// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) // Copyright(c) 2015-22 Intel Corporation. /* * Soundwire Intel Manager Driver */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "cadence_master.h" #include "bus.h" #include "intel.h" #include "intel_auxdevice.h" #define INTEL_MASTER_SUSPEND_DELAY_MS 3000 /* * debug/config flags for the Intel SoundWire Master. * * Since we may have multiple masters active, we can have up to 8 * flags reused in each byte, with master0 using the ls-byte, etc. */ #define SDW_INTEL_MASTER_DISABLE_PM_RUNTIME BIT(0) #define SDW_INTEL_MASTER_DISABLE_CLOCK_STOP BIT(1) #define SDW_INTEL_MASTER_DISABLE_PM_RUNTIME_IDLE BIT(2) #define SDW_INTEL_MASTER_DISABLE_MULTI_LINK BIT(3) static int md_flags; module_param_named(sdw_md_flags, md_flags, int, 0444); MODULE_PARM_DESC(sdw_md_flags, "SoundWire Intel Master device flags (0x0 all off)"); static int mclk_divider; module_param_named(sdw_mclk_divider, mclk_divider, int, 0444); MODULE_PARM_DESC(sdw_mclk_divider, "SoundWire Intel mclk divider"); struct wake_capable_part { const u16 mfg_id; const u16 part_id; }; static struct wake_capable_part wake_capable_list[] = { {0x01fa, 0x4243}, {0x025d, 0x5682}, {0x025d, 0x700}, {0x025d, 0x711}, {0x025d, 0x1712}, {0x025d, 0x1713}, {0x025d, 0x1716}, {0x025d, 0x1717}, {0x025d, 0x712}, {0x025d, 0x713}, {0x025d, 0x714}, {0x025d, 0x715}, {0x025d, 0x716}, {0x025d, 0x717}, {0x025d, 0x722}, }; static bool is_wake_capable(struct sdw_slave *slave) { int i; for (i = 0; i < ARRAY_SIZE(wake_capable_list); i++) if (slave->id.part_id == wake_capable_list[i].part_id && slave->id.mfg_id == wake_capable_list[i].mfg_id) return true; return false; } static int generic_pre_bank_switch(struct sdw_bus *bus) { struct sdw_cdns *cdns = bus_to_cdns(bus); struct sdw_intel *sdw = cdns_to_intel(cdns); return sdw->link_res->hw_ops->pre_bank_switch(sdw); } static int generic_post_bank_switch(struct sdw_bus *bus) { struct sdw_cdns *cdns = bus_to_cdns(bus); struct sdw_intel *sdw = cdns_to_intel(cdns); return sdw->link_res->hw_ops->post_bank_switch(sdw); } static void generic_new_peripheral_assigned(struct sdw_bus *bus, struct sdw_slave *slave, int dev_num) { struct sdw_cdns *cdns = bus_to_cdns(bus); struct sdw_intel *sdw = cdns_to_intel(cdns); int dev_num_min; int dev_num_max; bool wake_capable = slave->prop.wake_capable || is_wake_capable(slave); if (wake_capable) { dev_num_min = SDW_INTEL_DEV_NUM_IDA_MIN; dev_num_max = SDW_MAX_DEVICES; } else { dev_num_min = 1; dev_num_max = SDW_INTEL_DEV_NUM_IDA_MIN - 1; } /* paranoia check, this should never happen */ if (dev_num < dev_num_min || dev_num > dev_num_max) { dev_err(bus->dev, "%s: invalid dev_num %d, wake supported %d\n", __func__, dev_num, slave->prop.wake_capable); return; } if (sdw->link_res->hw_ops->program_sdi && wake_capable) sdw->link_res->hw_ops->program_sdi(sdw, dev_num); } static int sdw_master_read_intel_prop(struct sdw_bus *bus) { struct sdw_master_prop *prop = &bus->prop; struct sdw_intel_prop *intel_prop; struct fwnode_handle *link; char name[32]; u32 quirk_mask; /* Find master handle */ snprintf(name, sizeof(name), "mipi-sdw-link-%d-subproperties", bus->link_id); link = device_get_named_child_node(bus->dev, name); if (!link) { dev_err(bus->dev, "Master node %s not found\n", name); return -EIO; } fwnode_property_read_u32(link, "intel-sdw-ip-clock", &prop->mclk_freq); if (mclk_divider) /* use kernel parameter for BIOS or board work-arounds */ prop->mclk_freq /= mclk_divider; else /* the values reported by BIOS are the 2x clock, not the bus clock */ prop->mclk_freq /= 2; fwnode_property_read_u32(link, "intel-quirk-mask", &quirk_mask); if (quirk_mask & SDW_INTEL_QUIRK_MASK_BUS_DISABLE) prop->hw_disabled = true; prop->quirks = SDW_MASTER_QUIRKS_CLEAR_INITIAL_CLASH | SDW_MASTER_QUIRKS_CLEAR_INITIAL_PARITY; intel_prop = devm_kzalloc(bus->dev, sizeof(*intel_prop), GFP_KERNEL); if (!intel_prop) { fwnode_handle_put(link); return -ENOMEM; } /* initialize with hardware defaults, in case the properties are not found */ intel_prop->clde = 0x0; intel_prop->doaise2 = 0x0; intel_prop->dodse2 = 0x0; intel_prop->clds = 0x0; intel_prop->clss = 0x0; intel_prop->doaise = 0x1; intel_prop->doais = 0x3; intel_prop->dodse = 0x0; intel_prop->dods = 0x1; fwnode_property_read_u16(link, "intel-sdw-clde", &intel_prop->clde); fwnode_property_read_u16(link, "intel-sdw-doaise2", &intel_prop->doaise2); fwnode_property_read_u16(link, "intel-sdw-dodse2", &intel_prop->dodse2); fwnode_property_read_u16(link, "intel-sdw-clds", &intel_prop->clds); fwnode_property_read_u16(link, "intel-sdw-clss", &intel_prop->clss); fwnode_property_read_u16(link, "intel-sdw-doaise", &intel_prop->doaise); fwnode_property_read_u16(link, "intel-sdw-doais", &intel_prop->doais); fwnode_property_read_u16(link, "intel-sdw-dodse", &intel_prop->dodse); fwnode_property_read_u16(link, "intel-sdw-dods", &intel_prop->dods); bus->vendor_specific_prop = intel_prop; dev_dbg(bus->dev, "doaise %#x doais %#x dodse %#x dods %#x\n", intel_prop->doaise, intel_prop->doais, intel_prop->dodse, intel_prop->dods); fwnode_handle_put(link); return 0; } static int intel_prop_read(struct sdw_bus *bus) { struct sdw_master_prop *prop; /* Initialize with default handler to read all DisCo properties */ sdw_master_read_prop(bus); /* * Only one bus frequency is supported so far, filter * frequencies reported in the DSDT */ prop = &bus->prop; if (prop->clk_freq && prop->num_clk_freq > 1) { unsigned int default_bus_frequency; default_bus_frequency = prop->default_frame_rate * prop->default_row * prop->default_col / SDW_DOUBLE_RATE_FACTOR; prop->num_clk_freq = 1; prop->clk_freq[0] = default_bus_frequency; prop->max_clk_freq = default_bus_frequency; } /* read Intel-specific properties */ sdw_master_read_intel_prop(bus); return 0; } static DEFINE_IDA(intel_peripheral_ida); static int intel_get_device_num_ida(struct sdw_bus *bus, struct sdw_slave *slave) { int bit; if (slave->prop.wake_capable || is_wake_capable(slave)) return ida_alloc_range(&intel_peripheral_ida, SDW_INTEL_DEV_NUM_IDA_MIN, SDW_MAX_DEVICES, GFP_KERNEL); bit = find_first_zero_bit(slave->bus->assigned, SDW_MAX_DEVICES); if (bit == SDW_MAX_DEVICES) return -ENODEV; return bit; } static void intel_put_device_num_ida(struct sdw_bus *bus, struct sdw_slave *slave) { if (slave->prop.wake_capable || is_wake_capable(slave)) ida_free(&intel_peripheral_ida, slave->dev_num); } static struct sdw_master_ops sdw_intel_ops = { .read_prop = intel_prop_read, .override_adr = sdw_dmi_override_adr, .xfer_msg = cdns_xfer_msg, .xfer_msg_defer = cdns_xfer_msg_defer, .set_bus_conf = cdns_bus_conf, .pre_bank_switch = generic_pre_bank_switch, .post_bank_switch = generic_post_bank_switch, .read_ping_status = cdns_read_ping_status, .get_device_num = intel_get_device_num_ida, .put_device_num = intel_put_device_num_ida, .new_peripheral_assigned = generic_new_peripheral_assigned, }; /* * probe and init (aux_dev_id argument is required by function prototype but not used) */ static int intel_link_probe(struct auxiliary_device *auxdev, const struct auxiliary_device_id *aux_dev_id) { struct device *dev = &auxdev->dev; struct sdw_intel_link_dev *ldev = auxiliary_dev_to_sdw_intel_link_dev(auxdev); struct sdw_intel *sdw; struct sdw_cdns *cdns; struct sdw_bus *bus; int ret; sdw = devm_kzalloc(dev, sizeof(*sdw), GFP_KERNEL); if (!sdw) return -ENOMEM; cdns = &sdw->cdns; bus = &cdns->bus; sdw->instance = auxdev->id; sdw->link_res = &ldev->link_res; cdns->dev = dev; cdns->registers = sdw->link_res->registers; cdns->ip_offset = sdw->link_res->ip_offset; cdns->instance = sdw->instance; cdns->msg_count = 0; /* single controller for all SoundWire links */ bus->controller_id = 0; bus->link_id = auxdev->id; bus->clk_stop_timeout = 1; /* * paranoia check: make sure ACPI-reported number of links is aligned with * hardware capabilities. */ ret = sdw_intel_get_link_count(sdw); if (ret < 0) { dev_err(dev, "%s: sdw_intel_get_link_count failed: %d\n", __func__, ret); return ret; } if (ret <= sdw->instance) { dev_err(dev, "%s: invalid link id %d, link count %d\n", __func__, auxdev->id, ret); return -EINVAL; } sdw_cdns_probe(cdns); /* Set ops */ bus->ops = &sdw_intel_ops; /* set driver data, accessed by snd_soc_dai_get_drvdata() */ auxiliary_set_drvdata(auxdev, cdns); /* use generic bandwidth allocation algorithm */ sdw->cdns.bus.compute_params = sdw_compute_params; /* avoid resuming from pm_runtime suspend if it's not required */ dev_pm_set_driver_flags(dev, DPM_FLAG_SMART_SUSPEND); ret = sdw_bus_master_add(bus, dev, dev->fwnode); if (ret) { dev_err(dev, "sdw_bus_master_add fail: %d\n", ret); return ret; } if (bus->prop.hw_disabled) dev_info(dev, "SoundWire master %d is disabled, will be ignored\n", bus->link_id); /* * Ignore BIOS err_threshold, it's a really bad idea when dealing * with multiple hardware synchronized links */ bus->prop.err_threshold = 0; return 0; } int intel_link_startup(struct auxiliary_device *auxdev) { struct device *dev = &auxdev->dev; struct sdw_cdns *cdns = auxiliary_get_drvdata(auxdev); struct sdw_intel *sdw = cdns_to_intel(cdns); struct sdw_bus *bus = &cdns->bus; int link_flags; bool multi_link; u32 clock_stop_quirks; int ret; if (bus->prop.hw_disabled) { dev_info(dev, "SoundWire master %d is disabled, ignoring\n", sdw->instance); return 0; } link_flags = md_flags >> (bus->link_id * 8); multi_link = !(link_flags & SDW_INTEL_MASTER_DISABLE_MULTI_LINK); if (!multi_link) { dev_dbg(dev, "Multi-link is disabled\n"); } else { /* * hardware-based synchronization is required regardless * of the number of segments used by a stream: SSP-based * synchronization is gated by gsync when the multi-master * mode is set. */ bus->hw_sync_min_links = 1; } bus->multi_link = multi_link; /* Initialize shim, controller */ ret = sdw_intel_link_power_up(sdw); if (ret) goto err_init; /* Register DAIs */ ret = sdw_intel_register_dai(sdw); if (ret) { dev_err(dev, "DAI registration failed: %d\n", ret); goto err_power_up; } sdw_intel_debugfs_init(sdw); /* Enable runtime PM */ if (!(link_flags & SDW_INTEL_MASTER_DISABLE_PM_RUNTIME)) { pm_runtime_set_autosuspend_delay(dev, INTEL_MASTER_SUSPEND_DELAY_MS); pm_runtime_use_autosuspend(dev); pm_runtime_mark_last_busy(dev); pm_runtime_set_active(dev); pm_runtime_enable(dev); pm_runtime_resume(bus->dev); } /* start bus */ ret = sdw_intel_start_bus(sdw); if (ret) { dev_err(dev, "bus start failed: %d\n", ret); goto err_pm_runtime; } clock_stop_quirks = sdw->link_res->clock_stop_quirks; if (clock_stop_quirks & SDW_INTEL_CLK_STOP_NOT_ALLOWED) { /* * To keep the clock running we need to prevent * pm_runtime suspend from happening by increasing the * reference count. * This quirk is specified by the parent PCI device in * case of specific latency requirements. It will have * no effect if pm_runtime is disabled by the user via * a module parameter for testing purposes. */ pm_runtime_get_noresume(dev); } /* * The runtime PM status of Slave devices is "Unsupported" * until they report as ATTACHED. If they don't, e.g. because * there are no Slave devices populated or if the power-on is * delayed or dependent on a power switch, the Master will * remain active and prevent its parent from suspending. * * Conditionally force the pm_runtime core to re-evaluate the * Master status in the absence of any Slave activity. A quirk * is provided to e.g. deal with Slaves that may be powered on * with a delay. A more complete solution would require the * definition of Master properties. */ if (!(link_flags & SDW_INTEL_MASTER_DISABLE_PM_RUNTIME_IDLE)) { pm_runtime_mark_last_busy(bus->dev); pm_runtime_mark_last_busy(dev); pm_runtime_idle(dev); } sdw->startup_done = true; return 0; err_pm_runtime: if (!(link_flags & SDW_INTEL_MASTER_DISABLE_PM_RUNTIME)) pm_runtime_disable(dev); err_power_up: sdw_intel_link_power_down(sdw); err_init: return ret; } static void intel_link_remove(struct auxiliary_device *auxdev) { struct sdw_cdns *cdns = auxiliary_get_drvdata(auxdev); struct sdw_intel *sdw = cdns_to_intel(cdns); struct sdw_bus *bus = &cdns->bus; /* * Since pm_runtime is already disabled, we don't decrease * the refcount when the clock_stop_quirk is * SDW_INTEL_CLK_STOP_NOT_ALLOWED */ if (!bus->prop.hw_disabled) { sdw_intel_debugfs_exit(sdw); cancel_delayed_work_sync(&cdns->attach_dwork); sdw_cdns_enable_interrupt(cdns, false); } sdw_bus_master_delete(bus); } int intel_link_process_wakeen_event(struct auxiliary_device *auxdev) { struct device *dev = &auxdev->dev; struct sdw_intel *sdw; struct sdw_bus *bus; sdw = auxiliary_get_drvdata(auxdev); bus = &sdw->cdns.bus; if (bus->prop.hw_disabled || !sdw->startup_done) { dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n", bus->link_id); return 0; } if (!sdw_intel_shim_check_wake(sdw)) return 0; /* disable WAKEEN interrupt ASAP to prevent interrupt flood */ sdw_intel_shim_wake(sdw, false); /* * resume the Master, which will generate a bus reset and result in * Slaves re-attaching and be re-enumerated. The SoundWire physical * device which generated the wake will trigger an interrupt, which * will in turn cause the corresponding Linux Slave device to be * resumed and the Slave codec driver to check the status. */ pm_request_resume(dev); return 0; } /* * PM calls */ int intel_resume_child_device(struct device *dev, void *data) { int ret; struct sdw_slave *slave = dev_to_sdw_dev(dev); if (!slave->probed) { dev_dbg(dev, "skipping device, no probed driver\n"); return 0; } if (!slave->dev_num_sticky) { dev_dbg(dev, "skipping device, never detected on bus\n"); return 0; } ret = pm_runtime_resume(dev); if (ret < 0) { dev_err(dev, "%s: pm_runtime_resume failed: %d\n", __func__, ret); return ret; } return 0; } static int __maybe_unused intel_pm_prepare(struct device *dev) { struct sdw_cdns *cdns = dev_get_drvdata(dev); struct sdw_intel *sdw = cdns_to_intel(cdns); struct sdw_bus *bus = &cdns->bus; u32 clock_stop_quirks; int ret; if (bus->prop.hw_disabled || !sdw->startup_done) { dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n", bus->link_id); return 0; } clock_stop_quirks = sdw->link_res->clock_stop_quirks; if (pm_runtime_suspended(dev) && pm_runtime_suspended(dev->parent) && ((clock_stop_quirks & SDW_INTEL_CLK_STOP_BUS_RESET) || !clock_stop_quirks)) { /* * if we've enabled clock stop, and the parent is suspended, the SHIM registers * are not accessible and the shim wake cannot be disabled. * The only solution is to resume the entire bus to full power */ /* * If any operation in this block fails, we keep going since we don't want * to prevent system suspend from happening and errors should be recoverable * on resume. */ /* * first resume the device for this link. This will also by construction * resume the PCI parent device. */ ret = pm_runtime_resume(dev); if (ret < 0) { dev_err(dev, "%s: pm_runtime_resume failed: %d\n", __func__, ret); return 0; } /* * Continue resuming the entire bus (parent + child devices) to exit * the clock stop mode. If there are no devices connected on this link * this is a no-op. * The resume to full power could have been implemented with a .prepare * step in SoundWire codec drivers. This would however require a lot * of code to handle an Intel-specific corner case. It is simpler in * practice to add a loop at the link level. */ ret = device_for_each_child(bus->dev, NULL, intel_resume_child_device); if (ret < 0) dev_err(dev, "%s: intel_resume_child_device failed: %d\n", __func__, ret); } return 0; } static int __maybe_unused intel_suspend(struct device *dev) { struct sdw_cdns *cdns = dev_get_drvdata(dev); struct sdw_intel *sdw = cdns_to_intel(cdns); struct sdw_bus *bus = &cdns->bus; u32 clock_stop_quirks; int ret; if (bus->prop.hw_disabled || !sdw->startup_done) { dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n", bus->link_id); return 0; } if (pm_runtime_suspended(dev)) { dev_dbg(dev, "pm_runtime status: suspended\n"); clock_stop_quirks = sdw->link_res->clock_stop_quirks; if ((clock_stop_quirks & SDW_INTEL_CLK_STOP_BUS_RESET) || !clock_stop_quirks) { if (pm_runtime_suspended(dev->parent)) { /* * paranoia check: this should not happen with the .prepare * resume to full power */ dev_err(dev, "%s: invalid config: parent is suspended\n", __func__); } else { sdw_intel_shim_wake(sdw, false); } } return 0; } ret = sdw_intel_stop_bus(sdw, false); if (ret < 0) { dev_err(dev, "%s: cannot stop bus: %d\n", __func__, ret); return ret; } return 0; } static int __maybe_unused intel_suspend_runtime(struct device *dev) { struct sdw_cdns *cdns = dev_get_drvdata(dev); struct sdw_intel *sdw = cdns_to_intel(cdns); struct sdw_bus *bus = &cdns->bus; u32 clock_stop_quirks; int ret; if (bus->prop.hw_disabled || !sdw->startup_done) { dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n", bus->link_id); return 0; } clock_stop_quirks = sdw->link_res->clock_stop_quirks; if (clock_stop_quirks & SDW_INTEL_CLK_STOP_TEARDOWN) { ret = sdw_intel_stop_bus(sdw, false); if (ret < 0) { dev_err(dev, "%s: cannot stop bus during teardown: %d\n", __func__, ret); return ret; } } else if (clock_stop_quirks & SDW_INTEL_CLK_STOP_BUS_RESET || !clock_stop_quirks) { ret = sdw_intel_stop_bus(sdw, true); if (ret < 0) { dev_err(dev, "%s: cannot stop bus during clock_stop: %d\n", __func__, ret); return ret; } } else { dev_err(dev, "%s clock_stop_quirks %x unsupported\n", __func__, clock_stop_quirks); ret = -EINVAL; } return ret; } static int __maybe_unused intel_resume(struct device *dev) { struct sdw_cdns *cdns = dev_get_drvdata(dev); struct sdw_intel *sdw = cdns_to_intel(cdns); struct sdw_bus *bus = &cdns->bus; int link_flags; int ret; if (bus->prop.hw_disabled || !sdw->startup_done) { dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n", bus->link_id); return 0; } if (pm_runtime_suspended(dev)) { dev_dbg(dev, "pm_runtime status was suspended, forcing active\n"); /* follow required sequence from runtime_pm.rst */ pm_runtime_disable(dev); pm_runtime_set_active(dev); pm_runtime_mark_last_busy(dev); pm_runtime_enable(dev); pm_runtime_resume(bus->dev); link_flags = md_flags >> (bus->link_id * 8); if (!(link_flags & SDW_INTEL_MASTER_DISABLE_PM_RUNTIME_IDLE)) pm_runtime_idle(dev); } ret = sdw_intel_link_power_up(sdw); if (ret) { dev_err(dev, "%s failed: %d\n", __func__, ret); return ret; } /* * make sure all Slaves are tagged as UNATTACHED and provide * reason for reinitialization */ sdw_clear_slave_status(bus, SDW_UNATTACH_REQUEST_MASTER_RESET); ret = sdw_intel_start_bus(sdw); if (ret < 0) { dev_err(dev, "cannot start bus during resume\n"); sdw_intel_link_power_down(sdw); return ret; } /* * after system resume, the pm_runtime suspend() may kick in * during the enumeration, before any children device force the * master device to remain active. Using pm_runtime_get() * routines is not really possible, since it'd prevent the * master from suspending. * A reasonable compromise is to update the pm_runtime * counters and delay the pm_runtime suspend by several * seconds, by when all enumeration should be complete. */ pm_runtime_mark_last_busy(bus->dev); pm_runtime_mark_last_busy(dev); return 0; } static int __maybe_unused intel_resume_runtime(struct device *dev) { struct sdw_cdns *cdns = dev_get_drvdata(dev); struct sdw_intel *sdw = cdns_to_intel(cdns); struct sdw_bus *bus = &cdns->bus; u32 clock_stop_quirks; int ret; if (bus->prop.hw_disabled || !sdw->startup_done) { dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n", bus->link_id); return 0; } /* unconditionally disable WAKEEN interrupt */ sdw_intel_shim_wake(sdw, false); clock_stop_quirks = sdw->link_res->clock_stop_quirks; if (clock_stop_quirks & SDW_INTEL_CLK_STOP_TEARDOWN) { ret = sdw_intel_link_power_up(sdw); if (ret) { dev_err(dev, "%s: power_up failed after teardown: %d\n", __func__, ret); return ret; } /* * make sure all Slaves are tagged as UNATTACHED and provide * reason for reinitialization */ sdw_clear_slave_status(bus, SDW_UNATTACH_REQUEST_MASTER_RESET); ret = sdw_intel_start_bus(sdw); if (ret < 0) { dev_err(dev, "%s: cannot start bus after teardown: %d\n", __func__, ret); sdw_intel_link_power_down(sdw); return ret; } } else if (clock_stop_quirks & SDW_INTEL_CLK_STOP_BUS_RESET) { ret = sdw_intel_link_power_up(sdw); if (ret) { dev_err(dev, "%s: power_up failed after bus reset: %d\n", __func__, ret); return ret; } ret = sdw_intel_start_bus_after_reset(sdw); if (ret < 0) { dev_err(dev, "%s: cannot start bus after reset: %d\n", __func__, ret); sdw_intel_link_power_down(sdw); return ret; } } else if (!clock_stop_quirks) { sdw_intel_check_clock_stop(sdw); ret = sdw_intel_link_power_up(sdw); if (ret) { dev_err(dev, "%s: power_up failed: %d\n", __func__, ret); return ret; } ret = sdw_intel_start_bus_after_clock_stop(sdw); if (ret < 0) { dev_err(dev, "%s: cannot start bus after clock stop: %d\n", __func__, ret); sdw_intel_link_power_down(sdw); return ret; } } else { dev_err(dev, "%s: clock_stop_quirks %x unsupported\n", __func__, clock_stop_quirks); ret = -EINVAL; } return ret; } static const struct dev_pm_ops intel_pm = { .prepare = intel_pm_prepare, SET_SYSTEM_SLEEP_PM_OPS(intel_suspend, intel_resume) SET_RUNTIME_PM_OPS(intel_suspend_runtime, intel_resume_runtime, NULL) }; static const struct auxiliary_device_id intel_link_id_table[] = { { .name = "soundwire_intel.link" }, {}, }; MODULE_DEVICE_TABLE(auxiliary, intel_link_id_table); static struct auxiliary_driver sdw_intel_drv = { .probe = intel_link_probe, .remove = intel_link_remove, .driver = { /* auxiliary_driver_register() sets .name to be the modname */ .pm = &intel_pm, }, .id_table = intel_link_id_table }; module_auxiliary_driver(sdw_intel_drv); MODULE_LICENSE("Dual BSD/GPL"); MODULE_DESCRIPTION("Intel Soundwire Link Driver");