# -*- coding: utf-8 -*- """ pySim: various utilities """ import json import abc import string import datetime import argparse from io import BytesIO from typing import Optional, List, Dict, Any, Tuple, NewType, Union from osmocom.utils import * from osmocom.tlv import bertlv_encode_tag, bertlv_encode_len # Copyright (C) 2009-2010 Sylvain Munaut # Copyright (C) 2021 Harald Welte # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . # # IMSI encoded format: # For IMSI 0123456789ABCDE: # # | byte 1 | 2 upper | 2 lower | 3 upper | 3 lower | ... | 9 upper | 9 lower | # | length in bytes | 0 | odd/even | 2 | 1 | ... | E | D | # # If the IMSI is less than 15 characters, it should be padded with 'f' from the end. # # The length is the total number of bytes used to encoded the IMSI. This includes the odd/even # parity bit. E.g. an IMSI of length 14 is 8 bytes long, not 7, as it uses bytes 2 to 9 to # encode itself. # # Because of this, an odd length IMSI fits exactly into len(imsi) + 1 // 2 bytes, whereas an # even length IMSI only uses half of the last byte. SwHexstr = NewType('SwHexstr', str) SwMatchstr = NewType('SwMatchstr', str) ResTuple = Tuple[Hexstr, SwHexstr] def enc_imsi(imsi: str): """Converts a string IMSI into the encoded value of the EF""" l = half_round_up( len(imsi) + 1) # Required bytes - include space for odd/even indicator oe = len(imsi) & 1 # Odd (1) / Even (0) ei = '%02x' % l + swap_nibbles('%01x%s' % ((oe << 3) | 1, rpad(imsi, 15))) return ei def dec_imsi(ef: Hexstr) -> Optional[str]: """Converts an EF value to the IMSI string representation""" if len(ef) < 4: return None l = int(ef[0:2], 16) * 2 # Length of the IMSI string l = l - 1 # Encoded length byte includes oe nibble swapped = swap_nibbles(ef[2:]).rstrip('f') if len(swapped) < 1: return None oe = (int(swapped[0]) >> 3) & 1 # Odd (1) / Even (0) if not oe: # if even, only half of last byte was used l = l-1 if l != len(swapped) - 1: return None imsi = swapped[1:] return imsi def dec_iccid(ef: Hexstr) -> str: return swap_nibbles(ef).strip('f') def enc_iccid(iccid: str) -> Hexstr: return swap_nibbles(rpad(iccid, 20)) def sanitize_iccid(iccid: Union[int, str]) -> str: iccid = str(iccid) if len(iccid) < 18: raise ValueError('ICCID input value must be at least 18 digits') if len(iccid) > 20: raise ValueError('ICCID input value must be at most 20 digits') if len(iccid) == 18: # 18 digits means we must add a luhn check digit to reach 19 digits iccid += str(calculate_luhn(iccid)) if len(iccid) == 20: # 20 digits means we're actually exceeding E.118 by one digit, and # the luhn check digit must already be included verify_luhn(iccid) if len(iccid) == 19: # 19 digits means that it's either an in-spec 19-digits ICCID with # its luhn check digit already present, or it's an out-of-spec 20-digit # ICCID without that check digit... try: verify_luhn(iccid) except ValueError: # 19th digit was not luhn check digit; we must add it iccid += str(calculate_luhn(iccid)) return iccid def enc_plmn(mcc: Hexstr, mnc: Hexstr) -> Hexstr: """Converts integer MCC/MNC into 3 bytes for EF""" # Make sure there are no excess whitespaces in the input # parameters mcc = mcc.strip() mnc = mnc.strip() # Make sure that MCC/MNC are correctly padded with leading # zeros or 'F', depending on the length. if len(mnc) == 0: mnc = "FFF" elif len(mnc) == 1: mnc = "0" + mnc + "F" elif len(mnc) == 2: mnc += "F" if len(mcc) == 0: mcc = "FFF" elif len(mcc) == 1: mcc = "00" + mcc elif len(mcc) == 2: mcc = "0" + mcc return (mcc[1] + mcc[0]) + (mnc[2] + mcc[2]) + (mnc[1] + mnc[0]) def dec_plmn(threehexbytes: Hexstr) -> dict: res = {'mcc': "0", 'mnc': "0"} dec_mcc_from_plmn_str(threehexbytes) res['mcc'] = dec_mcc_from_plmn_str(threehexbytes) res['mnc'] = dec_mnc_from_plmn_str(threehexbytes) return res # Accepts hex string representing three bytes def dec_mcc_from_plmn(plmn: Hexstr) -> int: ia = h2i(plmn) digit1 = ia[0] & 0x0F # 1st byte, LSB digit2 = (ia[0] & 0xF0) >> 4 # 1st byte, MSB digit3 = ia[1] & 0x0F # 2nd byte, LSB if digit3 == 0xF and digit2 == 0xF and digit1 == 0xF: return 0xFFF # 4095 return derive_mcc(digit1, digit2, digit3) def dec_mcc_from_plmn_str(plmn: Hexstr) -> str: digit1 = plmn[1] # 1st byte, LSB digit2 = plmn[0] # 1st byte, MSB digit3 = plmn[3] # 2nd byte, LSB res = digit1 + digit2 + digit3 return res.upper().strip("F") def dec_mnc_from_plmn(plmn: Hexstr) -> int: ia = h2i(plmn) digit1 = ia[2] & 0x0F # 3rd byte, LSB digit2 = (ia[2] & 0xF0) >> 4 # 3rd byte, MSB digit3 = (ia[1] & 0xF0) >> 4 # 2nd byte, MSB if digit3 == 0xF and digit2 == 0xF and digit1 == 0xF: return 0xFFF # 4095 return derive_mnc(digit1, digit2, digit3) def dec_mnc_from_plmn_str(plmn: Hexstr) -> str: digit1 = plmn[5] # 3rd byte, LSB digit2 = plmn[4] # 3rd byte, MSB digit3 = plmn[2] # 2nd byte, MSB res = digit1 + digit2 + digit3 return res.upper().strip("F") def dec_act(twohexbytes: Hexstr) -> List[str]: act_list = [ {'bit': 15, 'name': "UTRAN"}, {'bit': 11, 'name': "NG-RAN"}, {'bit': 6, 'name': "GSM COMPACT"}, {'bit': 5, 'name': "cdma2000 HRPD"}, {'bit': 4, 'name': "cdma2000 1xRTT"}, ] ia = h2i(twohexbytes) u16t = (ia[0] << 8) | ia[1] sel = set() # only the simple single-bit ones for a in act_list: if u16t & (1 << a['bit']): sel.add(a['name']) # TS 31.102 Section 4.2.5 Table 4.2.5.1 eutran_bits = u16t & 0x7000 if eutran_bits in [0x4000, 0x7000]: sel.add("E-UTRAN WB-S1") sel.add("E-UTRAN NB-S1") elif eutran_bits == 0x5000: sel.add("E-UTRAN NB-S1") elif eutran_bits == 0x6000: sel.add("E-UTRAN WB-S1") # TS 31.102 Section 4.2.5 Table 4.2.5.2 gsm_bits = u16t & 0x008C if gsm_bits in [0x0080, 0x008C]: sel.add("GSM") sel.add("EC-GSM-IoT") elif u16t & 0x008C == 0x0084: sel.add("GSM") elif u16t & 0x008C == 0x0086: sel.add("EC-GSM-IoT") return sorted(list(sel)) def dec_xplmn_w_act(fivehexbytes: Hexstr) -> Dict[str, Any]: res = {'mcc': "0", 'mnc': "0", 'act': []} plmn_chars = 6 act_chars = 4 # first three bytes (six ascii hex chars) plmn_str = fivehexbytes[:plmn_chars] # two bytes after first three bytes act_str = fivehexbytes[plmn_chars:plmn_chars + act_chars] res['mcc'] = dec_mcc_from_plmn_str(plmn_str) res['mnc'] = dec_mnc_from_plmn_str(plmn_str) res['act'] = dec_act(act_str) return res def dec_xplmn(threehexbytes: Hexstr) -> dict: res = {'mcc': 0, 'mnc': 0, 'act': []} plmn_chars = 6 # first three bytes (six ascii hex chars) plmn_str = threehexbytes[:plmn_chars] res['mcc'] = dec_mcc_from_plmn_str(plmn_str) res['mnc'] = dec_mnc_from_plmn_str(plmn_str) return res def derive_milenage_opc(ki_hex: Hexstr, op_hex: Hexstr) -> Hexstr: """ Run the milenage algorithm to calculate OPC from Ki and OP """ from Cryptodome.Cipher import AES # pylint: disable=no-name-in-module from Cryptodome.Util.strxor import strxor # We pass in hex string and now need to work on bytes ki_bytes = bytes(h2b(ki_hex)) op_bytes = bytes(h2b(op_hex)) aes = AES.new(ki_bytes, AES.MODE_ECB) opc_bytes = aes.encrypt(op_bytes) return b2h(strxor(opc_bytes, op_bytes)) def calculate_luhn(cc) -> int: """ Calculate Luhn checksum used in e.g. ICCID and IMEI """ num = list(map(int, str(cc))) check_digit = 10 - sum(num[-2::-2] + [sum(divmod(d * 2, 10)) for d in num[::-2]]) % 10 return 0 if check_digit == 10 else check_digit def verify_luhn(digits: str): """Verify the Luhn check digit; raises ValueError if it is incorrect.""" cd = calculate_luhn(digits[:-1]) if str(cd) != digits[-1]: raise ValueError('Luhn check digit mismatch: should be %s but is %s' % (str(cd), digits[-1])) def mcc_from_imsi(imsi: str) -> Optional[str]: """ Derive the MCC (Mobile Country Code) from the first three digits of an IMSI """ if imsi is None: return None if len(imsi) > 3: return imsi[:3] else: return None def mnc_from_imsi(imsi: str, long: bool = False) -> Optional[str]: """ Derive the MNC (Mobile Country Code) from the 4th to 6th digit of an IMSI """ if imsi is None: return None if len(imsi) > 3: if long: return imsi[3:6] else: return imsi[3:5] else: return None def derive_mcc(digit1: int, digit2: int, digit3: int) -> int: """ Derive decimal representation of the MCC (Mobile Country Code) from three given digits. """ mcc = 0 if digit1 != 0x0f: mcc += digit1 * 100 if digit2 != 0x0f: mcc += digit2 * 10 if digit3 != 0x0f: mcc += digit3 return mcc def derive_mnc(digit1: int, digit2: int, digit3: int = 0x0f) -> int: """ Derive decimal representation of the MNC (Mobile Network Code) from two or (optionally) three given digits. """ mnc = 0 # 3-rd digit is optional for the MNC. If present # the algorythm is the same as for the MCC. if digit3 != 0x0f: return derive_mcc(digit1, digit2, digit3) if digit1 != 0x0f: mnc += digit1 * 10 if digit2 != 0x0f: mnc += digit2 return mnc def sanitize_pin_adm(pin_adm, pin_adm_hex=None) -> Hexstr: """ The ADM pin can be supplied either in its hexadecimal form or as ascii string. This function checks the supplied opts parameter and returns the pin_adm as hex encoded string, regardless in which form it was originally supplied by the user """ if pin_adm is not None: if len(pin_adm) <= 8: pin_adm = ''.join(['%02x' % (ord(x)) for x in pin_adm]) pin_adm = rpad(pin_adm, 16) else: raise ValueError("PIN-ADM needs to be <=8 digits (ascii)") if pin_adm_hex is not None: if len(pin_adm_hex) == 16: pin_adm = pin_adm_hex # Ensure that it's hex-encoded try: try_encode = h2b(pin_adm) except ValueError as exc: raise ValueError("PIN-ADM needs to be hex encoded using this option") from exc else: raise ValueError("PIN-ADM needs to be exactly 16 digits (hex encoded)") return pin_adm def get_addr_type(addr): """ Validates the given address and returns it's type (FQDN or IPv4 or IPv6) Return: 0x00 (FQDN), 0x01 (IPv4), 0x02 (IPv6), None (Bad address argument given) TODO: Handle IPv6 """ # Empty address string if len(addr) == 0: return None addr_list = addr.split('.') # Check for IPv4/IPv6 try: import ipaddress # Throws ValueError if addr is not correct ipa = ipaddress.ip_address(addr) if ipa.version == 4: return 0x01 elif ipa.version == 6: return 0x02 except Exception: invalid_ipv4 = True for i in addr_list: # Invalid IPv4 may qualify for a valid FQDN, so make check here # e.g. 172.24.15.300 import re if not re.match('^[0-9_]+$', i): invalid_ipv4 = False break if invalid_ipv4: return None fqdn_flag = True for i in addr_list: # Only Alpha-numeric characters and hyphen - RFC 1035 import re if not re.match("^[a-zA-Z0-9]+(?:-[a-zA-Z0-9]+)?$", i): fqdn_flag = False break # FQDN if fqdn_flag: return 0x00 return None def sw_match(sw: str, pattern: str) -> bool: """Match given SW against given pattern.""" # Create a masked version of the returned status word sw_lower = sw.lower() sw_masked = "" for i in range(0, 4): if pattern[i] == '?': sw_masked = sw_masked + '?' elif pattern[i] == 'x': sw_masked = sw_masked + 'x' else: sw_masked = sw_masked + sw_lower[i] # Compare the masked version against the pattern return sw_masked == pattern def tabulate_str_list(str_list, width: int = 79, hspace: int = 2, lspace: int = 1, align_left: bool = True) -> str: """Pretty print a list of strings into a tabulated form. Args: width : total width in characters per line space : horizontal space between cells lspace : number of spaces before row align_lef : Align text to the left side Returns: multi-line string containing formatted table """ if str_list is None: return "" if len(str_list) <= 0: return "" longest_str = max(str_list, key=len) cellwith = len(longest_str) + hspace cols = width // cellwith rows = (len(str_list) - 1) // cols + 1 table = [] for i in iter(range(rows)): str_list_row = str_list[i::rows] if align_left: format_str_cell = '%%-%ds' else: format_str_cell = '%%%ds' format_str_row = (format_str_cell % cellwith) * len(str_list_row) format_str_row = (" " * lspace) + format_str_row table.append(format_str_row % tuple(str_list_row)) return '\n'.join(table) def expand_hex(hexstring, length): """Expand a given hexstring to a specified length by replacing "." or ".." with a filler that is derived from the neighboring nibbles respective bytes. Usually this will be the nibble respective byte before "." or "..", execpt when the string begins with "." or "..", then the nibble respective byte after "." or ".." is used.". In case the string cannot be expanded for some reason, the input string is returned unmodified. Args: hexstring : hexstring to expand length : desired length of the resulting hexstring. Returns: expanded hexstring """ # expand digit aligned if hexstring.count(".") == 1: pos = hexstring.index(".") if pos > 0: filler = hexstring[pos - 1] else: filler = hexstring[pos + 1] missing = length * 2 - (len(hexstring) - 1) if missing <= 0: return hexstring return hexstring.replace(".", filler * missing) # expand byte aligned elif hexstring.count("..") == 1: if len(hexstring) % 2: return hexstring pos = hexstring.index("..") if pos % 2: return hexstring if pos > 1: filler = hexstring[pos - 2:pos] else: filler = hexstring[pos + 2:pos+4] missing = length * 2 - (len(hexstring) - 2) if missing <= 0: return hexstring return hexstring.replace("..", filler * (missing // 2)) # no change return hexstring def boxed_heading_str(heading, width=80): """Generate a string that contains a boxed heading.""" # Auto-enlarge box if heading exceeds length if len(heading) > width - 4: width = len(heading) + 4 res = "#" * width fstr = "\n# %-" + str(width - 4) + "s #\n" res += fstr % (heading) res += "#" * width return res def parse_command_apdu(apdu: bytes) -> int: """Parse a given command APDU and return case (see also ISO/IEC 7816-3, Table 12 and Figure 26), lc, le and the data field. Args: apdu : hexstring that contains the command APDU Returns: tuple containing case, lc and le values of the APDU (case, lc, le, data) """ if len(apdu) == 4: # Case #1, No command data field, no response data field lc = 0 le = 0 data = b'' return (1, lc, le, data) elif len(apdu) == 5: # Case #2, No command data field, response data field present lc = 0 le = apdu[4] if le == 0: le = 256 data = b'' return (2, lc, le, data) elif len(apdu) > 5: lc = apdu[4]; if lc == 0: lc = 256 data = apdu[5:lc+5] if len(apdu) == 5 + lc: # Case #3, Command data field present, no response data field le = 0 return (3, lc, le, data) elif len(apdu) == 5 + lc + 1: # Case #4, Command data field present, no response data field le = apdu[5 + lc] if le == 0: le = 256 return (4, lc, le, data) else: raise ValueError('invalid APDU (%s), Lc=0x%02x (%d) does not match the length (%d) of the data field' % (b2h(apdu), lc, lc, len(apdu[5:]))) else: raise ValueError('invalid APDU (%s), too short!' % b2h(apdu)) class DataObject(abc.ABC): """A DataObject (DO) in the sense of ISO 7816-4. Contrary to 'normal' TLVs where one simply has any number of different TLVs that may occur in any order at any point, ISO 7816 has the habit of specifying TLV data but with very spcific ordering, or specific choices of tags at specific points in a stream. This class tries to represent this.""" def __init__(self, name: str, desc: Optional[str] = None, tag: Optional[int] = None): """ Args: name: A brief, all-lowercase, underscore separated string identifier desc: A human-readable description of what this DO represents tag : The tag associated with this DO """ self.name = name self.desc = desc self.tag = tag self.decoded = None self.encoded = None def __str__(self): return self.name def __repr__(self) -> str: return '%s(%s)' % (self.__class__, self.name) def __or__(self, other) -> 'DataObjectChoice': """OR-ing DataObjects together renders a DataObjectChoice.""" if isinstance(other, DataObject): # DataObject | DataObject = DataObjectChoice return DataObjectChoice(None, members=[self, other]) else: raise TypeError def __add__(self, other) -> 'DataObjectCollection': """ADD-ing DataObjects together renders a DataObjectCollection.""" if isinstance(other, DataObject): # DataObject + DataObject = DataObjectCollectin return DataObjectCollection(None, members=[self, other]) else: raise TypeError def _compute_tag(self) -> int: """Compute the tag (sometimes the tag encodes part of the value).""" return self.tag def to_dict(self) -> dict: """Return a dict in form "name: decoded_value" """ return {self.name: self.decoded} @abc.abstractmethod def from_bytes(self, do: bytes): """Parse the value part of the DO into the internal state of this instance. Args: do : binary encoded bytes """ @abc.abstractmethod def to_bytes(self) -> bytes: """Encode the internal state of this instance into the TLV value part. Returns: binary bytes encoding the internal state """ def from_tlv(self, do: bytes) -> bytes: """Parse binary TLV representation into internal state. The resulting decoded representation is _not_ returned, but just internalized in the object instance! Args: do : input bytes containing TLV-encoded representation Returns: bytes remaining at end of 'do' after parsing one TLV/DO. """ if do[0] != self.tag: raise ValueError('%s: Can only decode tag 0x%02x' % (self, self.tag)) length = do[1] val = do[2:2+length] self.from_bytes(val) # return remaining bytes return do[2+length:] def to_tlv(self) -> bytes: """Encode internal representation to binary TLV. Returns: bytes encoded in TLV format. """ val = self.to_bytes() return bertlv_encode_tag(self._compute_tag()) + bertlv_encode_len(len(val)) + val # 'codec' interface def decode(self, binary: bytes) -> Tuple[dict, bytes]: """Decode a single DOs from the input data. Args: binary : binary bytes of encoded data Returns: tuple of (decoded_result, binary_remainder) """ tag = binary[0] if tag != self.tag: raise ValueError('%s: Unknown Tag 0x%02x in %s; expected 0x%02x' % (self, tag, binary, self.tag)) remainder = self.from_tlv(binary) return (self.to_dict(), remainder) # 'codec' interface def encode(self) -> bytes: return self.to_tlv() class TL0_DataObject(DataObject): """Data Object that has Tag, Len=0 and no Value part.""" def __init__(self, name: str, desc: str, tag: int, val=None): super().__init__(name, desc, tag) self.val = val def from_bytes(self, binary: bytes): if len(binary) != 0: raise ValueError self.decoded = self.val def to_bytes(self) -> bytes: return b'' class DataObjectCollection: """A DataObjectCollection consits of multiple Data Objects identified by their tags. A given encoded DO may contain any of them in any order, and may contain multiple instances of each DO.""" def __init__(self, name: str, desc: Optional[str] = None, members=None): self.name = name self.desc = desc self.members = members or [] self.members_by_tag = {} self.members_by_name = {} self.members_by_tag = {m.tag: m for m in members} self.members_by_name = {m.name: m for m in members} def __str__(self) -> str: member_strs = [str(x) for x in self.members] return '%s(%s)' % (self.name, ','.join(member_strs)) def __repr__(self) -> str: member_strs = [repr(x) for x in self.members] return '%s(%s)' % (self.__class__, ','.join(member_strs)) def __add__(self, other) -> 'DataObjectCollection': """Extending DataCollections with other DataCollections or DataObjects.""" if isinstance(other, DataObjectCollection): # adding one collection to another members = self.members + other.members return DataObjectCollection(self.name, self.desc, members) elif isinstance(other, DataObject): # adding a member to a collection return DataObjectCollection(self.name, self.desc, self.members + [other]) else: raise TypeError # 'codec' interface def decode(self, binary: bytes) -> Tuple[List, bytes]: """Decode any number of DOs from the collection until the end of the input data, or uninitialized memory (0xFF) is found. Args: binary : binary bytes of encoded data Returns: tuple of (decoded_result, binary_remainder) """ res = [] remainder = binary # iterate until no binary trailer is left while len(remainder): tag = remainder[0] if tag == 0xff: # uninitialized memory at the end? return (res, remainder) if not tag in self.members_by_tag: raise ValueError('%s: Unknown Tag 0x%02x in %s; expected %s' % (self, tag, remainder, self.members_by_tag.keys())) obj = self.members_by_tag[tag] # DO from_tlv returns remainder of binary remainder = obj.from_tlv(remainder) # collect our results res.append(obj.to_dict()) return (res, remainder) # 'codec' interface def encode(self, decoded) -> bytes: res = bytearray() for i in decoded: obj = self.members_by_name(i[0]) res.append(obj.to_tlv()) return res class DataObjectChoice(DataObjectCollection): """One Data Object from within a choice, identified by its tag. This means that exactly one member of the choice must occur, and which one occurs depends on the tag.""" def __add__(self, other): """We overload the add operator here to avoid inheriting it from DataObjecCollection.""" raise TypeError def __or__(self, other) -> 'DataObjectChoice': """OR-ing a Choice to another choice extends the choice, as does OR-ing a DataObject.""" if isinstance(other, DataObjectChoice): # adding one collection to another members = self.members + other.members return DataObjectChoice(self.name, self.desc, members) elif isinstance(other, DataObject): # adding a member to a collection return DataObjectChoice(self.name, self.desc, self.members + [other]) else: raise TypeError # 'codec' interface def decode(self, binary: bytes) -> Tuple[dict, bytes]: """Decode a single DOs from the choice based on the tag. Args: binary : binary bytes of encoded data Returns: tuple of (decoded_result, binary_remainder) """ tag = binary[0] if tag == 0xff: return (None, binary) if not tag in self.members_by_tag: raise ValueError('%s: Unknown Tag 0x%02x in %s; expected %s' % (self, tag, binary, self.members_by_tag.keys())) obj = self.members_by_tag[tag] remainder = obj.from_tlv(binary) return (obj.to_dict(), remainder) # 'codec' interface def encode(self, decoded) -> bytes: obj = self.members_by_name[list(decoded)[0]] obj.decoded = list(decoded.values())[0] return obj.to_tlv() class DataObjectSequence: """A sequence of DataObjects or DataObjectChoices. This allows us to express a certain ordered sequence of DOs or choices of DOs that have to appear as per the specification. By wrapping them into this formal DataObjectSequence, we can offer convenience methods for encoding or decoding an entire sequence.""" def __init__(self, name: str, desc: Optional[str] = None, sequence=None): self.sequence = sequence or [] self.name = name self.desc = desc def __str__(self) -> str: member_strs = [str(x) for x in self.sequence] return '%s(%s)' % (self.name, ','.join(member_strs)) def __repr__(self) -> str: member_strs = [repr(x) for x in self.sequence] return '%s(%s)' % (self.__class__, ','.join(member_strs)) def __add__(self, other) -> 'DataObjectSequence': """Add (append) a DataObject or DataObjectChoice to the sequence.""" if isinstance(other, 'DataObject'): return DataObjectSequence(self.name, self.desc, self.sequence + [other]) elif isinstance(other, 'DataObjectChoice'): return DataObjectSequence(self.name, self.desc, self.sequence + [other]) elif isinstance(other, 'DataObjectSequence'): return DataObjectSequence(self.name, self.desc, self.sequence + other.sequence) # 'codec' interface def decode(self, binary: bytes) -> Tuple[list, bytes]: """Decode a sequence by calling the decoder of each element in the sequence. Args: binary : binary bytes of encoded data Returns: tuple of (decoded_result, binary_remainder) """ remainder = binary res = [] for e in self.sequence: (r, remainder) = e.decode(remainder) if r: res.append(r) return (res, remainder) # 'codec' interface def decode_multi(self, do: bytes) -> Tuple[list, bytes]: """Decode multiple occurrences of the sequence from the binary input data. Args: do : binary input data to be decoded Returns: list of results of the decoder of this sequences """ remainder = do res = [] while len(remainder): (r, remainder2) = self.decode(remainder) if r: res.append(r) if len(remainder2) < len(remainder): remainder = remainder2 else: remainder = remainder2 break return (res, remainder) # 'codec' interface def encode(self, decoded) -> bytes: """Encode a sequence by calling the encoder of each element in the sequence.""" encoded = bytearray() i = 0 for e in self.sequence: encoded += e.encode(decoded[i]) i += 1 return encoded def encode_multi(self, decoded) -> bytes: """Encode multiple occurrences of the sequence from the decoded input data. Args: decoded : list of json-serializable input data; one sequence per list item Returns: binary encoded output data """ encoded = bytearray() for d in decoded: encoded += self.encode(d) return encoded class CardCommand: """A single card command / instruction.""" def __init__(self, name, ins, cla_list=None, desc=None): self.name = name self.ins = ins self.cla_list = cla_list or [] self.cla_list = [x.lower() for x in self.cla_list] self.desc = desc def __str__(self): return self.name def __repr__(self): return '%s(INS=%02x,CLA=%s)' % (self.name, self.ins, self.cla_list) def match_cla(self, cla): """Does the given CLA match the CLA list of the command?.""" if not isinstance(cla, str): cla = '%02u' % cla cla = cla.lower() for cla_match in self.cla_list: cla_masked = "" for i in range(0, 2): if cla_match[i] == 'x': cla_masked += 'x' else: cla_masked += cla[i] if cla_masked == cla_match: return True return False class CardCommandSet: """A set of card instructions, typically specified within one spec.""" def __init__(self, name, cmds=[]): self.name = name self.cmds = {c.ins: c for c in cmds} def __str__(self): return self.name def __getitem__(self, idx): return self.cmds[idx] def __add__(self, other): if isinstance(other, CardCommand): if other.ins in self.cmds: raise ValueError('%s: INS 0x%02x already defined: %s' % (self, other.ins, self.cmds[other.ins])) self.cmds[other.ins] = other elif isinstance(other, CardCommandSet): for c in other.cmds.keys(): self.cmds[c] = other.cmds[c] else: raise ValueError( '%s: Unsupported type to add operator: %s' % (self, other)) def lookup(self, ins, cla=None): """look-up the command within the CommandSet.""" ins = int(ins) if not ins in self.cmds: return None cmd = self.cmds[ins] if cla and not cmd.match_cla(cla): return None return cmd