// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. */ #include #include #include #include #include #include #include #include "gfs2.h" #include "incore.h" #include "bmap.h" #include "glock.h" #include "glops.h" #include "inode.h" #include "log.h" #include "meta_io.h" #include "recovery.h" #include "rgrp.h" #include "util.h" #include "trans.h" #include "dir.h" #include "lops.h" struct workqueue_struct *gfs2_freeze_wq; extern struct workqueue_struct *gfs2_control_wq; static void gfs2_ail_error(struct gfs2_glock *gl, const struct buffer_head *bh) { struct gfs2_sbd *sdp = gl->gl_name.ln_sbd; fs_err(sdp, "AIL buffer %p: blocknr %llu state 0x%08lx mapping %p page " "state 0x%lx\n", bh, (unsigned long long)bh->b_blocknr, bh->b_state, bh->b_folio->mapping, bh->b_folio->flags); fs_err(sdp, "AIL glock %u:%llu mapping %p\n", gl->gl_name.ln_type, gl->gl_name.ln_number, gfs2_glock2aspace(gl)); gfs2_lm(sdp, "AIL error\n"); gfs2_withdraw_delayed(sdp); } /** * __gfs2_ail_flush - remove all buffers for a given lock from the AIL * @gl: the glock * @fsync: set when called from fsync (not all buffers will be clean) * @nr_revokes: Number of buffers to revoke * * None of the buffers should be dirty, locked, or pinned. */ static void __gfs2_ail_flush(struct gfs2_glock *gl, bool fsync, unsigned int nr_revokes) { struct gfs2_sbd *sdp = gl->gl_name.ln_sbd; struct list_head *head = &gl->gl_ail_list; struct gfs2_bufdata *bd, *tmp; struct buffer_head *bh; const unsigned long b_state = (1UL << BH_Dirty)|(1UL << BH_Pinned)|(1UL << BH_Lock); gfs2_log_lock(sdp); spin_lock(&sdp->sd_ail_lock); list_for_each_entry_safe_reverse(bd, tmp, head, bd_ail_gl_list) { if (nr_revokes == 0) break; bh = bd->bd_bh; if (bh->b_state & b_state) { if (fsync) continue; gfs2_ail_error(gl, bh); } gfs2_trans_add_revoke(sdp, bd); nr_revokes--; } GLOCK_BUG_ON(gl, !fsync && atomic_read(&gl->gl_ail_count)); spin_unlock(&sdp->sd_ail_lock); gfs2_log_unlock(sdp); if (gfs2_withdrawing(sdp)) gfs2_withdraw(sdp); } static int gfs2_ail_empty_gl(struct gfs2_glock *gl) { struct gfs2_sbd *sdp = gl->gl_name.ln_sbd; struct gfs2_trans tr; unsigned int revokes; int ret = 0; revokes = atomic_read(&gl->gl_ail_count); if (!revokes) { bool have_revokes; bool log_in_flight; /* * We have nothing on the ail, but there could be revokes on * the sdp revoke queue, in which case, we still want to flush * the log and wait for it to finish. * * If the sdp revoke list is empty too, we might still have an * io outstanding for writing revokes, so we should wait for * it before returning. * * If none of these conditions are true, our revokes are all * flushed and we can return. */ gfs2_log_lock(sdp); have_revokes = !list_empty(&sdp->sd_log_revokes); log_in_flight = atomic_read(&sdp->sd_log_in_flight); gfs2_log_unlock(sdp); if (have_revokes) goto flush; if (log_in_flight) log_flush_wait(sdp); return 0; } memset(&tr, 0, sizeof(tr)); set_bit(TR_ONSTACK, &tr.tr_flags); ret = __gfs2_trans_begin(&tr, sdp, 0, revokes, _RET_IP_); if (ret) { fs_err(sdp, "Transaction error %d: Unable to write revokes.", ret); goto flush; } __gfs2_ail_flush(gl, 0, revokes); gfs2_trans_end(sdp); flush: if (!ret) gfs2_log_flush(sdp, NULL, GFS2_LOG_HEAD_FLUSH_NORMAL | GFS2_LFC_AIL_EMPTY_GL); return ret; } void gfs2_ail_flush(struct gfs2_glock *gl, bool fsync) { struct gfs2_sbd *sdp = gl->gl_name.ln_sbd; unsigned int revokes = atomic_read(&gl->gl_ail_count); int ret; if (!revokes) return; ret = gfs2_trans_begin(sdp, 0, revokes); if (ret) return; __gfs2_ail_flush(gl, fsync, revokes); gfs2_trans_end(sdp); gfs2_log_flush(sdp, NULL, GFS2_LOG_HEAD_FLUSH_NORMAL | GFS2_LFC_AIL_FLUSH); } /** * gfs2_rgrp_metasync - sync out the metadata of a resource group * @gl: the glock protecting the resource group * */ static int gfs2_rgrp_metasync(struct gfs2_glock *gl) { struct gfs2_sbd *sdp = gl->gl_name.ln_sbd; struct address_space *metamapping = &sdp->sd_aspace; struct gfs2_rgrpd *rgd = gfs2_glock2rgrp(gl); const unsigned bsize = sdp->sd_sb.sb_bsize; loff_t start = (rgd->rd_addr * bsize) & PAGE_MASK; loff_t end = PAGE_ALIGN((rgd->rd_addr + rgd->rd_length) * bsize) - 1; int error; filemap_fdatawrite_range(metamapping, start, end); error = filemap_fdatawait_range(metamapping, start, end); WARN_ON_ONCE(error && !gfs2_withdrawing_or_withdrawn(sdp)); mapping_set_error(metamapping, error); if (error) gfs2_io_error(sdp); return error; } /** * rgrp_go_sync - sync out the metadata for this glock * @gl: the glock * * Called when demoting or unlocking an EX glock. We must flush * to disk all dirty buffers/pages relating to this glock, and must not * return to caller to demote/unlock the glock until I/O is complete. */ static int rgrp_go_sync(struct gfs2_glock *gl) { struct gfs2_sbd *sdp = gl->gl_name.ln_sbd; struct gfs2_rgrpd *rgd = gfs2_glock2rgrp(gl); int error; if (!rgd || !test_and_clear_bit(GLF_DIRTY, &gl->gl_flags)) return 0; GLOCK_BUG_ON(gl, gl->gl_state != LM_ST_EXCLUSIVE); gfs2_log_flush(sdp, gl, GFS2_LOG_HEAD_FLUSH_NORMAL | GFS2_LFC_RGRP_GO_SYNC); error = gfs2_rgrp_metasync(gl); if (!error) error = gfs2_ail_empty_gl(gl); gfs2_free_clones(rgd); return error; } /** * rgrp_go_inval - invalidate the metadata for this glock * @gl: the glock * @flags: * * We never used LM_ST_DEFERRED with resource groups, so that we * should always see the metadata flag set here. * */ static void rgrp_go_inval(struct gfs2_glock *gl, int flags) { struct gfs2_sbd *sdp = gl->gl_name.ln_sbd; struct address_space *mapping = &sdp->sd_aspace; struct gfs2_rgrpd *rgd = gfs2_glock2rgrp(gl); const unsigned bsize = sdp->sd_sb.sb_bsize; loff_t start, end; if (!rgd) return; start = (rgd->rd_addr * bsize) & PAGE_MASK; end = PAGE_ALIGN((rgd->rd_addr + rgd->rd_length) * bsize) - 1; gfs2_rgrp_brelse(rgd); WARN_ON_ONCE(!(flags & DIO_METADATA)); truncate_inode_pages_range(mapping, start, end); } static void gfs2_rgrp_go_dump(struct seq_file *seq, const struct gfs2_glock *gl, const char *fs_id_buf) { struct gfs2_rgrpd *rgd = gl->gl_object; if (rgd) gfs2_rgrp_dump(seq, rgd, fs_id_buf); } static struct gfs2_inode *gfs2_glock2inode(struct gfs2_glock *gl) { struct gfs2_inode *ip; spin_lock(&gl->gl_lockref.lock); ip = gl->gl_object; if (ip) set_bit(GIF_GLOP_PENDING, &ip->i_flags); spin_unlock(&gl->gl_lockref.lock); return ip; } struct gfs2_rgrpd *gfs2_glock2rgrp(struct gfs2_glock *gl) { struct gfs2_rgrpd *rgd; spin_lock(&gl->gl_lockref.lock); rgd = gl->gl_object; spin_unlock(&gl->gl_lockref.lock); return rgd; } static void gfs2_clear_glop_pending(struct gfs2_inode *ip) { if (!ip) return; clear_bit_unlock(GIF_GLOP_PENDING, &ip->i_flags); wake_up_bit(&ip->i_flags, GIF_GLOP_PENDING); } /** * gfs2_inode_metasync - sync out the metadata of an inode * @gl: the glock protecting the inode * */ int gfs2_inode_metasync(struct gfs2_glock *gl) { struct address_space *metamapping = gfs2_glock2aspace(gl); int error; filemap_fdatawrite(metamapping); error = filemap_fdatawait(metamapping); if (error) gfs2_io_error(gl->gl_name.ln_sbd); return error; } /** * inode_go_sync - Sync the dirty metadata of an inode * @gl: the glock protecting the inode * */ static int inode_go_sync(struct gfs2_glock *gl) { struct gfs2_inode *ip = gfs2_glock2inode(gl); int isreg = ip && S_ISREG(ip->i_inode.i_mode); struct address_space *metamapping = gfs2_glock2aspace(gl); int error = 0, ret; if (isreg) { if (test_and_clear_bit(GIF_SW_PAGED, &ip->i_flags)) unmap_shared_mapping_range(ip->i_inode.i_mapping, 0, 0); inode_dio_wait(&ip->i_inode); } if (!test_and_clear_bit(GLF_DIRTY, &gl->gl_flags)) goto out; GLOCK_BUG_ON(gl, gl->gl_state != LM_ST_EXCLUSIVE); gfs2_log_flush(gl->gl_name.ln_sbd, gl, GFS2_LOG_HEAD_FLUSH_NORMAL | GFS2_LFC_INODE_GO_SYNC); filemap_fdatawrite(metamapping); if (isreg) { struct address_space *mapping = ip->i_inode.i_mapping; filemap_fdatawrite(mapping); error = filemap_fdatawait(mapping); mapping_set_error(mapping, error); } ret = gfs2_inode_metasync(gl); if (!error) error = ret; ret = gfs2_ail_empty_gl(gl); if (!error) error = ret; /* * Writeback of the data mapping may cause the dirty flag to be set * so we have to clear it again here. */ smp_mb__before_atomic(); clear_bit(GLF_DIRTY, &gl->gl_flags); out: gfs2_clear_glop_pending(ip); return error; } /** * inode_go_inval - prepare a inode glock to be released * @gl: the glock * @flags: * * Normally we invalidate everything, but if we are moving into * LM_ST_DEFERRED from LM_ST_SHARED or LM_ST_EXCLUSIVE then we * can keep hold of the metadata, since it won't have changed. * */ static void inode_go_inval(struct gfs2_glock *gl, int flags) { struct gfs2_inode *ip = gfs2_glock2inode(gl); if (flags & DIO_METADATA) { struct address_space *mapping = gfs2_glock2aspace(gl); truncate_inode_pages(mapping, 0); if (ip) { set_bit(GLF_INSTANTIATE_NEEDED, &gl->gl_flags); forget_all_cached_acls(&ip->i_inode); security_inode_invalidate_secctx(&ip->i_inode); gfs2_dir_hash_inval(ip); } } if (ip == GFS2_I(gl->gl_name.ln_sbd->sd_rindex)) { gfs2_log_flush(gl->gl_name.ln_sbd, NULL, GFS2_LOG_HEAD_FLUSH_NORMAL | GFS2_LFC_INODE_GO_INVAL); gl->gl_name.ln_sbd->sd_rindex_uptodate = 0; } if (ip && S_ISREG(ip->i_inode.i_mode)) truncate_inode_pages(ip->i_inode.i_mapping, 0); gfs2_clear_glop_pending(ip); } static int gfs2_dinode_in(struct gfs2_inode *ip, const void *buf) { struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); const struct gfs2_dinode *str = buf; struct timespec64 atime, iatime; u16 height, depth; umode_t mode = be32_to_cpu(str->di_mode); struct inode *inode = &ip->i_inode; bool is_new = inode->i_state & I_NEW; if (unlikely(ip->i_no_addr != be64_to_cpu(str->di_num.no_addr))) { gfs2_consist_inode(ip); return -EIO; } if (unlikely(!is_new && inode_wrong_type(inode, mode))) { gfs2_consist_inode(ip); return -EIO; } ip->i_no_formal_ino = be64_to_cpu(str->di_num.no_formal_ino); inode->i_mode = mode; if (is_new) { inode->i_rdev = 0; switch (mode & S_IFMT) { case S_IFBLK: case S_IFCHR: inode->i_rdev = MKDEV(be32_to_cpu(str->di_major), be32_to_cpu(str->di_minor)); break; } } i_uid_write(inode, be32_to_cpu(str->di_uid)); i_gid_write(inode, be32_to_cpu(str->di_gid)); set_nlink(inode, be32_to_cpu(str->di_nlink)); i_size_write(inode, be64_to_cpu(str->di_size)); gfs2_set_inode_blocks(inode, be64_to_cpu(str->di_blocks)); atime.tv_sec = be64_to_cpu(str->di_atime); atime.tv_nsec = be32_to_cpu(str->di_atime_nsec); iatime = inode_get_atime(inode); if (timespec64_compare(&iatime, &atime) < 0) inode_set_atime_to_ts(inode, atime); inode_set_mtime(inode, be64_to_cpu(str->di_mtime), be32_to_cpu(str->di_mtime_nsec)); inode_set_ctime(inode, be64_to_cpu(str->di_ctime), be32_to_cpu(str->di_ctime_nsec)); ip->i_goal = be64_to_cpu(str->di_goal_meta); ip->i_generation = be64_to_cpu(str->di_generation); ip->i_diskflags = be32_to_cpu(str->di_flags); ip->i_eattr = be64_to_cpu(str->di_eattr); /* i_diskflags and i_eattr must be set before gfs2_set_inode_flags() */ gfs2_set_inode_flags(inode); height = be16_to_cpu(str->di_height); if (unlikely(height > sdp->sd_max_height)) { gfs2_consist_inode(ip); return -EIO; } ip->i_height = (u8)height; depth = be16_to_cpu(str->di_depth); if (unlikely(depth > GFS2_DIR_MAX_DEPTH)) { gfs2_consist_inode(ip); return -EIO; } ip->i_depth = (u8)depth; ip->i_entries = be32_to_cpu(str->di_entries); if (gfs2_is_stuffed(ip) && inode->i_size > gfs2_max_stuffed_size(ip)) { gfs2_consist_inode(ip); return -EIO; } if (S_ISREG(inode->i_mode)) gfs2_set_aops(inode); return 0; } /** * gfs2_inode_refresh - Refresh the incore copy of the dinode * @ip: The GFS2 inode * * Returns: errno */ static int gfs2_inode_refresh(struct gfs2_inode *ip) { struct buffer_head *dibh; int error; error = gfs2_meta_inode_buffer(ip, &dibh); if (error) return error; error = gfs2_dinode_in(ip, dibh->b_data); brelse(dibh); return error; } /** * inode_go_instantiate - read in an inode if necessary * @gl: The glock * * Returns: errno */ static int inode_go_instantiate(struct gfs2_glock *gl) { struct gfs2_inode *ip = gl->gl_object; struct gfs2_glock *io_gl; int error; if (!ip) /* no inode to populate - read it in later */ return 0; error = gfs2_inode_refresh(ip); if (error) return error; io_gl = ip->i_iopen_gh.gh_gl; io_gl->gl_no_formal_ino = ip->i_no_formal_ino; return 0; } static int inode_go_held(struct gfs2_holder *gh) { struct gfs2_glock *gl = gh->gh_gl; struct gfs2_inode *ip = gl->gl_object; int error = 0; if (!ip) /* no inode to populate - read it in later */ return 0; if (gh->gh_state != LM_ST_DEFERRED) inode_dio_wait(&ip->i_inode); if ((ip->i_diskflags & GFS2_DIF_TRUNC_IN_PROG) && (gl->gl_state == LM_ST_EXCLUSIVE) && (gh->gh_state == LM_ST_EXCLUSIVE)) error = gfs2_truncatei_resume(ip); return error; } /** * inode_go_dump - print information about an inode * @seq: The iterator * @gl: The glock * @fs_id_buf: file system id (may be empty) * */ static void inode_go_dump(struct seq_file *seq, const struct gfs2_glock *gl, const char *fs_id_buf) { struct gfs2_inode *ip = gl->gl_object; const struct inode *inode = &ip->i_inode; if (ip == NULL) return; gfs2_print_dbg(seq, "%s I: n:%llu/%llu t:%u f:0x%02lx d:0x%08x s:%llu " "p:%lu\n", fs_id_buf, (unsigned long long)ip->i_no_formal_ino, (unsigned long long)ip->i_no_addr, IF2DT(inode->i_mode), ip->i_flags, (unsigned int)ip->i_diskflags, (unsigned long long)i_size_read(inode), inode->i_data.nrpages); } /** * freeze_go_callback - A cluster node is requesting a freeze * @gl: the glock * @remote: true if this came from a different cluster node */ static void freeze_go_callback(struct gfs2_glock *gl, bool remote) { struct gfs2_sbd *sdp = gl->gl_name.ln_sbd; struct super_block *sb = sdp->sd_vfs; if (!remote || (gl->gl_state != LM_ST_SHARED && gl->gl_state != LM_ST_UNLOCKED) || gl->gl_demote_state != LM_ST_UNLOCKED) return; /* * Try to get an active super block reference to prevent racing with * unmount (see super_trylock_shared()). But note that unmount isn't * the only place where a write lock on s_umount is taken, and we can * fail here because of things like remount as well. */ if (down_read_trylock(&sb->s_umount)) { atomic_inc(&sb->s_active); up_read(&sb->s_umount); if (!queue_work(gfs2_freeze_wq, &sdp->sd_freeze_work)) deactivate_super(sb); } } /** * freeze_go_xmote_bh - After promoting/demoting the freeze glock * @gl: the glock */ static int freeze_go_xmote_bh(struct gfs2_glock *gl) { struct gfs2_sbd *sdp = gl->gl_name.ln_sbd; struct gfs2_inode *ip = GFS2_I(sdp->sd_jdesc->jd_inode); struct gfs2_glock *j_gl = ip->i_gl; struct gfs2_log_header_host head; int error; if (test_bit(SDF_JOURNAL_LIVE, &sdp->sd_flags)) { j_gl->gl_ops->go_inval(j_gl, DIO_METADATA); error = gfs2_find_jhead(sdp->sd_jdesc, &head, false); if (gfs2_assert_withdraw_delayed(sdp, !error)) return error; if (gfs2_assert_withdraw_delayed(sdp, head.lh_flags & GFS2_LOG_HEAD_UNMOUNT)) return -EIO; sdp->sd_log_sequence = head.lh_sequence + 1; gfs2_log_pointers_init(sdp, head.lh_blkno); } return 0; } /** * iopen_go_callback - schedule the dcache entry for the inode to be deleted * @gl: the glock * @remote: true if this came from a different cluster node * * gl_lockref.lock lock is held while calling this */ static void iopen_go_callback(struct gfs2_glock *gl, bool remote) { struct gfs2_inode *ip = gl->gl_object; struct gfs2_sbd *sdp = gl->gl_name.ln_sbd; if (!remote || sb_rdonly(sdp->sd_vfs) || test_bit(SDF_KILL, &sdp->sd_flags)) return; if (gl->gl_demote_state == LM_ST_UNLOCKED && gl->gl_state == LM_ST_SHARED && ip) { gl->gl_lockref.count++; if (!gfs2_queue_try_to_evict(gl)) gl->gl_lockref.count--; } } /** * inode_go_unlocked - wake up anyone waiting for dlm's unlock ast * @gl: glock being unlocked * * For now, this is only used for the journal inode glock. In withdraw * situations, we need to wait for the glock to be unlocked so that we know * other nodes may proceed with recovery / journal replay. */ static void inode_go_unlocked(struct gfs2_glock *gl) { /* Note that we cannot reference gl_object because it's already set * to NULL by this point in its lifecycle. */ if (!test_bit(GLF_UNLOCKED, &gl->gl_flags)) return; clear_bit_unlock(GLF_UNLOCKED, &gl->gl_flags); wake_up_bit(&gl->gl_flags, GLF_UNLOCKED); } /** * nondisk_go_callback - used to signal when a node did a withdraw * @gl: the nondisk glock * @remote: true if this came from a different cluster node * */ static void nondisk_go_callback(struct gfs2_glock *gl, bool remote) { struct gfs2_sbd *sdp = gl->gl_name.ln_sbd; /* Ignore the callback unless it's from another node, and it's the live lock. */ if (!remote || gl->gl_name.ln_number != GFS2_LIVE_LOCK) return; /* First order of business is to cancel the demote request. We don't * really want to demote a nondisk glock. At best it's just to inform * us of another node's withdraw. We'll keep it in SH mode. */ clear_bit(GLF_DEMOTE, &gl->gl_flags); clear_bit(GLF_PENDING_DEMOTE, &gl->gl_flags); /* Ignore the unlock if we're withdrawn, unmounting, or in recovery. */ if (test_bit(SDF_NORECOVERY, &sdp->sd_flags) || test_bit(SDF_WITHDRAWN, &sdp->sd_flags) || test_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags)) return; /* We only care when a node wants us to unlock, because that means * they want a journal recovered. */ if (gl->gl_demote_state != LM_ST_UNLOCKED) return; if (sdp->sd_args.ar_spectator) { fs_warn(sdp, "Spectator node cannot recover journals.\n"); return; } fs_warn(sdp, "Some node has withdrawn; checking for recovery.\n"); set_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags); /* * We can't call remote_withdraw directly here or gfs2_recover_journal * because this is called from the glock unlock function and the * remote_withdraw needs to enqueue and dequeue the same "live" glock * we were called from. So we queue it to the control work queue in * lock_dlm. */ queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0); } const struct gfs2_glock_operations gfs2_meta_glops = { .go_type = LM_TYPE_META, .go_flags = GLOF_NONDISK, }; const struct gfs2_glock_operations gfs2_inode_glops = { .go_sync = inode_go_sync, .go_inval = inode_go_inval, .go_instantiate = inode_go_instantiate, .go_held = inode_go_held, .go_dump = inode_go_dump, .go_type = LM_TYPE_INODE, .go_flags = GLOF_ASPACE | GLOF_LVB, .go_unlocked = inode_go_unlocked, }; const struct gfs2_glock_operations gfs2_rgrp_glops = { .go_sync = rgrp_go_sync, .go_inval = rgrp_go_inval, .go_instantiate = gfs2_rgrp_go_instantiate, .go_dump = gfs2_rgrp_go_dump, .go_type = LM_TYPE_RGRP, .go_flags = GLOF_LVB, }; const struct gfs2_glock_operations gfs2_freeze_glops = { .go_xmote_bh = freeze_go_xmote_bh, .go_callback = freeze_go_callback, .go_type = LM_TYPE_NONDISK, .go_flags = GLOF_NONDISK, }; const struct gfs2_glock_operations gfs2_iopen_glops = { .go_type = LM_TYPE_IOPEN, .go_callback = iopen_go_callback, .go_dump = inode_go_dump, .go_flags = GLOF_NONDISK, .go_subclass = 1, }; const struct gfs2_glock_operations gfs2_flock_glops = { .go_type = LM_TYPE_FLOCK, .go_flags = GLOF_NONDISK, }; const struct gfs2_glock_operations gfs2_nondisk_glops = { .go_type = LM_TYPE_NONDISK, .go_flags = GLOF_NONDISK, .go_callback = nondisk_go_callback, }; const struct gfs2_glock_operations gfs2_quota_glops = { .go_type = LM_TYPE_QUOTA, .go_flags = GLOF_LVB | GLOF_NONDISK, }; const struct gfs2_glock_operations gfs2_journal_glops = { .go_type = LM_TYPE_JOURNAL, .go_flags = GLOF_NONDISK, }; const struct gfs2_glock_operations *gfs2_glops_list[] = { [LM_TYPE_META] = &gfs2_meta_glops, [LM_TYPE_INODE] = &gfs2_inode_glops, [LM_TYPE_RGRP] = &gfs2_rgrp_glops, [LM_TYPE_IOPEN] = &gfs2_iopen_glops, [LM_TYPE_FLOCK] = &gfs2_flock_glops, [LM_TYPE_NONDISK] = &gfs2_nondisk_glops, [LM_TYPE_QUOTA] = &gfs2_quota_glops, [LM_TYPE_JOURNAL] = &gfs2_journal_glops, };