl->chip.ngpio = intel_gpio_ngpio(pctrl); pctrl->chip.label = dev_name(pctrl->dev); pctrl->chip.parent = pctrl->dev; pctrl->chip.base = -1; pctrl->chip.add_pin_ranges = intel_gpio_add_pin_ranges; pctrl->irq = irq; /* * On some platforms several GPIO controllers share the same interrupt * line. */ ret = devm_request_irq(pctrl->dev, irq, intel_gpio_irq, IRQF_SHARED | IRQF_NO_THREAD, dev_name(pctrl->dev), pctrl); if (ret) { dev_err(pctrl->dev, "failed to request interrupt\n"); return ret; } /* Setup IRQ chip */ girq = &pctrl->chip.irq; gpio_irq_chip_set_chip(girq, &intel_gpio_irq_chip); /* This will let us handle the IRQ in the driver */ girq->parent_handler = NULL; girq->num_parents = 0; girq->default_type = IRQ_TYPE_NONE; girq->handler = handle_bad_irq; girq->init_hw = intel_gpio_irq_init_hw; ret = devm_gpiochip_add_data(pctrl->dev, &pctrl->chip, pctrl); if (ret) { dev_err(pctrl->dev, "failed to register gpiochip\n"); return ret; } return 0; } static int intel_pinctrl_add_padgroups_by_gpps(struct intel_pinctrl *pctrl, struct intel_community *community) { struct intel_padgroup *gpps; unsigned int padown_num = 0; size_t i, ngpps = community->ngpps; gpps = devm_kcalloc(pctrl->dev, ngpps, sizeof(*gpps), GFP_KERNEL); if (!gpps) return -ENOMEM; for (i = 0; i < ngpps; i++) { gpps[i] = community->gpps[i]; if (gpps[i].size > INTEL_PINCTRL_MAX_GPP_SIZE) return -EINVAL; /* Special treatment for GPIO base */ switch (gpps[i].gpio_base) { case INTEL_GPIO_BASE_MATCH: gpps[i].gpio_base = gpps[i].base; break; case INTEL_GPIO_BASE_ZERO: gpps[i].gpio_base = 0; break; case INTEL_GPIO_BASE_NOMAP: break; default: break; } gpps[i].padown_num = padown_num; padown_num += DIV_ROUND_UP(gpps[i].size * 4, INTEL_PINCTRL_MAX_GPP_SIZE); } community->gpps = gpps; return 0; } static int intel_pinctrl_add_padgroups_by_size(struct intel_pinctrl *pctrl, struct intel_community *community) { struct intel_padgroup *gpps; unsigned int npins = community->npins; unsigned int padown_num = 0; size_t i, ngpps = DIV_ROUND_UP(npins, community->gpp_size); if (community->gpp_size > INTEL_PINCTRL_MAX_GPP_SIZE) return -EINVAL; gpps = devm_kcalloc(pctrl->dev, ngpps, sizeof(*gpps), GFP_KERNEL); if (!gpps) return -ENOMEM; for (i = 0; i < ngpps; i++) { unsigned int gpp_size = community->gpp_size; gpps[i].reg_num = i; gpps[i].base = community->pin_base + i * gpp_size; gpps[i].size = min(gpp_size, npins); npins -= gpps[i].size; gpps[i].gpio_base = gpps[i].base; gpps[i].padown_num = padown_num; padown_num += community->gpp_num_padown_regs; } community->ngpps = ngpps; community->gpps = gpps; return 0; } static int intel_pinctrl_pm_init(struct intel_pinctrl *pctrl) { #ifdef CONFIG_PM_SLEEP const struct intel_pinctrl_soc_data *soc = pctrl->soc; struct intel_community_context *communities; struct intel_pad_context *pads; int i; pads = devm_kcalloc(pctrl->dev, soc->npins, sizeof(*pads), GFP_KERNEL); if (!pads) return -ENOMEM; communities = devm_kcalloc(pctrl->dev, pctrl->ncommunities, sizeof(*communities), GFP_KERNEL); if (!communities) return -ENOMEM; for (i = 0; i < pctrl->ncommunities; i++) { struct intel_community *community = &pctrl->communities[i]; u32 *intmask, *hostown; intmask = devm_kcalloc(pctrl->dev, community->ngpps, sizeof(*intmask), GFP_KERNEL); if (!intmask) return -ENOMEM; communities[i].intmask = intmask; hostown = devm_kcalloc(pctrl->dev, community->ngpps, sizeof(*hostown), GFP_KERNEL); if (!hostown) return -ENOMEM; communities[i].hostown = hostown; } pctrl->context.pads = pads; pctrl->context.communities = communities; #endif return 0; } static int intel_pinctrl_probe_pwm(struct intel_pinctrl *pctrl, struct intel_community *community) { static const struct pwm_lpss_boardinfo info = { .clk_rate = 19200000, .npwm = 1, .base_unit_bits = 22, .bypass = true, }; struct pwm_chip *chip; if (!(community->features & PINCTRL_FEATURE_PWM)) return 0; if (!IS_REACHABLE(CONFIG_PWM_LPSS)) return 0; chip = devm_pwm_lpss_probe(pctrl->dev, community->regs + PWMC, &info); return PTR_ERR_OR_ZERO(chip); } int intel_pinctrl_probe(struct platform_device *pdev, const struct intel_pinctrl_soc_data *soc_data) { struct device *dev = &pdev->dev; struct intel_pinctrl *pctrl; int i, ret, irq; pctrl = devm_kzalloc(dev, sizeof(*pctrl), GFP_KERNEL); if (!pctrl) return -ENOMEM; pctrl->dev = dev; pctrl->soc = soc_data; raw_spin_lock_init(&pctrl->lock); /* * Make a copy of the communities which we can use to hold pointers * to the registers. */ pctrl->ncommunities = pctrl->soc->ncommunities; pctrl->communities = devm_kcalloc(dev, pctrl->ncommunities, sizeof(*pctrl->communities), GFP_KERNEL); if (!pctrl->communities) return -ENOMEM; for (i = 0; i < pctrl->ncommunities; i++) { struct intel_community *community = &pctrl->communities[i]; void __iomem *regs; u32 offset; u32 value; *community = pctrl->soc->communities[i]; regs = devm_platform_ioremap_resource(pdev, community->barno); if (IS_ERR(regs)) return PTR_ERR(regs); /* * Determine community features based on the revision. * A value of all ones means the device is not present. */ value = readl(regs + REVID); if (value == ~0u) return -ENODEV; if (((value & REVID_MASK) >> REVID_SHIFT) >= 0x94) { community->features |= PINCTRL_FEATURE_DEBOUNCE; community->features |= PINCTRL_FEATURE_1K_PD; } /* Determine community features based on the capabilities */ offset = CAPLIST; do { value = readl(regs + offset); switch ((value & CAPLIST_ID_MASK) >> CAPLIST_ID_SHIFT) { case CAPLIST_ID_GPIO_HW_INFO: community->features |= PINCTRL_FEATURE_GPIO_HW_INFO; break; case CAPLIST_ID_PWM: community->features |= PINCTRL_FEATURE_PWM; break; case CAPLIST_ID_BLINK: community->features |= PINCTRL_FEATURE_BLINK; break; case CAPLIST_ID_EXP: community->features |= PINCTRL_FEATURE_EXP; break; default: break; } offset = (value & CAPLIST_NEXT_MASK) >> CAPLIST_NEXT_SHIFT; } while (offset); dev_dbg(dev, "Community%d features: %#08x\n", i, community->features); /* Read offset of the pad configuration registers */ offset = readl(regs + PADBAR); community->regs = regs; community->pad_regs = regs + offset; if (community->gpps) ret = intel_pinctrl_add_padgroups_by_gpps(pctrl, community); else ret = intel_pinctrl_add_padgroups_by_size(pctrl, community); if (ret) return ret; ret = intel_pinctrl_probe_pwm(pctrl, community); if (ret) return ret; } irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; ret = intel_pinctrl_pm_init(pctrl); if (ret) return ret; pctrl->pctldesc = intel_pinctrl_desc; pctrl->pctldesc.name = dev_name(dev); pctrl->pctldesc.pins = pctrl->soc->pins; pctrl->pctldesc.npins = pctrl->soc->npins; pctrl->pctldev = devm_pinctrl_register(dev, &pctrl->pctldesc, pctrl); if (IS_ERR(pctrl->pctldev)) { dev_err(dev, "failed to register pinctrl driver\n"); return PTR_ERR(pctrl->pctldev); } ret = intel_gpio_probe(pctrl, irq); if (ret) return ret; platform_set_drvdata(pdev, pctrl); return 0; } EXPORT_SYMBOL_NS_GPL(intel_pinctrl_probe, "PINCTRL_INTEL"); int intel_pinctrl_probe_by_hid(struct platform_device *pdev) { const struct intel_pinctrl_soc_data *data; data = device_get_match_data(&pdev->dev); if (!data) return -ENODATA; return intel_pinctrl_probe(pdev, data); } EXPORT_SYMBOL_NS_GPL(intel_pinctrl_probe_by_hid, "PINCTRL_INTEL"); int intel_pinctrl_probe_by_uid(struct platform_device *pdev) { const struct intel_pinctrl_soc_data *data; data = intel_pinctrl_get_soc_data(pdev); if (IS_ERR(data)) return PTR_ERR(data); return intel_pinctrl_probe(pdev, data); } EXPORT_SYMBOL_NS_GPL(intel_pinctrl_probe_by_uid, "PINCTRL_INTEL"); const struct intel_pinctrl_soc_data *intel_pinctrl_get_soc_data(struct platform_device *pdev) { const struct intel_pinctrl_soc_data * const *table; const struct intel_pinctrl_soc_data *data; struct device *dev = &pdev->dev; table = device_get_match_data(dev); if (table) { struct acpi_device *adev = ACPI_COMPANION(dev); unsigned int i; for (i = 0; table[i]; i++) { if (acpi_dev_uid_match(adev, table[i]->uid)) break; } data = table[i]; } else { const struct platform_device_id *id; id = platform_get_device_id(pdev); if (!id) return ERR_PTR(-ENODEV); table = (const struct intel_pinctrl_soc_data * const *)id->driver_data; data = table[pdev->id]; } return data ?: ERR_PTR(-ENODATA); } EXPORT_SYMBOL_NS_GPL(intel_pinctrl_get_soc_data, "PINCTRL_INTEL"); static bool __intel_gpio_is_direct_irq(u32 value) { return (value & PADCFG0_GPIROUTIOXAPIC) && (__intel_gpio_get_direction(value) == PAD_CONNECT_INPUT) && (__intel_gpio_get_gpio_mode(value) == PADCFG0_PMODE_GPIO); } static bool intel_pinctrl_should_save(struct intel_pinctrl *pctrl, unsigned int pin) { const struct pin_desc *pd = pin_desc_get(pctrl->pctldev, pin); u32 value; if (!pd || !intel_pad_usable(pctrl, pin)) return false; /* * Only restore the pin if it is actually in use by the kernel (or * by userspace). It is possible that some pins are used by the * BIOS during resume and those are not always locked down so leave * them alone. */ if (pd->mux_owner || pd->gpio_owner || gpiochip_line_is_irq(&pctrl->chip, intel_pin_to_gpio(pctrl, pin))) return true; /* * The firmware on some systems may configure GPIO pins to be * an interrupt source in so called "direct IRQ" mode. In such * cases the GPIO controller driver has no idea if those pins * are being used or not. At the same time, there is a known bug * in the firmwares that don't restore the pin settings correctly * after suspend, i.e. by an unknown reason the Rx value becomes * inverted. * * Hence, let's save and restore the pins that are configured * as GPIOs in the input mode with GPIROUTIOXAPIC bit set. * * See https://bugzilla.kernel.org/show_bug.cgi?id=214749. */ value = readl(intel_get_padcfg(pctrl, pin, PADCFG0)); if (__intel_gpio_is_direct_irq(value)) return true; return false; } static int intel_pinctrl_suspend_noirq(struct device *dev) { struct intel_pinctrl *pctrl = dev_get_drvdata(dev); struct intel_community_context *communities; struct intel_pad_context *pads; int i; pads = pctrl->context.pads; for (i = 0; i < pctrl->soc->npins; i++) { const struct pinctrl_pin_desc *desc = &pctrl->soc->pins[i]; void __iomem *padcfg; u32 val; if (!intel_pinctrl_should_save(pctrl, desc->number)) continue; val = readl(intel_get_padcfg(pctrl, desc->number, PADCFG0)); pads[i].padcfg0 = val & ~PADCFG0_GPIORXSTATE; val = readl(intel_get_padcfg(pctrl, desc->number, PADCFG1)); pads[i].padcfg1 = val; padcfg = intel_get_padcfg(pctrl, desc->number, PADCFG2); if (padcfg) pads[i].padcfg2 = readl(padcfg); } communities = pctrl->context.communities; for (i = 0; i < pctrl->ncommunities; i++) { struct intel_community *community = &pctrl->communities[i]; void __iomem *base; unsigned int gpp; base = community->regs + community->ie_offset; for (gpp = 0; gpp < community->ngpps; gpp++) communities[i].intmask[gpp] = readl(base + gpp * 4); base = community->regs + community->hostown_offset; for (gpp = 0; gpp < community->ngpps; gpp++) communities[i].hostown[gpp] = readl(base + gpp * 4); } return 0; } static bool intel_gpio_update_reg(void __iomem *reg, u32 mask, u32 value) { u32 curr, updated; curr = readl(reg); updated = (curr & ~mask) | (value & mask); if (curr == updated) return false; writel(updated, reg); return true; } static void intel_restore_hostown(struct intel_pinctrl *pctrl, unsigned int c, void __iomem *base, unsigned int gpp, u32 saved) { const struct intel_community *community = &pctrl->communities[c]; const struct intel_padgroup *padgrp = &community->gpps[gpp]; struct device *dev = pctrl->dev; const char *dummy; u32 requested = 0; unsigned int i; if (padgrp->gpio_base == INTEL_GPIO_BASE_NOMAP) return; for_each_requested_gpio_in_range(&pctrl->chip, i, padgrp->gpio_base, padgrp->size, dummy) requested |= BIT(i); if (!intel_gpio_update_reg(base + gpp * 4, requested, saved)) return; dev_dbg(dev, "restored hostown %u/%u %#08x\n", c, gpp, readl(base + gpp * 4)); } static void intel_restore_intmask(struct intel_pinctrl *pctrl, unsigned int c, void __iomem *base, unsigned int gpp, u32 saved) { struct device *dev = pctrl->dev; if (!intel_gpio_update_reg(base + gpp * 4, ~0U, saved)) return; dev_dbg(dev, "restored mask %u/%u %#08x\n", c, gpp, readl(base + gpp * 4)); } static void intel_restore_padcfg(struct intel_pinctrl *pctrl, unsigned int pin, unsigned int reg, u32 saved) { u32 mask = (reg == PADCFG0) ? PADCFG0_GPIORXSTATE : 0; unsigned int n = reg / sizeof(u32); struct device *dev = pctrl->dev; void __iomem *padcfg; padcfg = intel_get_padcfg(pctrl, pin, reg); if (!padcfg) return; if (!intel_gpio_update_reg(padcfg, ~mask, saved)) return; dev_dbg(dev, "restored pin %u padcfg%u %#08x\n", pin, n, readl(padcfg)); } static int intel_pinctrl_resume_noirq(struct device *dev) { struct intel_pinctrl *pctrl = dev_get_drvdata(dev); const struct intel_community_context *communities; const struct intel_pad_context *pads; int i; /* Mask all interrupts */ intel_gpio_irq_init(pctrl); pads = pctrl->context.pads; for (i = 0; i < pctrl->soc->npins; i++) { const struct pinctrl_pin_desc *desc = &pctrl->soc->pins[i]; if (!(intel_pinctrl_should_save(pctrl, desc->number) || /* * If the firmware mangled the register contents too much, * check the saved value for the Direct IRQ mode. */ __intel_gpio_is_direct_irq(pads[i].padcfg0))) continue; intel_restore_padcfg(pctrl, desc->number, PADCFG0, pads[i].padcfg0); intel_restore_padcfg(pctrl, desc->number, PADCFG1, pads[i].padcfg1); intel_restore_padcfg(pctrl, desc->number, PADCFG2, pads[i].padcfg2); } communities = pctrl->context.communities; for (i = 0; i < pctrl->ncommunities; i++) { struct intel_community *community = &pctrl->communities[i]; void __iomem *base; unsigned int gpp; base = community->regs + community->ie_offset; for (gpp = 0; gpp < community->ngpps; gpp++) intel_restore_intmask(pctrl, i, base, gpp, communities[i].intmask[gpp]); base = community->regs + community->hostown_offset; for (gpp = 0; gpp < community->ngpps; gpp++) intel_restore_hostown(pctrl, i, base, gpp, communities[i].hostown[gpp]); } return 0; } EXPORT_NS_GPL_DEV_SLEEP_PM_OPS(intel_pinctrl_pm_ops, PINCTRL_INTEL) = { NOIRQ_SYSTEM_SLEEP_PM_OPS(intel_pinctrl_suspend_noirq, intel_pinctrl_resume_noirq) }; MODULE_AUTHOR("Mathias Nyman "); MODULE_AUTHOR("Mika Westerberg "); MODULE_DESCRIPTION("Intel pinctrl/GPIO core driver"); MODULE_LICENSE("GPL v2");