// SPDX-License-Identifier: GPL-2.0 // Copyright (c) 2017-2018, The Linux Foundation. All rights reserved. /* Disable MMIO tracing to prevent excessive logging of unwanted MMIO traces */ #define __DISABLE_TRACE_MMIO__ #include #include #include #include #include #include #include #include #include #include #include /** * DOC: Overview * * Generic Interface (GENI) Serial Engine (SE) Wrapper driver is introduced * to manage GENI firmware based Qualcomm Universal Peripheral (QUP) Wrapper * controller. QUP Wrapper is designed to support various serial bus protocols * like UART, SPI, I2C, I3C, etc. */ /** * DOC: Hardware description * * GENI based QUP is a highly-flexible and programmable module for supporting * a wide range of serial interfaces like UART, SPI, I2C, I3C, etc. A single * QUP module can provide upto 8 serial interfaces, using its internal * serial engines. The actual configuration is determined by the target * platform configuration. The protocol supported by each interface is * determined by the firmware loaded to the serial engine. Each SE consists * of a DMA Engine and GENI sub modules which enable serial engines to * support FIFO and DMA modes of operation. * * * +-----------------------------------------+ * |QUP Wrapper | * | +----------------------------+ | * --QUP & SE Clocks--> | Serial Engine N | +-IO------> * | | ... | | Interface * <---Clock Perf.----+ +----+-----------------------+ | | * State Interface | | Serial Engine 1 | | | * | | | | | * | | | | | * <--------AHB-------> | | | | * | | +----+ | * | | | | * | | | | * <------SE IRQ------+ +----------------------------+ | * | | * +-----------------------------------------+ * * Figure 1: GENI based QUP Wrapper * * The GENI submodules include primary and secondary sequencers which are * used to drive TX & RX operations. On serial interfaces that operate using * master-slave model, primary sequencer drives both TX & RX operations. On * serial interfaces that operate using peer-to-peer model, primary sequencer * drives TX operation and secondary sequencer drives RX operation. */ /** * DOC: Software description * * GENI SE Wrapper driver is structured into 2 parts: * * geni_wrapper represents QUP Wrapper controller. This part of the driver * manages QUP Wrapper information such as hardware version, clock * performance table that is common to all the internal serial engines. * * geni_se represents serial engine. This part of the driver manages serial * engine information such as clocks, containing QUP Wrapper, etc. This part * of driver also supports operations (eg. initialize the concerned serial * engine, select between FIFO and DMA mode of operation etc.) that are * common to all the serial engines and are independent of serial interfaces. */ #define MAX_CLK_PERF_LEVEL 32 #define MAX_CLKS 2 /** * struct geni_wrapper - Data structure to represent the QUP Wrapper Core * @dev: Device pointer of the QUP wrapper core * @base: Base address of this instance of QUP wrapper core * @clks: Handle to the primary & optional secondary AHB clocks * @num_clks: Count of clocks */ struct geni_wrapper { struct device *dev; void __iomem *base; struct clk_bulk_data clks[MAX_CLKS]; unsigned int num_clks; }; /** * struct geni_se_desc - Data structure to represent the QUP Wrapper resources * @clks: Name of the primary & optional secondary AHB clocks * @num_clks: Count of clock names */ struct geni_se_desc { unsigned int num_clks; const char * const *clks; }; static const char * const icc_path_names[] = {"qup-core", "qup-config", "qup-memory"}; #define QUP_HW_VER_REG 0x4 /* Common SE registers */ #define GENI_INIT_CFG_REVISION 0x0 #define GENI_S_INIT_CFG_REVISION 0x4 #define GENI_OUTPUT_CTRL 0x24 #define GENI_CGC_CTRL 0x28 #define GENI_CLK_CTRL_RO 0x60 #define GENI_FW_S_REVISION_RO 0x6c #define SE_GENI_BYTE_GRAN 0x254 #define SE_GENI_TX_PACKING_CFG0 0x260 #define SE_GENI_TX_PACKING_CFG1 0x264 #define SE_GENI_RX_PACKING_CFG0 0x284 #define SE_GENI_RX_PACKING_CFG1 0x288 #define SE_GENI_M_GP_LENGTH 0x910 #define SE_GENI_S_GP_LENGTH 0x914 #define SE_DMA_TX_PTR_L 0xc30 #define SE_DMA_TX_PTR_H 0xc34 #define SE_DMA_TX_ATTR 0xc38 #define SE_DMA_TX_LEN 0xc3c #define SE_DMA_TX_IRQ_EN 0xc48 #define SE_DMA_TX_IRQ_EN_SET 0xc4c #define SE_DMA_TX_IRQ_EN_CLR 0xc50 #define SE_DMA_TX_LEN_IN 0xc54 #define SE_DMA_TX_MAX_BURST 0xc5c #define SE_DMA_RX_PTR_L 0xd30 #define SE_DMA_RX_PTR_H 0xd34 #define SE_DMA_RX_ATTR 0xd38 #define SE_DMA_RX_LEN 0xd3c #define SE_DMA_RX_IRQ_EN 0xd48 #define SE_DMA_RX_IRQ_EN_SET 0xd4c #define SE_DMA_RX_IRQ_EN_CLR 0xd50 #define SE_DMA_RX_LEN_IN 0xd54 #define SE_DMA_RX_MAX_BURST 0xd5c #define SE_DMA_RX_FLUSH 0xd60 #define SE_GSI_EVENT_EN 0xe18 #define SE_IRQ_EN 0xe1c #define SE_DMA_GENERAL_CFG 0xe30 /* GENI_OUTPUT_CTRL fields */ #define DEFAULT_IO_OUTPUT_CTRL_MSK GENMASK(6, 0) /* GENI_CGC_CTRL fields */ #define CFG_AHB_CLK_CGC_ON BIT(0) #define CFG_AHB_WR_ACLK_CGC_ON BIT(1) #define DATA_AHB_CLK_CGC_ON BIT(2) #define SCLK_CGC_ON BIT(3) #define TX_CLK_CGC_ON BIT(4) #define RX_CLK_CGC_ON BIT(5) #define EXT_CLK_CGC_ON BIT(6) #define PROG_RAM_HCLK_OFF BIT(8) #define PROG_RAM_SCLK_OFF BIT(9) #define DEFAULT_CGC_EN GENMASK(6, 0) /* SE_GSI_EVENT_EN fields */ #define DMA_RX_EVENT_EN BIT(0) #define DMA_TX_EVENT_EN BIT(1) #define GENI_M_EVENT_EN BIT(2) #define GENI_S_EVENT_EN BIT(3) /* SE_IRQ_EN fields */ #define DMA_RX_IRQ_EN BIT(0) #define DMA_TX_IRQ_EN BIT(1) #define GENI_M_IRQ_EN BIT(2) #define GENI_S_IRQ_EN BIT(3) /* SE_DMA_GENERAL_CFG */ #define DMA_RX_CLK_CGC_ON BIT(0) #define DMA_TX_CLK_CGC_ON BIT(1) #define DMA_AHB_SLV_CFG_ON BIT(2) #define AHB_SEC_SLV_CLK_CGC_ON BIT(3) #define DUMMY_RX_NON_BUFFERABLE BIT(4) #define RX_DMA_ZERO_PADDING_EN BIT(5) #define RX_DMA_IRQ_DELAY_MSK GENMASK(8, 6) #define RX_DMA_IRQ_DELAY_SHFT 6 /** * geni_se_get_qup_hw_version() - Read the QUP wrapper Hardware version * @se: Pointer to the corresponding serial engine. * * Return: Hardware Version of the wrapper. */ u32 geni_se_get_qup_hw_version(struct geni_se *se) { struct geni_wrapper *wrapper = se->wrapper; return readl_relaxed(wrapper->base + QUP_HW_VER_REG); } EXPORT_SYMBOL_GPL(geni_se_get_qup_hw_version); static void geni_se_io_set_mode(void __iomem *base) { u32 val; val = readl_relaxed(base + SE_IRQ_EN); val |= GENI_M_IRQ_EN | GENI_S_IRQ_EN; val |= DMA_TX_IRQ_EN | DMA_RX_IRQ_EN; writel_relaxed(val, base + SE_IRQ_EN); val = readl_relaxed(base + SE_GENI_DMA_MODE_EN); val &= ~GENI_DMA_MODE_EN; writel_relaxed(val, base + SE_GENI_DMA_MODE_EN); writel_relaxed(0, base + SE_GSI_EVENT_EN); } static void geni_se_io_init(void __iomem *base) { u32 val; val = readl_relaxed(base + GENI_CGC_CTRL); val |= DEFAULT_CGC_EN; writel_relaxed(val, base + GENI_CGC_CTRL); val = readl_relaxed(base + SE_DMA_GENERAL_CFG); val |= AHB_SEC_SLV_CLK_CGC_ON | DMA_AHB_SLV_CFG_ON; val |= DMA_TX_CLK_CGC_ON | DMA_RX_CLK_CGC_ON; writel_relaxed(val, base + SE_DMA_GENERAL_CFG); writel_relaxed(DEFAULT_IO_OUTPUT_CTRL_MSK, base + GENI_OUTPUT_CTRL); writel_relaxed(FORCE_DEFAULT, base + GENI_FORCE_DEFAULT_REG); } static void geni_se_irq_clear(struct geni_se *se) { writel_relaxed(0, se->base + SE_GSI_EVENT_EN); writel_relaxed(0xffffffff, se->base + SE_GENI_M_IRQ_CLEAR); writel_relaxed(0xffffffff, se->base + SE_GENI_S_IRQ_CLEAR); writel_relaxed(0xffffffff, se->base + SE_DMA_TX_IRQ_CLR); writel_relaxed(0xffffffff, se->base + SE_DMA_RX_IRQ_CLR); writel_relaxed(0xffffffff, se->base + SE_IRQ_EN); } /** * geni_se_init() - Initialize the GENI serial engine * @se: Pointer to the concerned serial engine. * @rx_wm: Receive watermark, in units of FIFO words. * @rx_rfr: Ready-for-receive watermark, in units of FIFO words. * * This function is used to initialize the GENI serial engine, configure * receive watermark and ready-for-receive watermarks. */ void geni_se_init(struct geni_se *se, u32 rx_wm, u32 rx_rfr) { u32 val; geni_se_irq_clear(se); geni_se_io_init(se->base); geni_se_io_set_mode(se->base); writel_relaxed(rx_wm, se->base + SE_GENI_RX_WATERMARK_REG); writel_relaxed(rx_rfr, se->base + SE_GENI_RX_RFR_WATERMARK_REG); val = readl_relaxed(se->base + SE_GENI_M_IRQ_EN); val |= M_COMMON_GENI_M_IRQ_EN; writel_relaxed(val, se->base + SE_GENI_M_IRQ_EN); val = readl_relaxed(se->base + SE_GENI_S_IRQ_EN); val |= S_COMMON_GENI_S_IRQ_EN; writel_relaxed(val, se->base + SE_GENI_S_IRQ_EN); } EXPORT_SYMBOL_GPL(geni_se_init); static void geni_se_select_fifo_mode(struct geni_se *se) { u32 proto = geni_se_read_proto(se); u32 val, val_old; geni_se_irq_clear(se); /* UART driver manages enabling / disabling interrupts internally */ if (proto != GENI_SE_UART) { /* Non-UART use only primary sequencer so dont bother about S_IRQ */ val_old = val = readl_relaxed(se->base + SE_GENI_M_IRQ_EN); val |= M_CMD_DONE_EN | M_TX_FIFO_WATERMARK_EN; val |= M_RX_FIFO_WATERMARK_EN | M_RX_FIFO_LAST_EN; if (val != val_old) writel_relaxed(val, se->base + SE_GENI_M_IRQ_EN); } val_old = val = readl_relaxed(se->base + SE_GENI_DMA_MODE_EN); val &= ~GENI_DMA_MODE_EN; if (val != val_old) writel_relaxed(val, se->base + SE_GENI_DMA_MODE_EN); } static void geni_se_select_dma_mode(struct geni_se *se) { u32 proto = geni_se_read_proto(se); u32 val, val_old; geni_se_irq_clear(se); /* UART driver manages enabling / disabling interrupts internally */ if (proto != GENI_SE_UART) { /* Non-UART use only primary sequencer so dont bother about S_IRQ */ val_old = val = readl_relaxed(se->base + SE_GENI_M_IRQ_EN); val &= ~(M_CMD_DONE_EN | M_TX_FIFO_WATERMARK_EN); val &= ~(M_RX_FIFO_WATERMARK_EN | M_RX_FIFO_LAST_EN); if (val != val_old) writel_relaxed(val, se->base + SE_GENI_M_IRQ_EN); } val_old = val = readl_relaxed(se->base + SE_GENI_DMA_MODE_EN); val |= GENI_DMA_MODE_EN; if (val != val_old) writel_relaxed(val, se->base + SE_GENI_DMA_MODE_EN); } static void geni_se_select_gpi_mode(struct geni_se *se) { u32 val; geni_se_irq_clear(se); writel(0, se->base + SE_IRQ_EN); val = readl(se->base + SE_GENI_M_IRQ_EN); val &= ~(M_CMD_DONE_EN | M_TX_FIFO_WATERMARK_EN | M_RX_FIFO_WATERMARK_EN | M_RX_FIFO_LAST_EN); writel(val, se->base + SE_GENI_M_IRQ_EN); writel(GENI_DMA_MODE_EN, se->base + SE_GENI_DMA_MODE_EN); val = readl(se->base + SE_GSI_EVENT_EN); val |= (DMA_RX_EVENT_EN | DMA_TX_EVENT_EN | GENI_M_EVENT_EN | GENI_S_EVENT_EN); writel(val, se->base + SE_GSI_EVENT_EN); } /** * geni_se_select_mode() - Select the serial engine transfer mode * @se: Pointer to the concerned serial engine. * @mode: Transfer mode to be selected. */ void geni_se_select_mode(struct geni_se *se, enum geni_se_xfer_mode mode) { WARN_ON(mode != GENI_SE_FIFO && mode != GENI_SE_DMA && mode != GENI_GPI_DMA); switch (mode) { case GENI_SE_FIFO: geni_se_select_fifo_mode(se); break; case GENI_SE_DMA: geni_se_select_dma_mode(se); break; case GENI_GPI_DMA: geni_se_select_gpi_mode(se); break; case GENI_SE_INVALID: default: break; } } EXPORT_SYMBOL_GPL(geni_se_select_mode); /** * DOC: Overview * * GENI FIFO packing is highly configurable. TX/RX packing/unpacking consist * of up to 4 operations, each operation represented by 4 configuration vectors * of 10 bits programmed in GENI_TX_PACKING_CFG0 and GENI_TX_PACKING_CFG1 for * TX FIFO and in GENI_RX_PACKING_CFG0 and GENI_RX_PACKING_CFG1 for RX FIFO. * Refer to below examples for detailed bit-field description. * * Example 1: word_size = 7, packing_mode = 4 x 8, msb_to_lsb = 1 * * +-----------+-------+-------+-------+-------+ * | | vec_0 | vec_1 | vec_2 | vec_3 | * +-----------+-------+-------+-------+-------+ * | start | 0x6 | 0xe | 0x16 | 0x1e | * | direction | 1 | 1 | 1 | 1 | * | length | 6 | 6 | 6 | 6 | * | stop | 0 | 0 | 0 | 1 | * +-----------+-------+-------+-------+-------+ * * Example 2: word_size = 15, packing_mode = 2 x 16, msb_to_lsb = 0 * * +-----------+-------+-------+-------+-------+ * | | vec_0 | vec_1 | vec_2 | vec_3 | * +-----------+-------+-------+-------+-------+ * | start | 0x0 | 0x8 | 0x10 | 0x18 | * | direction | 0 | 0 | 0 | 0 | * | length | 7 | 6 | 7 | 6 | * | stop | 0 | 0 | 0 | 1 | * +-----------+-------+-------+-------+-------+ * * Example 3: word_size = 23, packing_mode = 1 x 32, msb_to_lsb = 1 * * +-----------+-------+-------+-------+-------+ * | | vec_0 | vec_1 | vec_2 | vec_3 | * +-----------+-------+-------+-------+-------+ * | start | 0x16 | 0xe | 0x6 | 0x0 | * | direction | 1 | 1 | 1 | 1 | * | length | 7 | 7 | 6 | 0 | * | stop | 0 | 0 | 1 | 0 | * +-----------+-------+-------+-------+-------+ * */ #define NUM_PACKING_VECTORS 4 #define PACKING_START_SHIFT 5 #define PACKING_DIR_SHIFT 4 #define PACKING_LEN_SHIFT 1 #define PACKING_STOP_BIT BIT(0) #define PACKING_VECTOR_SHIFT 10 /** * geni_se_config_packing() - Packing configuration of the serial engine * @se: Pointer to the concerned serial engine * @bpw: Bits of data per transfer word. * @pack_words: Number of words per fifo element. * @msb_to_lsb: Transfer from MSB to LSB or vice-versa. * @tx_cfg: Flag to configure the TX Packing. * @rx_cfg: Flag to configure the RX Packing. * * This function is used to configure the packing rules for the current * transfer. */ void geni_se_config_packing(struct geni_se *se, int bpw, int pack_words, bool msb_to_lsb, bool tx_cfg, bool rx_cfg) { u32 cfg0, cfg1, cfg[NUM_PACKING_VECTORS] = {0}; int len; int temp_bpw = bpw; int idx_start = msb_to_lsb ? bpw - 1 : 0; int idx = idx_start; int idx_delta = msb_to_lsb ? -BITS_PER_BYTE : BITS_PER_BYTE; int ceil_bpw = ALIGN(bpw, BITS_PER_BYTE); int iter = (ceil_bpw * pack_words) / BITS_PER_BYTE; int i; if (iter <= 0 || iter > NUM_PACKING_VECTORS) return; for (i = 0; i < iter; i++) { len = min_t(int, temp_bpw, BITS_PER_BYTE) - 1; cfg[i] = idx << PACKING_START_SHIFT; cfg[i] |= msb_to_lsb << PACKING_DIR_SHIFT; cfg[i] |= len << PACKING_LEN_SHIFT; if (temp_bpw <= BITS_PER_BYTE) { idx = ((i + 1) * BITS_PER_BYTE) + idx_start; temp_bpw = bpw; } else { idx = idx + idx_delta; temp_bpw = temp_bpw - BITS_PER_BYTE; } } cfg[iter - 1] |= PACKING_STOP_BIT; cfg0 = cfg[0] | (cfg[1] << PACKING_VECTOR_SHIFT); cfg1 = cfg[2] | (cfg[3] << PACKING_VECTOR_SHIFT); if (tx_cfg) { writel_relaxed(cfg0, se->base + SE_GENI_TX_PACKING_CFG0); writel_relaxed(cfg1, se->base + SE_GENI_TX_PACKING_CFG1); } if (rx_cfg) { writel_relaxed(cfg0, se->base + SE_GENI_RX_PACKING_CFG0); writel_relaxed(cfg1, se->base + SE_GENI_RX_PACKING_CFG1); } /* * Number of protocol words in each FIFO entry * 0 - 4x8, four words in each entry, max word size of 8 bits * 1 - 2x16, two words in each entry, max word size of 16 bits * 2 - 1x32, one word in each entry, max word size of 32 bits * 3 - undefined */ if (pack_words || bpw == 32) writel_relaxed(bpw / 16, se->base + SE_GENI_BYTE_GRAN); } EXPORT_SYMBOL_GPL(geni_se_config_packing); static void geni_se_clks_off(struct geni_se *se) { struct geni_wrapper *wrapper = se->wrapper; clk_disable_unprepare(se->clk); clk_bulk_disable_unprepare(wrapper->num_clks, wrapper->clks); } /** * geni_se_resources_off() - Turn off resources associated with the serial * engine * @se: Pointer to the concerned serial engine. * * Return: 0 on success, standard Linux error codes on failure/error. */ int geni_se_resources_off(struct geni_se *se) { int ret; if (has_acpi_companion(se->dev)) return 0; ret = pinctrl_pm_select_sleep_state(se->dev); if (ret) return ret; geni_se_clks_off(se); return 0; } EXPORT_SYMBOL_GPL(geni_se_resources_off); static int geni_se_clks_on(struct geni_se *se) { int ret; struct geni_wrapper *wrapper = se->wrapper; ret = clk_bulk_prepare_enable(wrapper->num_clks, wrapper->clks); if (ret) return ret; ret = clk_prepare_enable(se->clk); if (ret) clk_bulk_disable_unprepare(wrapper->num_clks, wrapper->clks); return ret; } /** * geni_se_resources_on() - Turn on resources associated with the serial * engine * @se: Pointer to the concerned serial engine. * * Return: 0 on success, standard Linux error codes on failure/error. */ int geni_se_resources_on(struct geni_se *se) { int ret; if (has_acpi_companion(se->dev)) return 0; ret = geni_se_clks_on(se); if (ret) return ret; ret = pinctrl_pm_select_default_state(se->dev); if (ret) geni_se_clks_off(se); return ret; } EXPORT_SYMBOL_GPL(geni_se_resources_on); /** * geni_se_clk_tbl_get() - Get the clock table to program DFS * @se: Pointer to the concerned serial engine. * @tbl: Table in which the output is returned. * * This function is called by the protocol drivers to determine the different * clock frequencies supported by serial engine core clock. The protocol * drivers use the output to determine the clock frequency index to be * programmed into DFS. * * Return: number of valid performance levels in the table on success, * standard Linux error codes on failure. */ int geni_se_clk_tbl_get(struct geni_se *se, unsigned long **tbl) { long freq = 0; int i; if (se->clk_perf_tbl) { *tbl = se->clk_perf_tbl; return se->num_clk_levels; } se->clk_perf_tbl = devm_kcalloc(se->dev, MAX_CLK_PERF_LEVEL, sizeof(*se->clk_perf_tbl), GFP_KERNEL); if (!se->clk_perf_tbl) return -ENOMEM; for (i = 0; i < MAX_CLK_PERF_LEVEL; i++) { freq = clk_round_rate(se->clk, freq + 1); if (freq <= 0 || (i > 0 && freq == se->clk_perf_tbl[i - 1])) break; se->clk_perf_tbl[i] = freq; } se->num_clk_levels = i; *tbl = se->clk_perf_tbl; return se->num_clk_levels; } EXPORT_SYMBOL_GPL(geni_se_clk_tbl_get); /** * geni_se_clk_freq_match() - Get the matching or closest SE clock frequency * @se: Pointer to the concerned serial engine. * @req_freq: Requested clock frequency. * @index: Index of the resultant frequency in the table. * @res_freq: Resultant frequency of the source clock. * @exact: Flag to indicate exact multiple requirement of the requested * frequency. * * This function is called by the protocol drivers to determine the best match * of the requested frequency as provided by the serial engine clock in order * to meet the performance requirements. * * If we return success: * - if @exact is true then @res_freq / == @req_freq * - if @exact is false then @res_freq / <= @req_freq * * Return: 0 on success, standard Linux error codes on failure. */ int geni_se_clk_freq_match(struct geni_se *se, unsigned long req_freq, unsigned int *index, unsigned long *res_freq, bool exact) { unsigned long *tbl; int num_clk_levels; int i; unsigned long best_delta; unsigned long new_delta; unsigned int divider; num_clk_levels = geni_se_clk_tbl_get(se, &tbl); if (num_clk_levels < 0) return num_clk_levels; if (num_clk_levels == 0) return -EINVAL; best_delta = ULONG_MAX; for (i = 0; i < num_clk_levels; i++) { divider = DIV_ROUND_UP(tbl[i], req_freq); new_delta = req_freq - tbl[i] / divider; if (new_delta < best_delta) { /* We have a new best! */ *index = i; *res_freq = tbl[i]; /* If the new best is exact then we're done */ if (new_delta == 0) return 0; /* Record how close we got */ best_delta = new_delta; } } if (exact) return -EINVAL; return 0; } EXPORT_SYMBOL_GPL(geni_se_clk_freq_match); #define GENI_SE_DMA_DONE_EN BIT(0) #define GENI_SE_DMA_EOT_EN BIT(1) #define GENI_SE_DMA_AHB_ERR_EN BIT(2) #define GENI_SE_DMA_EOT_BUF BIT(0) /** * geni_se_tx_init_dma() - Initiate TX DMA transfer on the serial engine * @se: Pointer to the concerned serial engine. * @iova: Mapped DMA address. * @len: Length of the TX buffer. * * This function is used to initiate DMA TX transfer. */ void geni_se_tx_init_dma(struct geni_se *se, dma_addr_t iova, size_t len) { u32 val; val = GENI_SE_DMA_DONE_EN; val |= GENI_SE_DMA_EOT_EN; val |= GENI_SE_DMA_AHB_ERR_EN; writel_relaxed(val, se->base + SE_DMA_TX_IRQ_EN_SET); writel_relaxed(lower_32_bits(iova), se->base + SE_DMA_TX_PTR_L); writel_relaxed(upper_32_bits(iova), se->base + SE_DMA_TX_PTR_H); writel_relaxed(GENI_SE_DMA_EOT_BUF, se->base + SE_DMA_TX_ATTR); writel(len, se->base + SE_DMA_TX_LEN); } EXPORT_SYMBOL_GPL(geni_se_tx_init_dma); /** * geni_se_tx_dma_prep() - Prepare the serial engine for TX DMA transfer * @se: Pointer to the concerned serial engine. * @buf: Pointer to the TX buffer. * @len: Length of the TX buffer. * @iova: Pointer to store the mapped DMA address. * * This function is used to prepare the buffers for DMA TX. * * Return: 0 on success, standard Linux error codes on failure. */ int geni_se_tx_dma_prep(struct geni_se *se, void *buf, size_t len, dma_addr_t *iova) { struct geni_wrapper *wrapper = se->wrapper; if (!wrapper) return -EINVAL; *iova = dma_map_single(wrapper->dev, buf, len, DMA_TO_DEVICE); if (dma_mapping_error(wrapper->dev, *iova)) return -EIO; geni_se_tx_init_dma(se, *iova, len); return 0; } EXPORT_SYMBOL_GPL(geni_se_tx_dma_prep); /** * geni_se_rx_init_dma() - Initiate RX DMA transfer on the serial engine * @se: Pointer to the concerned serial engine. * @iova: Mapped DMA address. * @len: Length of the RX buffer. * * This function is used to initiate DMA RX transfer. */ void geni_se_rx_init_dma(struct geni_se *se, dma_addr_t iova, size_t len) { u32 val; val = GENI_SE_DMA_DONE_EN; val |= GENI_SE_DMA_EOT_EN; val |= GENI_SE_DMA_AHB_ERR_EN; writel_relaxed(val, se->base + SE_DMA_RX_IRQ_EN_SET); writel_relaxed(lower_32_bits(iova), se->base + SE_DMA_RX_PTR_L); writel_relaxed(upper_32_bits(iova), se->base + SE_DMA_RX_PTR_H); /* RX does not have EOT buffer type bit. So just reset RX_ATTR */ writel_relaxed(0, se->base + SE_DMA_RX_ATTR); writel(len, se->base + SE_DMA_RX_LEN); } EXPORT_SYMBOL_GPL(geni_se_rx_init_dma); /** * geni_se_rx_dma_prep() - Prepare the serial engine for RX DMA transfer * @se: Pointer to the concerned serial engine. * @buf: Pointer to the RX buffer. * @len: Length of the RX buffer. * @iova: Pointer to store the mapped DMA address. * * This function is used to prepare the buffers for DMA RX. * * Return: 0 on success, standard Linux error codes on failure. */ int geni_se_rx_dma_prep(struct geni_se *se, void *buf, size_t len, dma_addr_t *iova) { struct geni_wrapper *wrapper = se->wrapper; if (!wrapper) return -EINVAL; *iova = dma_map_single(wrapper->dev, buf, len, DMA_FROM_DEVICE); if (dma_mapping_error(wrapper->dev, *iova)) return -EIO; geni_se_rx_init_dma(se, *iova, len); return 0; } EXPORT_SYMBOL_GPL(geni_se_rx_dma_prep); /** * geni_se_tx_dma_unprep() - Unprepare the serial engine after TX DMA transfer * @se: Pointer to the concerned serial engine. * @iova: DMA address of the TX buffer. * @len: Length of the TX buffer. * * This function is used to unprepare the DMA buffers after DMA TX. */ void geni_se_tx_dma_unprep(struct geni_se *se, dma_addr_t iova, size_t len) { struct geni_wrapper *wrapper = se->wrapper; if (!dma_mapping_error(wrapper->dev, iova)) dma_unmap_single(wrapper->dev, iova, len, DMA_TO_DEVICE); } EXPORT_SYMBOL_GPL(geni_se_tx_dma_unprep); /** * geni_se_rx_dma_unprep() - Unprepare the serial engine after RX DMA transfer * @se: Pointer to the concerned serial engine. * @iova: DMA address of the RX buffer. * @len: Length of the RX buffer. * * This function is used to unprepare the DMA buffers after DMA RX. */ void geni_se_rx_dma_unprep(struct geni_se *se, dma_addr_t iova, size_t len) { struct geni_wrapper *wrapper = se->wrapper; if (!dma_mapping_error(wrapper->dev, iova)) dma_unmap_single(wrapper->dev, iova, len, DMA_FROM_DEVICE); } EXPORT_SYMBOL_GPL(geni_se_rx_dma_unprep); int geni_icc_get(struct geni_se *se, const char *icc_ddr) { int i, err; const char *icc_names[] = {"qup-core", "qup-config", icc_ddr}; if (has_acpi_companion(se->dev)) return 0; for (i = 0; i < ARRAY_SIZE(se->icc_paths); i++) { if (!icc_names[i]) continue; se->icc_paths[i].path = devm_of_icc_get(se->dev, icc_names[i]); if (IS_ERR(se->icc_paths[i].path)) goto err; } return 0; err: err = PTR_ERR(se->icc_paths[i].path); if (err != -EPROBE_DEFER) dev_err_ratelimited(se->dev, "Failed to get ICC path '%s': %d\n", icc_names[i], err); return err; } EXPORT_SYMBOL_GPL(geni_icc_get); int geni_icc_set_bw(struct geni_se *se) { int i, ret; for (i = 0; i < ARRAY_SIZE(se->icc_paths); i++) { ret = icc_set_bw(se->icc_paths[i].path, se->icc_paths[i].avg_bw, se->icc_paths[i].avg_bw); if (ret) { dev_err_ratelimited(se->dev, "ICC BW voting failed on path '%s': %d\n", icc_path_names[i], ret); return ret; } } return 0; } EXPORT_SYMBOL_GPL(geni_icc_set_bw); void geni_icc_set_tag(struct geni_se *se, u32 tag) { int i; for (i = 0; i < ARRAY_SIZE(se->icc_paths); i++) icc_set_tag(se->icc_paths[i].path, tag); } EXPORT_SYMBOL_GPL(geni_icc_set_tag); /* To do: Replace this by icc_bulk_enable once it's implemented in ICC core */ int geni_icc_enable(struct geni_se *se) { int i, ret; for (i = 0; i < ARRAY_SIZE(se->icc_paths); i++) { ret = icc_enable(se->icc_paths[i].path); if (ret) { dev_err_ratelimited(se->dev, "ICC enable failed on path '%s': %d\n", icc_path_names[i], ret); return ret; } } return 0; } EXPORT_SYMBOL_GPL(geni_icc_enable); int geni_icc_disable(struct geni_se *se) { int i, ret; for (i = 0; i < ARRAY_SIZE(se->icc_paths); i++) { ret = icc_disable(se->icc_paths[i].path); if (ret) { dev_err_ratelimited(se->dev, "ICC disable failed on path '%s': %d\n", icc_path_names[i], ret); return ret; } } return 0; } EXPORT_SYMBOL_GPL(geni_icc_disable); static int geni_se_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct geni_wrapper *wrapper; int ret; wrapper = devm_kzalloc(dev, sizeof(*wrapper), GFP_KERNEL); if (!wrapper) return -ENOMEM; wrapper->dev = dev; wrapper->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(wrapper->base)) return PTR_ERR(wrapper->base); if (!has_acpi_companion(&pdev->dev)) { const struct geni_se_desc *desc; int i; desc = device_get_match_data(&pdev->dev); if (!desc) return -EINVAL; wrapper->num_clks = min_t(unsigned int, desc->num_clks, MAX_CLKS); for (i = 0; i < wrapper->num_clks; ++i) wrapper->clks[i].id = desc->clks[i]; ret = of_count_phandle_with_args(dev->of_node, "clocks", "#clock-cells"); if (ret < 0) { dev_err(dev, "invalid clocks property at %pOF\n", dev->of_node); return ret; } if (ret < wrapper->num_clks) { dev_err(dev, "invalid clocks count at %pOF, expected %d entries\n", dev->of_node, wrapper->num_clks); return -EINVAL; } ret = devm_clk_bulk_get(dev, wrapper->num_clks, wrapper->clks); if (ret) { dev_err(dev, "Err getting clks %d\n", ret); return ret; } } dev_set_drvdata(dev, wrapper); dev_dbg(dev, "GENI SE Driver probed\n"); return devm_of_platform_populate(dev); } static const char * const qup_clks[] = { "m-ahb", "s-ahb", }; static const struct geni_se_desc qup_desc = { .clks = qup_clks, .num_clks = ARRAY_SIZE(qup_clks), }; static const char * const i2c_master_hub_clks[] = { "s-ahb", }; static const struct geni_se_desc i2c_master_hub_desc = { .clks = i2c_master_hub_clks, .num_clks = ARRAY_SIZE(i2c_master_hub_clks), }; static const struct of_device_id geni_se_dt_match[] = { { .compatible = "qcom,geni-se-qup", .data = &qup_desc }, { .compatible = "qcom,geni-se-i2c-master-hub", .data = &i2c_master_hub_desc }, {} }; MODULE_DEVICE_TABLE(of, geni_se_dt_match); static struct platform_driver geni_se_driver = { .driver = { .name = "geni_se_qup", .of_match_table = geni_se_dt_match, }, .probe = geni_se_probe, }; module_platform_driver(geni_se_driver); MODULE_DESCRIPTION("GENI Serial Engine Driver"); MODULE_LICENSE("GPL v2");