/* * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. * The full GNU General Public License is included in this distribution * in the file called LICENSE.GPL. * * BSD LICENSE * * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "isci.h" #include "task.h" #include "request.h" #include "scu_completion_codes.h" #include "scu_event_codes.h" #include "sas.h" static struct scu_sgl_element_pair *to_sgl_element_pair(struct isci_request *ireq, int idx) { if (idx == 0) return &ireq->tc->sgl_pair_ab; else if (idx == 1) return &ireq->tc->sgl_pair_cd; else if (idx < 0) return NULL; else return &ireq->sg_table[idx - 2]; } static dma_addr_t to_sgl_element_pair_dma(struct isci_host *ihost, struct isci_request *ireq, u32 idx) { u32 offset; if (idx == 0) { offset = (void *) &ireq->tc->sgl_pair_ab - (void *) &ihost->task_context_table[0]; return ihost->task_context_dma + offset; } else if (idx == 1) { offset = (void *) &ireq->tc->sgl_pair_cd - (void *) &ihost->task_context_table[0]; return ihost->task_context_dma + offset; } return sci_io_request_get_dma_addr(ireq, &ireq->sg_table[idx - 2]); } static void init_sgl_element(struct scu_sgl_element *e, struct scatterlist *sg) { e->length = sg_dma_len(sg); e->address_upper = upper_32_bits(sg_dma_address(sg)); e->address_lower = lower_32_bits(sg_dma_address(sg)); e->address_modifier = 0; } static void sci_request_build_sgl(struct isci_request *ireq) { struct isci_host *ihost = ireq->isci_host; struct sas_task *task = isci_request_access_task(ireq); struct scatterlist *sg = NULL; dma_addr_t dma_addr; u32 sg_idx = 0; struct scu_sgl_element_pair *scu_sg = NULL; struct scu_sgl_element_pair *prev_sg = NULL; if (task->num_scatter > 0) { sg = task->scatter; while (sg) { scu_sg = to_sgl_element_pair(ireq, sg_idx); init_sgl_element(&scu_sg->A, sg); sg = sg_next(sg); if (sg) { init_sgl_element(&scu_sg->B, sg); sg = sg_next(sg); } else memset(&scu_sg->B, 0, sizeof(scu_sg->B)); if (prev_sg) { dma_addr = to_sgl_element_pair_dma(ihost, ireq, sg_idx); prev_sg->next_pair_upper = upper_32_bits(dma_addr); prev_sg->next_pair_lower = lower_32_bits(dma_addr); } prev_sg = scu_sg; sg_idx++; } } else { /* handle when no sg */ scu_sg = to_sgl_element_pair(ireq, sg_idx); dma_addr = dma_map_single(&ihost->pdev->dev, task->scatter, task->total_xfer_len, task->data_dir); ireq->zero_scatter_daddr = dma_addr; scu_sg->A.length = task->total_xfer_len; scu_sg->A.address_upper = upper_32_bits(dma_addr); scu_sg->A.address_lower = lower_32_bits(dma_addr); } if (scu_sg) { scu_sg->next_pair_upper = 0; scu_sg->next_pair_lower = 0; } } static void sci_io_request_build_ssp_command_iu(struct isci_request *ireq) { struct ssp_cmd_iu *cmd_iu; struct sas_task *task = isci_request_access_task(ireq); cmd_iu = &ireq->ssp.cmd; memcpy(cmd_iu->LUN, task->ssp_task.LUN, 8); cmd_iu->add_cdb_len = 0; cmd_iu->_r_a = 0; cmd_iu->_r_b = 0; cmd_iu->en_fburst = 0; /* unsupported */ cmd_iu->task_prio = task->ssp_task.task_prio; cmd_iu->task_attr = task->ssp_task.task_attr; cmd_iu->_r_c = 0; sci_swab32_cpy(&cmd_iu->cdb, task->ssp_task.cdb, sizeof(task->ssp_task.cdb) / sizeof(u32)); } static void sci_task_request_build_ssp_task_iu(struct isci_request *ireq) { struct ssp_task_iu *task_iu; struct sas_task *task = isci_request_access_task(ireq); struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq); task_iu = &ireq->ssp.tmf; memset(task_iu, 0, sizeof(struct ssp_task_iu)); memcpy(task_iu->LUN, task->ssp_task.LUN, 8); task_iu->task_func = isci_tmf->tmf_code; task_iu->task_tag = (test_bit(IREQ_TMF, &ireq->flags)) ? isci_tmf->io_tag : SCI_CONTROLLER_INVALID_IO_TAG; } /** * This method is will fill in the SCU Task Context for any type of SSP request. * @sci_req: * @task_context: * */ static void scu_ssp_reqeust_construct_task_context( struct isci_request *ireq, struct scu_task_context *task_context) { dma_addr_t dma_addr; struct isci_remote_device *idev; struct isci_port *iport; idev = ireq->target_device; iport = idev->owning_port; /* Fill in the TC with the its required data */ task_context->abort = 0; task_context->priority = 0; task_context->initiator_request = 1; task_context->connection_rate = idev->connection_rate; task_context->protocol_engine_index = ISCI_PEG; task_context->logical_port_index = iport->physical_port_index; task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_SSP; task_context->valid = SCU_TASK_CONTEXT_VALID; task_context->context_type = SCU_TASK_CONTEXT_TYPE; task_context->remote_node_index = idev->rnc.remote_node_index; task_context->command_code = 0; task_context->link_layer_control = 0; task_context->do_not_dma_ssp_good_response = 1; task_context->strict_ordering = 0; task_context->control_frame = 0; task_context->timeout_enable = 0; task_context->block_guard_enable = 0; task_context->address_modifier = 0; /* task_context->type.ssp.tag = ireq->io_tag; */ task_context->task_phase = 0x01; ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC | (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) | (iport->physical_port_index << SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) | ISCI_TAG_TCI(ireq->io_tag)); /* * Copy the physical address for the command buffer to the * SCU Task Context */ dma_addr = sci_io_request_get_dma_addr(ireq, &ireq->ssp.cmd); task_context->command_iu_upper = upper_32_bits(dma_addr); task_context->command_iu_lower = lower_32_bits(dma_addr); /* * Copy the physical address for the response buffer to the * SCU Task Context */ dma_addr = sci_io_request_get_dma_addr(ireq, &ireq->ssp.rsp); task_context->response_iu_upper = upper_32_bits(dma_addr); task_context->response_iu_lower = lower_32_bits(dma_addr); } /** * This method is will fill in the SCU Task Context for a SSP IO request. * @sci_req: * */ static void scu_ssp_io_request_construct_task_context(struct isci_request *ireq, enum dma_data_direction dir, u32 len) { struct scu_task_context *task_context = ireq->tc; scu_ssp_reqeust_construct_task_context(ireq, task_context); task_context->ssp_command_iu_length = sizeof(struct ssp_cmd_iu) / sizeof(u32); task_context->type.ssp.frame_type = SSP_COMMAND; switch (dir) { case DMA_FROM_DEVICE: case DMA_NONE: default: task_context->task_type = SCU_TASK_TYPE_IOREAD; break; case DMA_TO_DEVICE: task_context->task_type = SCU_TASK_TYPE_IOWRITE; break; } task_context->transfer_length_bytes = len; if (task_context->transfer_length_bytes > 0) sci_request_build_sgl(ireq); } /** * This method will fill in the SCU Task Context for a SSP Task request. The * following important settings are utilized: -# priority == * SCU_TASK_PRIORITY_HIGH. This ensures that the task request is issued * ahead of other task destined for the same Remote Node. -# task_type == * SCU_TASK_TYPE_IOREAD. This simply indicates that a normal request type * (i.e. non-raw frame) is being utilized to perform task management. -# * control_frame == 1. This ensures that the proper endianess is set so * that the bytes are transmitted in the right order for a task frame. * @sci_req: This parameter specifies the task request object being * constructed. * */ static void scu_ssp_task_request_construct_task_context(struct isci_request *ireq) { struct scu_task_context *task_context = ireq->tc; scu_ssp_reqeust_construct_task_context(ireq, task_context); task_context->control_frame = 1; task_context->priority = SCU_TASK_PRIORITY_HIGH; task_context->task_type = SCU_TASK_TYPE_RAW_FRAME; task_context->transfer_length_bytes = 0; task_context->type.ssp.frame_type = SSP_TASK; task_context->ssp_command_iu_length = sizeof(struct ssp_task_iu) / sizeof(u32); } /** * This method is will fill in the SCU Task Context for any type of SATA * request. This is called from the various SATA constructors. * @sci_req: The general IO request object which is to be used in * constructing the SCU task context. * @task_context: The buffer pointer for the SCU task context which is being * constructed. * * The general io request construction is complete. The buffer assignment for * the command buffer is complete. none Revisit task context construction to * determine what is common for SSP/SMP/STP task context structures. */ static void scu_sata_reqeust_construct_task_context( struct isci_request *ireq, struct scu_task_context *task_context) { dma_addr_t dma_addr; struct isci_remote_device *idev; struct isci_port *iport; idev = ireq->target_device; iport = idev->owning_port; /* Fill in the TC with the its required data */ task_context->abort = 0; task_context->priority = SCU_TASK_PRIORITY_NORMAL; task_context->initiator_request = 1; task_context->connection_rate = idev->connection_rate; task_context->protocol_engine_index = ISCI_PEG; task_context->logical_port_index = iport->physical_port_index; task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_STP; task_context->valid = SCU_TASK_CONTEXT_VALID; task_context->context_type = SCU_TASK_CONTEXT_TYPE; task_context->remote_node_index = idev->rnc.remote_node_index; task_context->command_code = 0; task_context->link_layer_control = 0; task_context->do_not_dma_ssp_good_response = 1; task_context->strict_ordering = 0; task_context->control_frame = 0; task_context->timeout_enable = 0; task_context->block_guard_enable = 0; task_context->address_modifier = 0; task_context->task_phase = 0x01; task_context->ssp_command_iu_length = (sizeof(struct host_to_dev_fis) - sizeof(u32)) / sizeof(u32); /* Set the first word of the H2D REG FIS */ task_context->type.words[0] = *(u32 *)&ireq->stp.cmd; ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC | (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) | (iport->physical_port_index << SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) | ISCI_TAG_TCI(ireq->io_tag)); /* * Copy the physical address for the command buffer to the SCU Task * Context. We must offset the command buffer by 4 bytes because the * first 4 bytes are transfered in the body of the TC. */ dma_addr = sci_io_request_get_dma_addr(ireq, ((char *) &ireq->stp.cmd) + sizeof(u32)); task_context->command_iu_upper = upper_32_bits(dma_addr); task_context->command_iu_lower = lower_32_bits(dma_addr); /* SATA Requests do not have a response buffer */ task_context->response_iu_upper = 0; task_context->response_iu_lower = 0; } static void scu_stp_raw_request_construct_task_context(struct isci_request *ireq) { struct scu_task_context *task_context = ireq->tc; scu_sata_reqeust_construct_task_context(ireq, task_context); task_context->control_frame = 0; task_context->priority = SCU_TASK_PRIORITY_NORMAL; task_context->task_type = SCU_TASK_TYPE_SATA_RAW_FRAME; task_context->type.stp.fis_type = FIS_REGH2D; task_context->transfer_length_bytes = sizeof(struct host_to_dev_fis) - sizeof(u32); } static enum sci_status sci_stp_pio_request_construct(struct isci_request *ireq, bool copy_rx_frame) { struct isci_stp_request *stp_req = &ireq->stp.req; scu_stp_raw_request_construct_task_context(ireq); stp_req->status = 0; stp_req->sgl.offset = 0; stp_req->sgl.set = SCU_SGL_ELEMENT_PAIR_A; if (copy_rx_frame) { sci_request_build_sgl(ireq); stp_req->sgl.index = 0; } else { /* The user does not want the data copied to the SGL buffer location */ stp_req->sgl.index = -1; } return SCI_SUCCESS; } /** * * @sci_req: This parameter specifies the request to be constructed as an * optimized request. * @optimized_task_type: This parameter specifies whether the request is to be * an UDMA request or a NCQ request. - A value of 0 indicates UDMA. - A * value of 1 indicates NCQ. * * This method will perform request construction common to all types of STP * requests that are optimized by the silicon (i.e. UDMA, NCQ). This method * returns an indication as to whether the construction was successful. */ static void sci_stp_optimized_request_construct(struct isci_request *ireq, u8 optimized_task_type, u32 len, enum dma_data_direction dir) { struct scu_task_context *task_context = ireq->tc; /* Build the STP task context structure */ scu_sata_reqeust_construct_task_context(ireq, task_context); /* Copy over the SGL elements */ sci_request_build_sgl(ireq); /* Copy over the number of bytes to be transfered */ task_context->transfer_length_bytes = len; if (dir == DMA_TO_DEVICE) { /* * The difference between the DMA IN and DMA OUT request task type * values are consistent with the difference between FPDMA READ * and FPDMA WRITE values. Add the supplied task type parameter * to this difference to set the task type properly for this * DATA OUT (WRITE) case. */ task_context->task_type = optimized_task_type + (SCU_TASK_TYPE_DMA_OUT - SCU_TASK_TYPE_DMA_IN); } else { /* * For the DATA IN (READ) case, simply save the supplied * optimized task type. */ task_context->task_type = optimized_task_type; } } static void sci_atapi_construct(struct isci_request *ireq) { struct host_to_dev_fis *h2d_fis = &ireq->stp.cmd; struct sas_task *task; /* To simplify the implementation we take advantage of the * silicon's partial acceleration of atapi protocol (dma data * transfers), so we promote all commands to dma protocol. This * breaks compatibility with ATA_HORKAGE_ATAPI_MOD16_DMA drives. */ h2d_fis->features |= ATAPI_PKT_DMA; scu_stp_raw_request_construct_task_context(ireq); task = isci_request_access_task(ireq); if (task->data_dir == DMA_NONE) task->total_xfer_len = 0; /* clear the response so we can detect arrivial of an * unsolicited h2d fis */ ireq->stp.rsp.fis_type = 0; } static enum sci_status sci_io_request_construct_sata(struct isci_request *ireq, u32 len, enum dma_data_direction dir, bool copy) { enum sci_status status = SCI_SUCCESS; struct sas_task *task = isci_request_access_task(ireq); struct domain_device *dev = ireq->target_device->domain_dev; /* check for management protocols */ if (test_bit(IREQ_TMF, &ireq->flags)) { struct isci_tmf *tmf = isci_request_access_tmf(ireq); if (tmf->tmf_code == isci_tmf_sata_srst_high || tmf->tmf_code == isci_tmf_sata_srst_low) { scu_stp_raw_request_construct_task_context(ireq); return SCI_SUCCESS; } else { dev_err(&ireq->owning_controller->pdev->dev, "%s: Request 0x%p received un-handled SAT " "management protocol 0x%x.\n", __func__, ireq, tmf->tmf_code); return SCI_FAILURE; } } if (!sas_protocol_ata(task->task_proto)) { dev_err(&ireq->owning_controller->pdev->dev, "%s: Non-ATA protocol in SATA path: 0x%x\n", __func__, task->task_proto); return SCI_FAILURE; } /* ATAPI */ if (dev->sata_dev.command_set == ATAPI_COMMAND_SET && task->ata_task.fis.command == ATA_CMD_PACKET) { sci_atapi_construct(ireq); return SCI_SUCCESS; } /* non data */ if (task->data_dir == DMA_NONE) { scu_stp_raw_request_construct_task_context(ireq); return SCI_SUCCESS; } /* NCQ */ if (task->ata_task.use_ncq) { sci_stp_optimized_request_construct(ireq, SCU_TASK_TYPE_FPDMAQ_READ, len, dir); return SCI_SUCCESS; } /* DMA */ if (task->ata_task.dma_xfer) { sci_stp_optimized_request_construct(ireq, SCU_TASK_TYPE_DMA_IN, len, dir); return SCI_SUCCESS; } else /* PIO */ return sci_stp_pio_request_construct(ireq, copy); return status; } static enum sci_status sci_io_request_construct_basic_ssp(struct isci_request *ireq) { struct sas_task *task = isci_request_access_task(ireq); ireq->protocol = SCIC_SSP_PROTOCOL; scu_ssp_io_request_construct_task_context(ireq, task->data_dir, task->total_xfer_len); sci_io_request_build_ssp_command_iu(ireq); sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED); return SCI_SUCCESS; } enum sci_status sci_task_request_construct_ssp( struct isci_request *ireq) { /* Construct the SSP Task SCU Task Context */ scu_ssp_task_request_construct_task_context(ireq); /* Fill in the SSP Task IU */ sci_task_request_build_ssp_task_iu(ireq); sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED); return SCI_SUCCESS; } static enum sci_status sci_io_request_construct_basic_sata(struct isci_request *ireq) { enum sci_status status; bool copy = false; struct sas_task *task = isci_request_access_task(ireq); ireq->protocol = SCIC_STP_PROTOCOL; copy = (task->data_dir == DMA_NONE) ? false : true; status = sci_io_request_construct_sata(ireq, task->total_xfer_len, task->data_dir, copy); if (status == SCI_SUCCESS) sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED); return status; } enum sci_status sci_task_request_construct_sata(struct isci_request *ireq) { enum sci_status status = SCI_SUCCESS; /* check for management protocols */ if (test_bit(IREQ_TMF, &ireq->flags)) { struct isci_tmf *tmf = isci_request_access_tmf(ireq); if (tmf->tmf_code == isci_tmf_sata_srst_high || tmf->tmf_code == isci_tmf_sata_srst_low) { scu_stp_raw_request_construct_task_context(ireq); } else { dev_err(&ireq->owning_controller->pdev->dev, "%s: Request 0x%p received un-handled SAT " "Protocol 0x%x.\n", __func__, ireq, tmf->tmf_code); return SCI_FAILURE; } } if (status != SCI_SUCCESS) return status; sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED); return status; } /** * sci_req_tx_bytes - bytes transferred when reply underruns request * @ireq: request that was terminated early */ #define SCU_TASK_CONTEXT_SRAM 0x200000 static u32 sci_req_tx_bytes(struct isci_request *ireq) { struct isci_host *ihost = ireq->owning_controller; u32 ret_val = 0; if (readl(&ihost->smu_registers->address_modifier) == 0) { void __iomem *scu_reg_base = ihost->scu_registers; /* get the bytes of data from the Address == BAR1 + 20002Ch + (256*TCi) where * BAR1 is the scu_registers * 0x20002C = 0x200000 + 0x2c * = start of task context SRAM + offset of (type.ssp.data_offset) * TCi is the io_tag of struct sci_request */ ret_val = readl(scu_reg_base + (SCU_TASK_CONTEXT_SRAM + offsetof(struct scu_task_context, type.ssp.data_offset)) + ((sizeof(struct scu_task_context)) * ISCI_TAG_TCI(ireq->io_tag))); } return ret_val; } enum sci_status sci_request_start(struct isci_request *ireq) { enum sci_base_request_states state; struct scu_task_context *tc = ireq->tc; struct isci_host *ihost = ireq->owning_controller; state = ireq->sm.current_state_id; if (state != SCI_REQ_CONSTRUCTED) { dev_warn(&ihost->pdev->dev, "%s: SCIC IO Request requested to start while in wrong " "state %d\n", __func__, state); return SCI_FAILURE_INVALID_STATE; } tc->task_index = ISCI_TAG_TCI(ireq->io_tag); switch (tc->protocol_type) { case SCU_TASK_CONTEXT_PROTOCOL_SMP: case SCU_TASK_CONTEXT_PROTOCOL_SSP: /* SSP/SMP Frame */ tc->type.ssp.tag = ireq->io_tag; tc->type.ssp.target_port_transfer_tag = 0xFFFF; break; case SCU_TASK_CONTEXT_PROTOCOL_STP: /* STP/SATA Frame * tc->type.stp.ncq_tag = ireq->ncq_tag; */ break; case SCU_TASK_CONTEXT_PROTOCOL_NONE: /* / @todo When do we set no protocol type? */ break; default: /* This should never happen since we build the IO * requests */ break; } /* Add to the post_context the io tag value */ ireq->post_context |= ISCI_TAG_TCI(ireq->io_tag); /* Everything is good go ahead and change state */ sci_change_state(&ireq->sm, SCI_REQ_STARTED); return SCI_SUCCESS; } enum sci_status sci_io_request_terminate(struct isci_request *ireq) { enum sci_base_request_states state; state = ireq->sm.current_state_id; switch (state) { case SCI_REQ_CONSTRUCTED: ireq->scu_status = SCU_TASK_DONE_TASK_ABORT; ireq->sci_status = SCI_FAILURE_IO_TERMINATED; sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); return SCI_SUCCESS; case SCI_REQ_STARTED: case SCI_REQ_TASK_WAIT_TC_COMP: case SCI_REQ_SMP_WAIT_RESP: case SCI_REQ_SMP_WAIT_TC_COMP: case SCI_REQ_STP_UDMA_WAIT_TC_COMP: case SCI_REQ_STP_UDMA_WAIT_D2H: case SCI_REQ_STP_NON_DATA_WAIT_H2D: case SCI_REQ_STP_NON_DATA_WAIT_D2H: case SCI_REQ_STP_PIO_WAIT_H2D: case SCI_REQ_STP_PIO_WAIT_FRAME: case SCI_REQ_STP_PIO_DATA_IN: case SCI_REQ_STP_PIO_DATA_OUT: case SCI_REQ_STP_SOFT_RESET_WAIT_H2D_ASSERTED: case SCI_REQ_STP_SOFT_RESET_WAIT_H2D_DIAG: case SCI_REQ_STP_SOFT_RESET_WAIT_D2H: case SCI_REQ_ATAPI_WAIT_H2D: case SCI_REQ_ATAPI_WAIT_PIO_SETUP: case SCI_REQ_ATAPI_WAIT_D2H: case SCI_REQ_ATAPI_WAIT_TC_COMP: sci_change_state(&ireq->sm, SCI_REQ_ABORTING); return SCI_SUCCESS; case SCI_REQ_TASK_WAIT_TC_RESP: /* The task frame was already confirmed to have been * sent by the SCU HW. Since the state machine is * now only waiting for the task response itself, * abort the request and complete it immediately * and don't wait for the task response. */ sci_change_state(&ireq->sm, SCI_REQ_ABORTING); sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); return SCI_SUCCESS; case SCI_REQ_ABORTING: /* If a request has a termination requested twice, return * a failure indication, since HW confirmation of the first * abort is still outstanding. */ case SCI_REQ_COMPLETED: default: dev_warn(&ireq->owning_controller->pdev->dev, "%s: SCIC IO Request requested to abort while in wrong " "state %d\n", __func__, ireq->sm.current_state_id); break; } return SCI_FAILURE_INVALID_STATE; } enum sci_status sci_request_complete(struct isci_request *ireq) { enum sci_base_request_states state; struct isci_host *ihost = ireq->owning_controller; state = ireq->sm.current_state_id; if (WARN_ONCE(state != SCI_REQ_COMPLETED, "isci: request completion from wrong state (%d)\n", state)) return SCI_FAILURE_INVALID_STATE; if (ireq->saved_rx_frame_index != SCU_INVALID_FRAME_INDEX) sci_controller_release_frame(ihost, ireq->saved_rx_frame_index); /* XXX can we just stop the machine and remove the 'final' state? */ sci_change_state(&ireq->sm, SCI_REQ_FINAL); return SCI_SUCCESS; } enum sci_status sci_io_request_event_handler(struct isci_request *ireq, u32 event_code) { enum sci_base_request_states state; struct isci_host *ihost = ireq->owning_controller; state = ireq->sm.current_state_id; if (state != SCI_REQ_STP_PIO_DATA_IN) { dev_warn(&ihost->pdev->dev, "%s: (%x) in wrong state %d\n", __func__, event_code, state); return SCI_FAILURE_INVALID_STATE; } switch (scu_get_event_specifier(event_code)) { case SCU_TASK_DONE_CRC_ERR << SCU_EVENT_SPECIFIC_CODE_SHIFT: /* We are waiting for data and the SCU has R_ERR the data frame. * Go back to waiting for the D2H Register FIS */ sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME); return SCI_SUCCESS; default: dev_err(&ihost->pdev->dev, "%s: pio request unexpected event %#x\n", __func__, event_code); /* TODO Should we fail the PIO request when we get an * unexpected event? */ return SCI_FAILURE; } } /* * This function copies response data for requests returning response data * instead of sense data. * @sci_req: This parameter specifies the request object for which to copy * the response data. */ static void sci_io_request_copy_response(struct isci_request *ireq) { void *resp_buf; u32 len; struct ssp_response_iu *ssp_response; struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq); ssp_response = &ireq->ssp.rsp; resp_buf = &isci_tmf->resp.resp_iu; len = min_t(u32, SSP_RESP_IU_MAX_SIZE, be32_to_cpu(ssp_response->response_data_len)); memcpy(resp_buf, ssp_response->resp_data, len); } static enum sci_status request_started_state_tc_event(struct isci_request *ireq, u32 completion_code) { struct ssp_response_iu *resp_iu; u8 datapres; /* TODO: Any SDMA return code of other than 0 is bad decode 0x003C0000 * to determine SDMA status */ switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) { case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD): ireq->scu_status = SCU_TASK_DONE_GOOD; ireq->sci_status = SCI_SUCCESS; break; case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EARLY_RESP): { /* There are times when the SCU hardware will return an early * response because the io request specified more data than is * returned by the target device (mode pages, inquiry data, * etc.). We must check the response stats to see if this is * truly a failed request or a good request that just got * completed early. */ struct ssp_response_iu *resp = &ireq->ssp.rsp; ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32); sci_swab32_cpy(&ireq->ssp.rsp, &ireq->ssp.rsp, word_cnt); if (resp->status == 0) { ireq->scu_status = SCU_TASK_DONE_GOOD; ireq->sci_status = SCI_SUCCESS_IO_DONE_EARLY; } else { ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE; ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID; } break; } case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_CHECK_RESPONSE): { ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32); sci_swab32_cpy(&ireq->ssp.rsp, &ireq->ssp.rsp, word_cnt); ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE; ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID; break; } case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RESP_LEN_ERR): /* TODO With TASK_DONE_RESP_LEN_ERR is the response frame * guaranteed to be received before this completion status is * posted? */ resp_iu = &ireq->ssp.rsp; datapres = resp_iu->datapres; if (datapres == 1 || datapres == 2) { ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE; ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID; } else { ireq->scu_status = SCU_TASK_DONE_GOOD; ireq->sci_status = SCI_SUCCESS; } break; /* only stp device gets suspended. */ case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_PERR): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_ERR): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_DATA_LEN_ERR): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_ABORT_ERR): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_WD_LEN): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_MAX_PLD_ERR): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_RESP): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_SDBFIS): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDB_ERR): if (ireq->protocol == SCIC_STP_PROTOCOL) { ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >> SCU_COMPLETION_TL_STATUS_SHIFT; ireq->sci_status = SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED; } else { ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >> SCU_COMPLETION_TL_STATUS_SHIFT; ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR; } break; /* both stp/ssp device gets suspended */ case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LF_ERR): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_WRONG_DESTINATION): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_BAD_DESTINATION): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_ZONE_VIOLATION): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED): ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >> SCU_COMPLETION_TL_STATUS_SHIFT; ireq->sci_status = SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED; break; /* neither ssp nor stp gets suspended. */ case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_CMD_ERR): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_XR): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_IU_LEN_ERR): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDMA_ERR): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OFFSET_ERR): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EXCESS_DATA): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_DATA): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OPEN_FAIL): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_VIIT_ENTRY_NV): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_IIT_ENTRY_NV): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RNCNV_OUTBOUND): default: ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >> SCU_COMPLETION_TL_STATUS_SHIFT; ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR; break; } /* * TODO: This is probably wrong for ACK/NAK timeout conditions */ /* In all cases we will treat this as the completion of the IO req. */ sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); return SCI_SUCCESS; } static enum sci_status request_aborting_state_tc_event(struct isci_request *ireq, u32 completion_code) { switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) { case (SCU_TASK_DONE_GOOD << SCU_COMPLETION_TL_STATUS_SHIFT): case (SCU_TASK_DONE_TASK_ABORT << SCU_COMPLETION_TL_STATUS_SHIFT): ireq->scu_status = SCU_TASK_DONE_TASK_ABORT; ireq->sci_status = SCI_FAILURE_IO_TERMINATED; sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); break; default: /* Unless we get some strange error wait for the task abort to complete * TODO: Should there be a state change for this completion? */ break; } return SCI_SUCCESS; } static enum sci_status ssp_task_request_await_tc_event(struct isci_request *ireq, u32 completion_code) { switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) { case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD): ireq->scu_status = SCU_TASK_DONE_GOOD; ireq->sci_status = SCI_SUCCESS; sci_change_state(&ireq->sm, SCI_REQ_TASK_WAIT_TC_RESP); break; case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO): /* Currently, the decision is to simply allow the task request * to timeout if the task IU wasn't received successfully. * There is a potential for receiving multiple task responses if * we decide to send the task IU again. */ dev_warn(&ireq->owning_controller->pdev->dev, "%s: TaskRequest:0x%p CompletionCode:%x - " "ACK/NAK timeout\n", __func__, ireq, completion_code); sci_change_state(&ireq->sm, SCI_REQ_TASK_WAIT_TC_RESP); break; default: /* * All other completion status cause the IO to be complete. * If a NAK was received, then it is up to the user to retry * the request. */ ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code); ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR; sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); break; } return SCI_SUCCESS; } static enum sci_status smp_request_await_response_tc_event(struct isci_request *ireq, u32 completion_code) { switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) { case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD): /* In the AWAIT RESPONSE state, any TC completion is * unexpected. but if the TC has success status, we * complete the IO anyway. */ ireq->scu_status = SCU_TASK_DONE_GOOD; ireq->sci_status = SCI_SUCCESS; sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); break; case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR): /* These status has been seen in a specific LSI * expander, which sometimes is not able to send smp * response within 2 ms. This causes our hardware break * the connection and set TC completion with one of * these SMP_XXX_XX_ERR status. For these type of error, * we ask ihost user to retry the request. */ ireq->scu_status = SCU_TASK_DONE_SMP_RESP_TO_ERR; ireq->sci_status = SCI_FAILURE_RETRY_REQUIRED; sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); break; default: /* All other completion status cause the IO to be complete. If a NAK * was received, then it is up to the user to retry the request */ ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code); ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR; sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); break; } return SCI_SUCCESS; } static enum sci_status smp_request_await_tc_event(struct isci_request *ireq, u32 completion_code) { switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) { case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD): ireq->scu_status = SCU_TASK_DONE_GOOD; ireq->sci_status = SCI_SUCCESS; sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); break; default: /* All other completion status cause the IO to be * complete. If a NAK was received, then it is up to * the user to retry the request. */ ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code); ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR; sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); break; } return SCI_SUCCESS; } static struct scu_sgl_element *pio_sgl_next(struct isci_stp_request *stp_req) { struct scu_sgl_element *sgl; struct scu_sgl_element_pair *sgl_pair; struct isci_request *ireq = to_ireq(stp_req); struct isci_stp_pio_sgl *pio_sgl = &stp_req->sgl; sgl_pair = to_sgl_element_pair(ireq, pio_sgl->index); if (!sgl_pair) sgl = NULL; else if (pio_sgl->set == SCU_SGL_ELEMENT_PAIR_A) { if (sgl_pair->B.address_lower == 0 && sgl_pair->B.address_upper == 0) { sgl = NULL; } else { pio_sgl->set = SCU_SGL_ELEMENT_PAIR_B; sgl = &sgl_pair->B; } } else { if (sgl_pair->next_pair_lower == 0 && sgl_pair->next_pair_upper == 0) { sgl = NULL; } else { pio_sgl->index++; pio_sgl->set = SCU_SGL_ELEMENT_PAIR_A; sgl_pair = to_sgl_element_pair(ireq, pio_sgl->index); sgl = &sgl_pair->A; } } return sgl; } static enum sci_status stp_request_non_data_await_h2d_tc_event(struct isci_request *ireq, u32 completion_code) { switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) { case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD): ireq->scu_status = SCU_TASK_DONE_GOOD; ireq->sci_status = SCI_SUCCESS; sci_change_state(&ireq->sm, SCI_REQ_STP_NON_DATA_WAIT_D2H); break; default: /* All other completion status cause the IO to be * complete. If a NAK was received, then it is up to * the user to retry the request. */ ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code); ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR; sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); break; } return SCI_SUCCESS; } #define SCU_MAX_FRAME_BUFFER_SIZE 0x400 /* 1K is the maximum SCU frame data payload */ /* transmit DATA_FIS from (current sgl + offset) for input * parameter length. current sgl and offset is alreay stored in the IO request */ static enum sci_status sci_stp_request_pio_data_out_trasmit_data_frame( struct isci_request *ireq, u32 length) { struct isci_stp_request *stp_req = &ireq->stp.req; struct scu_task_context *task_context = ireq->tc; struct scu_sgl_element_pair *sgl_pair; struct scu_sgl_element *current_sgl; /* Recycle the TC and reconstruct it for sending out DATA FIS containing * for the data from current_sgl+offset for the input length */ sgl_pair = to_sgl_element_pair(ireq, stp_req->sgl.index); if (stp_req->sgl.set == SCU_SGL_ELEMENT_PAIR_A) current_sgl = &sgl_pair->A; else current_sgl = &sgl_pair->B; /* update the TC */ task_context->command_iu_upper = current_sgl->address_upper; task_context->command_iu_lower = current_sgl->address_lower; task_context->transfer_length_bytes = length; task_context->type.stp.fis_type = FIS_DATA; /* send the new TC out. */ return sci_controller_continue_io(ireq); } static enum sci_status sci_stp_request_pio_data_out_transmit_data(struct isci_request *ireq) { struct isci_stp_request *stp_req = &ireq->stp.req; struct scu_sgl_element_pair *sgl_pair; enum sci_status status = SCI_SUCCESS; struct scu_sgl_element *sgl; u32 offset; u32 len = 0; offset = stp_req->sgl.offset; sgl_pair = to_sgl_element_pair(ireq, stp_req->sgl.index); if (WARN_ONCE(!sgl_pair, "%s: null sgl element", __func__)) return SCI_FAILURE; if (stp_req->sgl.set == SCU_SGL_ELEMENT_PAIR_A) { sgl = &sgl_pair->A; len = sgl_pair->A.length - offset; } else { sgl = &sgl_pair->B; len = sgl_pair->B.length - offset; } if (stp_req->pio_len == 0) return SCI_SUCCESS; if (stp_req->pio_len >= len) { status = sci_stp_request_pio_data_out_trasmit_data_frame(ireq, len); if (status != SCI_SUCCESS) return status; stp_req->pio_len -= len; /* update the current sgl, offset and save for future */ sgl = pio_sgl_next(stp_req); offset = 0; } else if (stp_req->pio_len < len) { sci_stp_request_pio_data_out_trasmit_data_frame(ireq, stp_req->pio_len); /* Sgl offset will be adjusted and saved for future */ offset += stp_req->pio_len; sgl->address_lower += stp_req->pio_len; stp_req->pio_len = 0; } stp_req->sgl.offset = offset; return status; } /** * * @stp_request: The request that is used for the SGL processing. * @data_buffer: The buffer of data to be copied. * @length: The length of the data transfer. * * Copy the data from the buffer for the length specified to the IO reqeust SGL * specified data region. enum sci_status */ static enum sci_status sci_stp_request_pio_data_in_copy_data_buffer(struct isci_stp_request *stp_req, u8 *data_buf, u32 len) { struct isci_request *ireq; u8 *src_addr; int copy_len; struct sas_task *task; struct scatterlist *sg; void *kaddr; int total_len = len; ireq = to_ireq(stp_req); task = isci_request_access_task(ireq); src_addr = data_buf; if (task->num_scatter > 0) { sg = task->scatter; while (total_len > 0) { struct page *page = sg_page(sg); copy_len = min_t(int, total_len, sg_dma_len(sg)); kaddr = kmap_atomic(page, KM_IRQ0); memcpy(kaddr + sg->offset, src_addr, copy_len); kunmap_atomic(kaddr, KM_IRQ0); total_len -= copy_len; src_addr += copy_len; sg = sg_next(sg); } } else { BUG_ON(task->total_xfer_len < total_len); memcpy(task->scatter, src_addr, total_len); } return SCI_SUCCESS; } /** * * @sci_req: The PIO DATA IN request that is to receive the data. * @data_buffer: The buffer to copy from. * * Copy the data buffer to the io request data region. enum sci_status */ static enum sci_status sci_stp_request_pio_data_in_copy_data( struct isci_stp_request *stp_req, u8 *data_buffer) { enum sci_status status; /* * If there is less than 1K remaining in the transfer request * copy just the data for the transfer */ if (stp_req->pio_len < SCU_MAX_FRAME_BUFFER_SIZE) { status = sci_stp_request_pio_data_in_copy_data_buffer( stp_req, data_buffer, stp_req->pio_len); if (status == SCI_SUCCESS) stp_req->pio_len = 0; } else { /* We are transfering the whole frame so copy */ status = sci_stp_request_pio_data_in_copy_data_buffer( stp_req, data_buffer, SCU_MAX_FRAME_BUFFER_SIZE); if (status == SCI_SUCCESS) stp_req->pio_len -= SCU_MAX_FRAME_BUFFER_SIZE; } return status; } static enum sci_status stp_request_pio_await_h2d_completion_tc_event(struct isci_request *ireq, u32 completion_code) { enum sci_status status = SCI_SUCCESS; switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) { case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD): ireq->scu_status = SCU_TASK_DONE_GOOD; ireq->sci_status = SCI_SUCCESS; sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME); break; default: /* All other completion status cause the IO to be * complete. If a NAK was received, then it is up to * the user to retry the request. */ ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code); ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR; sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); break; } return status; } static enum sci_status pio_data_out_tx_done_tc_event(struct isci_request *ireq, u32 completion_code) { enum sci_status status = SCI_SUCCESS; bool all_frames_transferred = false; struct isci_stp_request *stp_req = &ireq->stp.req; switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) { case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD): /* Transmit data */ if (stp_req->pio_len != 0) { status = sci_stp_request_pio_data_out_transmit_data(ireq); if (status == SCI_SUCCESS) { if (stp_req->pio_len == 0) all_frames_transferred = true; } } else if (stp_req->pio_len == 0) { /* * this will happen if the all data is written at the * first time after the pio setup fis is received */ all_frames_transferred = true; } /* all data transferred. */ if (all_frames_transferred) { /* * Change the state to SCI_REQ_STP_PIO_DATA_IN * and wait for PIO_SETUP fis / or D2H REg fis. */ sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME); } break; default: /* * All other completion status cause the IO to be complete. * If a NAK was received, then it is up to the user to retry * the request. */ ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code); ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR; sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); break; } return status; } static enum sci_status sci_stp_request_udma_general_frame_handler(struct isci_request *ireq, u32 frame_index) { struct isci_host *ihost = ireq->owning_controller; struct dev_to_host_fis *frame_header; enum sci_status status; u32 *frame_buffer; status = sci_unsolicited_frame_control_get_header(&ihost->uf_control, frame_index, (void **)&frame_header); if ((status == SCI_SUCCESS) && (frame_header->fis_type == FIS_REGD2H)) { sci_unsolicited_frame_control_get_buffer(&ihost->uf_control, frame_index, (void **)&frame_buffer); sci_controller_copy_sata_response(&ireq->stp.rsp, frame_header, frame_buffer); } sci_controller_release_frame(ihost, frame_index); return status; } static enum sci_status process_unsolicited_fis(struct isci_request *ireq, u32 frame_index) { struct isci_host *ihost = ireq->owning_controller; enum sci_status status; struct dev_to_host_fis *frame_header; u32 *frame_buffer; status = sci_unsolicited_frame_control_get_header(&ihost->uf_control, frame_index, (void **)&frame_header); if (status != SCI_SUCCESS) return status; if (frame_header->fis_type != FIS_REGD2H) { dev_err(&ireq->isci_host->pdev->dev, "%s ERROR: invalid fis type 0x%X\n", __func__, frame_header->fis_type); return SCI_FAILURE; } sci_unsolicited_frame_control_get_buffer(&ihost->uf_control, frame_index, (void **)&frame_buffer); sci_controller_copy_sata_response(&ireq->stp.rsp, (u32 *)frame_header, frame_buffer); /* Frame has been decoded return it to the controller */ sci_controller_release_frame(ihost, frame_index); return status; } static enum sci_status atapi_d2h_reg_frame_handler(struct isci_request *ireq, u32 frame_index) { struct sas_task *task = isci_request_access_task(ireq); enum sci_status status; status = process_unsolicited_fis(ireq, frame_index); if (status == SCI_SUCCESS) { if (ireq->stp.rsp.status & ATA_ERR) status = SCI_IO_FAILURE_RESPONSE_VALID; } else { status = SCI_IO_FAILURE_RESPONSE_VALID; } if (status != SCI_SUCCESS) { ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE; ireq->sci_status = status; } else { ireq->scu_status = SCU_TASK_DONE_GOOD; ireq->sci_status = SCI_SUCCESS; } /* the d2h ufi is the end of non-data commands */ if (task->data_dir == DMA_NONE) sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); return status; } static void scu_atapi_reconstruct_raw_frame_task_context(struct isci_request *ireq) { struct ata_device *dev = sas_to_ata_dev(ireq->target_device->domain_dev); void *atapi_cdb = ireq->ttype_ptr.io_task_ptr->ata_task.atapi_packet; struct scu_task_context *task_context = ireq->tc; /* fill in the SCU Task Context for a DATA fis containing CDB in Raw Frame * type. The TC for previous Packet fis was already there, we only need to * change the H2D fis content. */ memset(&ireq->stp.cmd, 0, sizeof(struct host_to_dev_fis)); memcpy(((u8 *)&ireq->stp.cmd + sizeof(u32)), atapi_cdb, ATAPI_CDB_LEN); memset(&(task_context->type.stp), 0, sizeof(struct stp_task_context)); task_context->type.stp.fis_type = FIS_DATA; task_context->transfer_length_bytes = dev->cdb_len; } static void scu_atapi_construct_task_context(struct isci_request *ireq) { struct ata_device *dev = sas_to_ata_dev(ireq->target_device->domain_dev); struct sas_task *task = isci_request_access_task(ireq); struct scu_task_context *task_context = ireq->tc; int cdb_len = dev->cdb_len; /* reference: SSTL 1.13.4.2 * task_type, sata_direction */ if (task->data_dir == DMA_TO_DEVICE) { task_context->task_type = SCU_TASK_TYPE_PACKET_DMA_OUT; task_context->sata_direction = 0; } else { /* todo: for NO_DATA command, we need to send out raw frame. */ task_context->task_type = SCU_TASK_TYPE_PACKET_DMA_IN; task_context->sata_direction = 1; } memset(&task_context->type.stp, 0, sizeof(task_context->type.stp)); task_context->type.stp.fis_type = FIS_DATA; memset(&ireq->stp.cmd, 0, sizeof(ireq->stp.cmd)); memcpy(&ireq->stp.cmd.lbal, task->ata_task.atapi_packet, cdb_len); task_context->ssp_command_iu_length = cdb_len / sizeof(u32); /* task phase is set to TX_CMD */ task_context->task_phase = 0x1; /* retry counter */ task_context->stp_retry_count = 0; /* data transfer size. */ task_context->transfer_length_bytes = task->total_xfer_len; /* setup sgl */ sci_request_build_sgl(ireq); } enum sci_status sci_io_request_frame_handler(struct isci_request *ireq, u32 frame_index) { struct isci_host *ihost = ireq->owning_controller; struct isci_stp_request *stp_req = &ireq->stp.req; enum sci_base_request_states state; enum sci_status status; ssize_t word_cnt; state = ireq->sm.current_state_id; switch (state) { case SCI_REQ_STARTED: { struct ssp_frame_hdr ssp_hdr; void *frame_header; sci_unsolicited_frame_control_get_header(&ihost->uf_control, frame_index, &frame_header); word_cnt = sizeof(struct ssp_frame_hdr) / sizeof(u32); sci_swab32_cpy(&ssp_hdr, frame_header, word_cnt); if (ssp_hdr.frame_type == SSP_RESPONSE) { struct ssp_response_iu *resp_iu; ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32); sci_unsolicited_frame_control_get_buffer(&ihost->uf_control, frame_index, (void **)&resp_iu); sci_swab32_cpy(&ireq->ssp.rsp, resp_iu, word_cnt); resp_iu = &ireq->ssp.rsp; if (resp_iu->datapres == 0x01 || resp_iu->datapres == 0x02) { ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE; ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR; } else { ireq->scu_status = SCU_TASK_DONE_GOOD; ireq->sci_status = SCI_SUCCESS; } } else { /* not a response frame, why did it get forwarded? */ dev_err(&ihost->pdev->dev, "%s: SCIC IO Request 0x%p received unexpected " "frame %d type 0x%02x\n", __func__, ireq, frame_index, ssp_hdr.frame_type); } /* * In any case we are done with this frame buffer return it to * the controller */ sci_controller_release_frame(ihost, frame_index); return SCI_SUCCESS; } case SCI_REQ_TASK_WAIT_TC_RESP: sci_io_request_copy_response(ireq); sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); sci_controller_release_frame(ihost, frame_index); return SCI_SUCCESS; case SCI_REQ_SMP_WAIT_RESP: { struct sas_task *task = isci_request_access_task(ireq); struct scatterlist *sg = &task->smp_task.smp_resp; void *frame_header, *kaddr; u8 *rsp; sci_unsolicited_frame_control_get_header(&ihost->uf_control, frame_index, &frame_header); kaddr = kmap_atomic(sg_page(sg), KM_IRQ0); rsp = kaddr + sg->offset; sci_swab32_cpy(rsp, frame_header, 1); if (rsp[0] == SMP_RESPONSE) { void *smp_resp; sci_unsolicited_frame_control_get_buffer(&ihost->uf_control, frame_index, &smp_resp); word_cnt = (sg->length/4)-1; if (word_cnt > 0) word_cnt = min_t(unsigned int, word_cnt, SCU_UNSOLICITED_FRAME_BUFFER_SIZE/4); sci_swab32_cpy(rsp + 4, smp_resp, word_cnt); ireq->scu_status = SCU_TASK_DONE_GOOD; ireq->sci_status = SCI_SUCCESS; sci_change_state(&ireq->sm, SCI_REQ_SMP_WAIT_TC_COMP); } else { /* * This was not a response frame why did it get * forwarded? */ dev_err(&ihost->pdev->dev, "%s: SCIC SMP Request 0x%p received unexpected " "frame %d type 0x%02x\n", __func__, ireq, frame_index, rsp[0]); ireq->scu_status = SCU_TASK_DONE_SMP_FRM_TYPE_ERR; ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR; sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); } kunmap_atomic(kaddr, KM_IRQ0); sci_controller_release_frame(ihost, frame_index); return SCI_SUCCESS; } case SCI_REQ_STP_UDMA_WAIT_TC_COMP: return sci_stp_request_udma_general_frame_handler(ireq, frame_index); case SCI_REQ_STP_UDMA_WAIT_D2H: /* Use the general frame handler to copy the resposne data */ status = sci_stp_request_udma_general_frame_handler(ireq, frame_index); if (status != SCI_SUCCESS) return status; ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE; ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID; sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); return SCI_SUCCESS; case SCI_REQ_STP_NON_DATA_WAIT_D2H: { struct dev_to_host_fis *frame_header; u32 *frame_buffer; status = sci_unsolicited_frame_control_get_header(&ihost->uf_control, frame_index, (void **)&frame_header); if (status != SCI_SUCCESS) { dev_err(&ihost->pdev->dev, "%s: SCIC IO Request 0x%p could not get frame " "header for frame index %d, status %x\n", __func__, stp_req, frame_index, status); return status; } switch (frame_header->fis_type) { case FIS_REGD2H: sci_unsolicited_frame_control_get_buffer(&ihost->uf_control, frame_index, (void **)&frame_buffer); sci_controller_copy_sata_response(&ireq->stp.rsp, frame_header, frame_buffer); /* The command has completed with error */ ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE; ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID; break; default: dev_warn(&ihost->pdev->dev, "%s: IO Request:0x%p Frame Id:%d protocol " "violation occurred\n", __func__, stp_req, frame_index); ireq->scu_status = SCU_TASK_DONE_UNEXP_FIS; ireq->sci_status = SCI_FAILURE_PROTOCOL_VIOLATION; break; } sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); /* Frame has been decoded return it to the controller */ sci_controller_release_frame(ihost, frame_index); return status; } case SCI_REQ_STP_PIO_WAIT_FRAME: { struct sas_task *task = isci_request_access_task(ireq); struct dev_to_host_fis *frame_header; u32 *frame_buffer; status = sci_unsolicited_frame_control_get_header(&ihost->uf_control, frame_index, (void **)&frame_header); if (status != SCI_SUCCESS) { dev_err(&ihost->pdev->dev, "%s: SCIC IO Request 0x%p could not get frame " "header for frame index %d, status %x\n", __func__, stp_req, frame_index, status); return status; } switch (frame_header->fis_type) { case FIS_PIO_SETUP: /* Get from the frame buffer the PIO Setup Data */ sci_unsolicited_frame_control_get_buffer(&ihost->uf_control, frame_index, (void **)&frame_buffer); /* Get the data from the PIO Setup The SCU Hardware * returns first word in the frame_header and the rest * of the data is in the frame buffer so we need to * back up one dword */ /* transfer_count: first 16bits in the 4th dword */ stp_req->pio_len = frame_buffer[3] & 0xffff; /* status: 4th byte in the 3rd dword */ stp_req->status = (frame_buffer[2] >> 24) & 0xff; sci_controller_copy_sata_response(&ireq->stp.rsp, frame_header, frame_buffer); ireq->stp.rsp.status = stp_req->status; /* The next state is dependent on whether the * request was PIO Data-in or Data out */ if (task->data_dir == DMA_FROM_DEVICE) { sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_DATA_IN); } else if (task->data_dir == DMA_TO_DEVICE) { /* Transmit data */ status = sci_stp_request_pio_data_out_transmit_data(ireq); if (status != SCI_SUCCESS) break; sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_DATA_OUT); } break; case FIS_SETDEVBITS: sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME); break; case FIS_REGD2H: if (frame_header->status & ATA_BUSY) { /* * Now why is the drive sending a D2H Register * FIS when it is still busy? Do nothing since * we are still in the right state. */ dev_dbg(&ihost->pdev->dev, "%s: SCIC PIO Request 0x%p received " "D2H Register FIS with BSY status " "0x%x\n", __func__, stp_req, frame_header->status); break; } sci_unsolicited_frame_control_get_buffer(&ihost->uf_control, frame_index, (void **)&frame_buffer); sci_controller_copy_sata_response(&ireq->stp.rsp, frame_header, frame_buffer); ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE; ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID; sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); break; default: /* FIXME: what do we do here? */ break; } /* Frame is decoded return it to the controller */ sci_controller_release_frame(ihost, frame_index); return status; } case SCI_REQ_STP_PIO_DATA_IN: { struct dev_to_host_fis *frame_header; struct sata_fis_data *frame_buffer; status = sci_unsolicited_frame_control_get_header(&ihost->uf_control, frame_index, (void **)&frame_header); if (status != SCI_SUCCESS) { dev_err(&ihost->pdev->dev, "%s: SCIC IO Request 0x%p could not get frame " "header for frame index %d, status %x\n", __func__, stp_req, frame_index, status); return status; } if (frame_header->fis_type != FIS_DATA) { dev_err(&ihost->pdev->dev, "%s: SCIC PIO Request 0x%p received frame %d " "with fis type 0x%02x when expecting a data " "fis.\n", __func__, stp_req, frame_index, frame_header->fis_type); ireq->scu_status = SCU_TASK_DONE_GOOD; ireq->sci_status = SCI_FAILURE_IO_REQUIRES_SCSI_ABORT; sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); /* Frame is decoded return it to the controller */ sci_controller_release_frame(ihost, frame_index); return status; } if (stp_req->sgl.index < 0) { ireq->saved_rx_frame_index = frame_index; stp_req->pio_len = 0; } else { sci_unsolicited_frame_control_get_buffer(&ihost->uf_control, frame_index, (void **)&frame_buffer); status = sci_stp_request_pio_data_in_copy_data(stp_req, (u8 *)frame_buffer); /* Frame is decoded return it to the controller */ sci_controller_release_frame(ihost, frame_index); } /* Check for the end of the transfer, are there more * bytes remaining for this data transfer */ if (status != SCI_SUCCESS || stp_req->pio_len != 0) return status; if ((stp_req->status & ATA_BUSY) == 0) { ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE; ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID; sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); } else { sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME); } return status; } case SCI_REQ_STP_SOFT_RESET_WAIT_D2H: { struct dev_to_host_fis *frame_header; u32 *frame_buffer; status = sci_unsolicited_frame_control_get_header(&ihost->uf_control, frame_index, (void **)&frame_header); if (status != SCI_SUCCESS) { dev_err(&ihost->pdev->dev, "%s: SCIC IO Request 0x%p could not get frame " "header for frame index %d, status %x\n", __func__, stp_req, frame_index, status); return status; } switch (frame_header->fis_type) { case FIS_REGD2H: sci_unsolicited_frame_control_get_buffer(&ihost->uf_control, frame_index, (void **)&frame_buffer); sci_controller_copy_sata_response(&ireq->stp.rsp, frame_header, frame_buffer); /* The command has completed with error */ ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE; ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID; break; default: dev_warn(&ihost->pdev->dev, "%s: IO Request:0x%p Frame Id:%d protocol " "violation occurred\n", __func__, stp_req, frame_index); ireq->scu_status = SCU_TASK_DONE_UNEXP_FIS; ireq->sci_status = SCI_FAILURE_PROTOCOL_VIOLATION; break; } sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); /* Frame has been decoded return it to the controller */ sci_controller_release_frame(ihost, frame_index); return status; } case SCI_REQ_ATAPI_WAIT_PIO_SETUP: { struct sas_task *task = isci_request_access_task(ireq); sci_controller_release_frame(ihost, frame_index); ireq->target_device->working_request = ireq; if (task->data_dir == DMA_NONE) { sci_change_state(&ireq->sm, SCI_REQ_ATAPI_WAIT_TC_COMP); scu_atapi_reconstruct_raw_frame_task_context(ireq); } else { sci_change_state(&ireq->sm, SCI_REQ_ATAPI_WAIT_D2H); scu_atapi_construct_task_context(ireq); } sci_controller_continue_io(ireq); return SCI_SUCCESS; } case SCI_REQ_ATAPI_WAIT_D2H: return atapi_d2h_reg_frame_handler(ireq, frame_index); case SCI_REQ_ABORTING: /* * TODO: Is it even possible to get an unsolicited frame in the * aborting state? */ sci_controller_release_frame(ihost, frame_index); return SCI_SUCCESS; default: dev_warn(&ihost->pdev->dev, "%s: SCIC IO Request given unexpected frame %x while " "in state %d\n", __func__, frame_index, state); sci_controller_release_frame(ihost, frame_index); return SCI_FAILURE_INVALID_STATE; } } static enum sci_status stp_request_udma_await_tc_event(struct isci_request *ireq, u32 completion_code) { enum sci_status status = SCI_SUCCESS; switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) { case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD): ireq->scu_status = SCU_TASK_DONE_GOOD; ireq->sci_status = SCI_SUCCESS; sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); break; case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_FIS): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR): /* We must check ther response buffer to see if the D2H * Register FIS was received before we got the TC * completion. */ if (ireq->stp.rsp.fis_type == FIS_REGD2H) { sci_remote_device_suspend(ireq->target_device, SCU_EVENT_SPECIFIC(SCU_NORMALIZE_COMPLETION_STATUS(completion_code))); ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE; ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID; sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); } else { /* If we have an error completion status for the * TC then we can expect a D2H register FIS from * the device so we must change state to wait * for it */ sci_change_state(&ireq->sm, SCI_REQ_STP_UDMA_WAIT_D2H); } break; /* TODO Check to see if any of these completion status need to * wait for the device to host register fis. */ /* TODO We can retry the command for SCU_TASK_DONE_CMD_LL_R_ERR * - this comes only for B0 */ case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_INV_FIS_LEN): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_MAX_PLD_ERR): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_R_ERR): case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_CMD_LL_R_ERR): sci_remote_device_suspend(ireq->target_device, SCU_EVENT_SPECIFIC(SCU_NORMALIZE_COMPLETION_STATUS(completion_code))); /* Fall through to the default case */ default: /* All other completion status cause the IO to be complete. */ ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code); ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR; sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); break; } return status; } static enum sci_status stp_request_soft_reset_await_h2d_asserted_tc_event(struct isci_request *ireq, u32 completion_code) { switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) { case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD): ireq->scu_status = SCU_TASK_DONE_GOOD; ireq->sci_status = SCI_SUCCESS; sci_change_state(&ireq->sm, SCI_REQ_STP_SOFT_RESET_WAIT_H2D_DIAG); break; default: /* * All other completion status cause the IO to be complete. * If a NAK was received, then it is up to the user to retry * the request. */ ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code); ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR; sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); break; } return SCI_SUCCESS; } static enum sci_status stp_request_soft_reset_await_h2d_diagnostic_tc_event(struct isci_request *ireq, u32 completion_code) { switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) { case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD): ireq->scu_status = SCU_TASK_DONE_GOOD; ireq->sci_status = SCI_SUCCESS; sci_change_state(&ireq->sm, SCI_REQ_STP_SOFT_RESET_WAIT_D2H); break; default: /* All other completion status cause the IO to be complete. If * a NAK was received, then it is up to the user to retry the * request. */ ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code); ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR; sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); break; } return SCI_SUCCESS; } static enum sci_status atapi_raw_completion(struct isci_request *ireq, u32 completion_code, enum sci_base_request_states next) { enum sci_status status = SCI_SUCCESS; switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) { case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD): ireq->scu_status = SCU_TASK_DONE_GOOD; ireq->sci_status = SCI_SUCCESS; sci_change_state(&ireq->sm, next); break; default: /* All other completion status cause the IO to be complete. * If a NAK was received, then it is up to the user to retry * the request. */ ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code); ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR; sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); break; } return status; } static enum sci_status atapi_data_tc_completion_handler(struct isci_request *ireq, u32 completion_code) { struct isci_remote_device *idev = ireq->target_device; struct dev_to_host_fis *d2h = &ireq->stp.rsp; enum sci_status status = SCI_SUCCESS; switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) { case (SCU_TASK_DONE_GOOD << SCU_COMPLETION_TL_STATUS_SHIFT): sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); break; case (SCU_TASK_DONE_UNEXP_FIS << SCU_COMPLETION_TL_STATUS_SHIFT): { u16 len = sci_req_tx_bytes(ireq); /* likely non-error data underrrun, workaround missing * d2h frame from the controller */ if (d2h->fis_type != FIS_REGD2H) { d2h->fis_type = FIS_REGD2H; d2h->flags = (1 << 6); d2h->status = 0x50; d2h->error = 0; d2h->lbal = 0; d2h->byte_count_low = len & 0xff; d2h->byte_count_high = len >> 8; d2h->device = 0xa0; d2h->lbal_exp = 0; d2h->lbam_exp = 0; d2h->lbah_exp = 0; d2h->_r_a = 0; d2h->sector_count = 0x3; d2h->sector_count_exp = 0; d2h->_r_b = 0; d2h->_r_c = 0; d2h->_r_d = 0; } ireq->scu_status = SCU_TASK_DONE_GOOD; ireq->sci_status = SCI_SUCCESS_IO_DONE_EARLY; status = ireq->sci_status; /* the hw will have suspended the rnc, so complete the * request upon pending resume */ sci_change_state(&idev->sm, SCI_STP_DEV_ATAPI_ERROR); break; } case (SCU_TASK_DONE_EXCESS_DATA << SCU_COMPLETION_TL_STATUS_SHIFT): /* In this case, there is no UF coming after. * compelte the IO now. */ ireq->scu_status = SCU_TASK_DONE_GOOD; ireq->sci_status = SCI_SUCCESS; sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); break; default: if (d2h->fis_type == FIS_REGD2H) { /* UF received change the device state to ATAPI_ERROR */ status = ireq->sci_status; sci_change_state(&idev->sm, SCI_STP_DEV_ATAPI_ERROR); } else { /* If receiving any non-sucess TC status, no UF * received yet, then an UF for the status fis * is coming after (XXX: suspect this is * actually a protocol error or a bug like the * DONE_UNEXP_FIS case) */ ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE; ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID; sci_change_state(&ireq->sm, SCI_REQ_ATAPI_WAIT_D2H); } break; } return status; } enum sci_status sci_io_request_tc_completion(struct isci_request *ireq, u32 completion_code) { enum sci_base_request_states state; struct isci_host *ihost = ireq->owning_controller; state = ireq->sm.current_state_id; switch (state) { case SCI_REQ_STARTED: return request_started_state_tc_event(ireq, completion_code); case SCI_REQ_TASK_WAIT_TC_COMP: return ssp_task_request_await_tc_event(ireq, completion_code); case SCI_REQ_SMP_WAIT_RESP: return smp_request_await_response_tc_event(ireq, completion_code); case SCI_REQ_SMP_WAIT_TC_COMP: return smp_request_await_tc_event(ireq, completion_code); case SCI_REQ_STP_UDMA_WAIT_TC_COMP: return stp_request_udma_await_tc_event(ireq, completion_code); case SCI_REQ_STP_NON_DATA_WAIT_H2D: return stp_request_non_data_await_h2d_tc_event(ireq, completion_code); case SCI_REQ_STP_PIO_WAIT_H2D: return stp_request_pio_await_h2d_completion_tc_event(ireq, completion_code); case SCI_REQ_STP_PIO_DATA_OUT: return pio_data_out_tx_done_tc_event(ireq, completion_code); case SCI_REQ_STP_SOFT_RESET_WAIT_H2D_ASSERTED: return stp_request_soft_reset_await_h2d_asserted_tc_event(ireq, completion_code); case SCI_REQ_STP_SOFT_RESET_WAIT_H2D_DIAG: return stp_request_soft_reset_await_h2d_diagnostic_tc_event(ireq, completion_code); case SCI_REQ_ABORTING: return request_aborting_state_tc_event(ireq, completion_code); case SCI_REQ_ATAPI_WAIT_H2D: return atapi_raw_completion(ireq, completion_code, SCI_REQ_ATAPI_WAIT_PIO_SETUP); case SCI_REQ_ATAPI_WAIT_TC_COMP: return atapi_raw_completion(ireq, completion_code, SCI_REQ_ATAPI_WAIT_D2H); case SCI_REQ_ATAPI_WAIT_D2H: return atapi_data_tc_completion_handler(ireq, completion_code); default: dev_warn(&ihost->pdev->dev, "%s: SCIC IO Request given task completion " "notification %x while in wrong state %d\n", __func__, completion_code, state); return SCI_FAILURE_INVALID_STATE; } } /** * isci_request_process_response_iu() - This function sets the status and * response iu, in the task struct, from the request object for the upper * layer driver. * @sas_task: This parameter is the task struct from the upper layer driver. * @resp_iu: This parameter points to the response iu of the completed request. * @dev: This parameter specifies the linux device struct. * * none. */ static void isci_request_process_response_iu( struct sas_task *task, struct ssp_response_iu *resp_iu, struct device *dev) { dev_dbg(dev, "%s: resp_iu = %p " "resp_iu->status = 0x%x,\nresp_iu->datapres = %d " "resp_iu->response_data_len = %x, " "resp_iu->sense_data_len = %x\nrepsonse data: ", __func__, resp_iu, resp_iu->status, resp_iu->datapres, resp_iu->response_data_len, resp_iu->sense_data_len); task->task_status.stat = resp_iu->status; /* libsas updates the task status fields based on the response iu. */ sas_ssp_task_response(dev, task, resp_iu); } /** * isci_request_set_open_reject_status() - This function prepares the I/O * completion for OPEN_REJECT conditions. * @request: This parameter is the completed isci_request object. * @response_ptr: This parameter specifies the service response for the I/O. * @status_ptr: This parameter specifies the exec status for the I/O. * @complete_to_host_ptr: This parameter specifies the action to be taken by * the LLDD with respect to completing this request or forcing an abort * condition on the I/O. * @open_rej_reason: This parameter specifies the encoded reason for the * abandon-class reject. * * none. */ static void isci_request_set_open_reject_status( struct isci_request *request, struct sas_task *task, enum service_response *response_ptr, enum exec_status *status_ptr, enum isci_completion_selection *complete_to_host_ptr, enum sas_open_rej_reason open_rej_reason) { /* Task in the target is done. */ set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags); *response_ptr = SAS_TASK_UNDELIVERED; *status_ptr = SAS_OPEN_REJECT; *complete_to_host_ptr = isci_perform_normal_io_completion; task->task_status.open_rej_reason = open_rej_reason; } /** * isci_request_handle_controller_specific_errors() - This function decodes * controller-specific I/O completion error conditions. * @request: This parameter is the completed isci_request object. * @response_ptr: This parameter specifies the service response for the I/O. * @status_ptr: This parameter specifies the exec status for the I/O. * @complete_to_host_ptr: This parameter specifies the action to be taken by * the LLDD with respect to completing this request or forcing an abort * condition on the I/O. * * none. */ static void isci_request_handle_controller_specific_errors( struct isci_remote_device *idev, struct isci_request *request, struct sas_task *task, enum service_response *response_ptr, enum exec_status *status_ptr, enum isci_completion_selection *complete_to_host_ptr) { unsigned int cstatus; cstatus = request->scu_status; dev_dbg(&request->isci_host->pdev->dev, "%s: %p SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR " "- controller status = 0x%x\n", __func__, request, cstatus); /* Decode the controller-specific errors; most * important is to recognize those conditions in which * the target may still have a task outstanding that * must be aborted. * * Note that there are SCU completion codes being * named in the decode below for which SCIC has already * done work to handle them in a way other than as * a controller-specific completion code; these are left * in the decode below for completeness sake. */ switch (cstatus) { case SCU_TASK_DONE_DMASETUP_DIRERR: /* Also SCU_TASK_DONE_SMP_FRM_TYPE_ERR: */ case SCU_TASK_DONE_XFERCNT_ERR: /* Also SCU_TASK_DONE_SMP_UFI_ERR: */ if (task->task_proto == SAS_PROTOCOL_SMP) { /* SCU_TASK_DONE_SMP_UFI_ERR == Task Done. */ *response_ptr = SAS_TASK_COMPLETE; /* See if the device has been/is being stopped. Note * that we ignore the quiesce state, since we are * concerned about the actual device state. */ if (!idev) *status_ptr = SAS_DEVICE_UNKNOWN; else *status_ptr = SAS_ABORTED_TASK; set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags); *complete_to_host_ptr = isci_perform_normal_io_completion; } else { /* Task in the target is not done. */ *response_ptr = SAS_TASK_UNDELIVERED; if (!idev) *status_ptr = SAS_DEVICE_UNKNOWN; else *status_ptr = SAM_STAT_TASK_ABORTED; clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags); *complete_to_host_ptr = isci_perform_error_io_completion; } break; case SCU_TASK_DONE_CRC_ERR: case SCU_TASK_DONE_NAK_CMD_ERR: case SCU_TASK_DONE_EXCESS_DATA: case SCU_TASK_DONE_UNEXP_FIS: /* Also SCU_TASK_DONE_UNEXP_RESP: */ case SCU_TASK_DONE_VIIT_ENTRY_NV: /* TODO - conditions? */ case SCU_TASK_DONE_IIT_ENTRY_NV: /* TODO - conditions? */ case SCU_TASK_DONE_RNCNV_OUTBOUND: /* TODO - conditions? */ /* These are conditions in which the target * has completed the task, so that no cleanup * is necessary. */ *response_ptr = SAS_TASK_COMPLETE; /* See if the device has been/is being stopped. Note * that we ignore the quiesce state, since we are * concerned about the actual device state. */ if (!idev) *status_ptr = SAS_DEVICE_UNKNOWN; else *status_ptr = SAS_ABORTED_TASK; set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags); *complete_to_host_ptr = isci_perform_normal_io_completion; break; /* Note that the only open reject completion codes seen here will be * abandon-class codes; all others are automatically retried in the SCU. */ case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION: isci_request_set_open_reject_status( request, task, response_ptr, status_ptr, complete_to_host_ptr, SAS_OREJ_WRONG_DEST); break; case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION: /* Note - the return of AB0 will change when * libsas implements detection of zone violations. */ isci_request_set_open_reject_status( request, task, response_ptr, status_ptr, complete_to_host_ptr, SAS_OREJ_RESV_AB0); break; case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1: isci_request_set_open_reject_status( request, task, response_ptr, status_ptr, complete_to_host_ptr, SAS_OREJ_RESV_AB1); break; case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2: isci_request_set_open_reject_status( request, task, response_ptr, status_ptr, complete_to_host_ptr, SAS_OREJ_RESV_AB2); break; case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3: isci_request_set_open_reject_status( request, task, response_ptr, status_ptr, complete_to_host_ptr, SAS_OREJ_RESV_AB3); break; case SCU_TASK_OPEN_REJECT_BAD_DESTINATION: isci_request_set_open_reject_status( request, task, response_ptr, status_ptr, complete_to_host_ptr, SAS_OREJ_BAD_DEST); break; case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY: isci_request_set_open_reject_status( request, task, response_ptr, status_ptr, complete_to_host_ptr, SAS_OREJ_STP_NORES); break; case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED: isci_request_set_open_reject_status( request, task, response_ptr, status_ptr, complete_to_host_ptr, SAS_OREJ_EPROTO); break; case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED: isci_request_set_open_reject_status( request, task, response_ptr, status_ptr, complete_to_host_ptr, SAS_OREJ_CONN_RATE); break; case SCU_TASK_DONE_LL_R_ERR: /* Also SCU_TASK_DONE_ACK_NAK_TO: */ case SCU_TASK_DONE_LL_PERR: case SCU_TASK_DONE_LL_SY_TERM: /* Also SCU_TASK_DONE_NAK_ERR:*/ case SCU_TASK_DONE_LL_LF_TERM: /* Also SCU_TASK_DONE_DATA_LEN_ERR: */ case SCU_TASK_DONE_LL_ABORT_ERR: case SCU_TASK_DONE_SEQ_INV_TYPE: /* Also SCU_TASK_DONE_UNEXP_XR: */ case SCU_TASK_DONE_XR_IU_LEN_ERR: case SCU_TASK_DONE_INV_FIS_LEN: /* Also SCU_TASK_DONE_XR_WD_LEN: */ case SCU_TASK_DONE_SDMA_ERR: case SCU_TASK_DONE_OFFSET_ERR: case SCU_TASK_DONE_MAX_PLD_ERR: case SCU_TASK_DONE_LF_ERR: case SCU_TASK_DONE_SMP_RESP_TO_ERR: /* Escalate to dev reset? */ case SCU_TASK_DONE_SMP_LL_RX_ERR: case SCU_TASK_DONE_UNEXP_DATA: case SCU_TASK_DONE_UNEXP_SDBFIS: case SCU_TASK_DONE_REG_ERR: case SCU_TASK_DONE_SDB_ERR: case SCU_TASK_DONE_TASK_ABORT: default: /* Task in the target is not done. */ *response_ptr = SAS_TASK_UNDELIVERED; *status_ptr = SAM_STAT_TASK_ABORTED; if (task->task_proto == SAS_PROTOCOL_SMP) { set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags); *complete_to_host_ptr = isci_perform_normal_io_completion; } else { clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags); *complete_to_host_ptr = isci_perform_error_io_completion; } break; } } /** * isci_task_save_for_upper_layer_completion() - This function saves the * request for later completion to the upper layer driver. * @host: This parameter is a pointer to the host on which the the request * should be queued (either as an error or success). * @request: This parameter is the completed request. * @response: This parameter is the response code for the completed task. * @status: This parameter is the status code for the completed task. * * none. */ static void isci_task_save_for_upper_layer_completion( struct isci_host *host, struct isci_request *request, enum service_response response, enum exec_status status, enum isci_completion_selection task_notification_selection) { struct sas_task *task = isci_request_access_task(request); task_notification_selection = isci_task_set_completion_status(task, response, status, task_notification_selection); /* Tasks aborted specifically by a call to the lldd_abort_task * function should not be completed to the host in the regular path. */ switch (task_notification_selection) { case isci_perform_normal_io_completion: /* Normal notification (task_done) */ /* Add to the completed list. */ list_add(&request->completed_node, &host->requests_to_complete); /* Take the request off the device's pending request list. */ list_del_init(&request->dev_node); break; case isci_perform_aborted_io_completion: /* No notification to libsas because this request is * already in the abort path. */ /* Wake up whatever process was waiting for this * request to complete. */ WARN_ON(request->io_request_completion == NULL); if (request->io_request_completion != NULL) { /* Signal whoever is waiting that this * request is complete. */ complete(request->io_request_completion); } break; case isci_perform_error_io_completion: /* Use sas_task_abort */ /* Add to the aborted list. */ list_add(&request->completed_node, &host->requests_to_errorback); break; default: /* Add to the error to libsas list. */ list_add(&request->completed_node, &host->requests_to_errorback); break; } dev_dbg(&host->pdev->dev, "%s: %d - task = %p, response=%d (%d), status=%d (%d)\n", __func__, task_notification_selection, task, (task) ? task->task_status.resp : 0, response, (task) ? task->task_status.stat : 0, status); } static void isci_process_stp_response(struct sas_task *task, struct dev_to_host_fis *fis) { struct task_status_struct *ts = &task->task_status; struct ata_task_resp *resp = (void *)&ts->buf[0]; resp->frame_len = sizeof(*fis); memcpy(resp->ending_fis, fis, sizeof(*fis)); ts->buf_valid_size = sizeof(*resp); /* If the device fault bit is set in the status register, then * set the sense data and return. */ if (fis->status & ATA_DF) ts->stat = SAS_PROTO_RESPONSE; else if (fis->status & ATA_ERR) ts->stat = SAM_STAT_CHECK_CONDITION; else ts->stat = SAM_STAT_GOOD; ts->resp = SAS_TASK_COMPLETE; } static void isci_request_io_request_complete(struct isci_host *ihost, struct isci_request *request, enum sci_io_status completion_status) { struct sas_task *task = isci_request_access_task(request); struct ssp_response_iu *resp_iu; unsigned long task_flags; struct isci_remote_device *idev = request->target_device; enum service_response response = SAS_TASK_UNDELIVERED; enum exec_status status = SAS_ABORTED_TASK; enum isci_request_status request_status; enum isci_completion_selection complete_to_host = isci_perform_normal_io_completion; dev_dbg(&ihost->pdev->dev, "%s: request = %p, task = %p,\n" "task->data_dir = %d completion_status = 0x%x\n", __func__, request, task, task->data_dir, completion_status); spin_lock(&request->state_lock); request_status = request->status; /* Decode the request status. Note that if the request has been * aborted by a task management function, we don't care * what the status is. */ switch (request_status) { case aborted: /* "aborted" indicates that the request was aborted by a task * management function, since once a task management request is * perfomed by the device, the request only completes because * of the subsequent driver terminate. * * Aborted also means an external thread is explicitly managing * this request, so that we do not complete it up the stack. * * The target is still there (since the TMF was successful). */ set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags); response = SAS_TASK_COMPLETE; /* See if the device has been/is being stopped. Note * that we ignore the quiesce state, since we are * concerned about the actual device state. */ if (!idev) status = SAS_DEVICE_UNKNOWN; else status = SAS_ABORTED_TASK; complete_to_host = isci_perform_aborted_io_completion; /* This was an aborted request. */ spin_unlock(&request->state_lock); break; case aborting: /* aborting means that the task management function tried and * failed to abort the request. We need to note the request * as SAS_TASK_UNDELIVERED, so that the scsi mid layer marks the * target as down. * * Aborting also means an external thread is explicitly managing * this request, so that we do not complete it up the stack. */ set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags); response = SAS_TASK_UNDELIVERED; if (!idev) /* The device has been /is being stopped. Note that * we ignore the quiesce state, since we are * concerned about the actual device state. */ status = SAS_DEVICE_UNKNOWN; else status = SAS_PHY_DOWN; complete_to_host = isci_perform_aborted_io_completion; /* This was an aborted request. */ spin_unlock(&request->state_lock); break; case terminating: /* This was an terminated request. This happens when * the I/O is being terminated because of an action on * the device (reset, tear down, etc.), and the I/O needs * to be completed up the stack. */ set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags); response = SAS_TASK_UNDELIVERED; /* See if the device has been/is being stopped. Note * that we ignore the quiesce state, since we are * concerned about the actual device state. */ if (!idev) status = SAS_DEVICE_UNKNOWN; else status = SAS_ABORTED_TASK; complete_to_host = isci_perform_aborted_io_completion; /* This was a terminated request. */ spin_unlock(&request->state_lock); break; case dead: /* This was a terminated request that timed-out during the * termination process. There is no task to complete to * libsas. */ complete_to_host = isci_perform_normal_io_completion; spin_unlock(&request->state_lock); break; default: /* The request is done from an SCU HW perspective. */ request->status = completed; spin_unlock(&request->state_lock); /* This is an active request being completed from the core. */ switch (completion_status) { case SCI_IO_FAILURE_RESPONSE_VALID: dev_dbg(&ihost->pdev->dev, "%s: SCI_IO_FAILURE_RESPONSE_VALID (%p/%p)\n", __func__, request, task); if (sas_protocol_ata(task->task_proto)) { isci_process_stp_response(task, &request->stp.rsp); } else if (SAS_PROTOCOL_SSP == task->task_proto) { /* crack the iu response buffer. */ resp_iu = &request->ssp.rsp; isci_request_process_response_iu(task, resp_iu, &ihost->pdev->dev); } else if (SAS_PROTOCOL_SMP == task->task_proto) { dev_err(&ihost->pdev->dev, "%s: SCI_IO_FAILURE_RESPONSE_VALID: " "SAS_PROTOCOL_SMP protocol\n", __func__); } else dev_err(&ihost->pdev->dev, "%s: unknown protocol\n", __func__); /* use the task status set in the task struct by the * isci_request_process_response_iu call. */ set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags); response = task->task_status.resp; status = task->task_status.stat; break; case SCI_IO_SUCCESS: case SCI_IO_SUCCESS_IO_DONE_EARLY: response = SAS_TASK_COMPLETE; status = SAM_STAT_GOOD; set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags); if (completion_status == SCI_IO_SUCCESS_IO_DONE_EARLY) { /* This was an SSP / STP / SATA transfer. * There is a possibility that less data than * the maximum was transferred. */ u32 transferred_length = sci_req_tx_bytes(request); task->task_status.residual = task->total_xfer_len - transferred_length; /* If there were residual bytes, call this an * underrun. */ if (task->task_status.residual != 0) status = SAS_DATA_UNDERRUN; dev_dbg(&ihost->pdev->dev, "%s: SCI_IO_SUCCESS_IO_DONE_EARLY %d\n", __func__, status); } else dev_dbg(&ihost->pdev->dev, "%s: SCI_IO_SUCCESS\n", __func__); break; case SCI_IO_FAILURE_TERMINATED: dev_dbg(&ihost->pdev->dev, "%s: SCI_IO_FAILURE_TERMINATED (%p/%p)\n", __func__, request, task); /* The request was terminated explicitly. No handling * is needed in the SCSI error handler path. */ set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags); response = SAS_TASK_UNDELIVERED; /* See if the device has been/is being stopped. Note * that we ignore the quiesce state, since we are * concerned about the actual device state. */ if (!idev) status = SAS_DEVICE_UNKNOWN; else status = SAS_ABORTED_TASK; complete_to_host = isci_perform_normal_io_completion; break; case SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR: isci_request_handle_controller_specific_errors( idev, request, task, &response, &status, &complete_to_host); break; case SCI_IO_FAILURE_REMOTE_DEVICE_RESET_REQUIRED: /* This is a special case, in that the I/O completion * is telling us that the device needs a reset. * In order for the device reset condition to be * noticed, the I/O has to be handled in the error * handler. Set the reset flag and cause the * SCSI error thread to be scheduled. */ spin_lock_irqsave(&task->task_state_lock, task_flags); task->task_state_flags |= SAS_TASK_NEED_DEV_RESET; spin_unlock_irqrestore(&task->task_state_lock, task_flags); /* Fail the I/O. */ response = SAS_TASK_UNDELIVERED; status = SAM_STAT_TASK_ABORTED; complete_to_host = isci_perform_error_io_completion; clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags); break; case SCI_FAILURE_RETRY_REQUIRED: /* Fail the I/O so it can be retried. */ response = SAS_TASK_UNDELIVERED; if (!idev) status = SAS_DEVICE_UNKNOWN; else status = SAS_ABORTED_TASK; complete_to_host = isci_perform_normal_io_completion; set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags); break; default: /* Catch any otherwise unhandled error codes here. */ dev_dbg(&ihost->pdev->dev, "%s: invalid completion code: 0x%x - " "isci_request = %p\n", __func__, completion_status, request); response = SAS_TASK_UNDELIVERED; /* See if the device has been/is being stopped. Note * that we ignore the quiesce state, since we are * concerned about the actual device state. */ if (!idev) status = SAS_DEVICE_UNKNOWN; else status = SAS_ABORTED_TASK; if (SAS_PROTOCOL_SMP == task->task_proto) { set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags); complete_to_host = isci_perform_normal_io_completion; } else { clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags); complete_to_host = isci_perform_error_io_completion; } break; } break; } switch (task->task_proto) { case SAS_PROTOCOL_SSP: if (task->data_dir == DMA_NONE) break; if (task->num_scatter == 0) /* 0 indicates a single dma address */ dma_unmap_single(&ihost->pdev->dev, request->zero_scatter_daddr, task->total_xfer_len, task->data_dir); else /* unmap the sgl dma addresses */ dma_unmap_sg(&ihost->pdev->dev, task->scatter, request->num_sg_entries, task->data_dir); break; case SAS_PROTOCOL_SMP: { struct scatterlist *sg = &task->smp_task.smp_req; struct smp_req *smp_req; void *kaddr; dma_unmap_sg(&ihost->pdev->dev, sg, 1, DMA_TO_DEVICE); /* need to swab it back in case the command buffer is re-used */ kaddr = kmap_atomic(sg_page(sg), KM_IRQ0); smp_req = kaddr + sg->offset; sci_swab32_cpy(smp_req, smp_req, sg->length / sizeof(u32)); kunmap_atomic(kaddr, KM_IRQ0); break; } default: break; } /* Put the completed request on the correct list */ isci_task_save_for_upper_layer_completion(ihost, request, response, status, complete_to_host ); /* complete the io request to the core. */ sci_controller_complete_io(ihost, request->target_device, request); /* set terminated handle so it cannot be completed or * terminated again, and to cause any calls into abort * task to recognize the already completed case. */ set_bit(IREQ_TERMINATED, &request->flags); } static void sci_request_started_state_enter(struct sci_base_state_machine *sm) { struct isci_request *ireq = container_of(sm, typeof(*ireq), sm); struct domain_device *dev = ireq->target_device->domain_dev; enum sci_base_request_states state; struct sas_task *task; /* XXX as hch said always creating an internal sas_task for tmf * requests would simplify the driver */ task = (test_bit(IREQ_TMF, &ireq->flags)) ? NULL : isci_request_access_task(ireq); /* all unaccelerated request types (non ssp or ncq) handled with * substates */ if (!task && dev->dev_type == SAS_END_DEV) { state = SCI_REQ_TASK_WAIT_TC_COMP; } else if (!task && (isci_request_access_tmf(ireq)->tmf_code == isci_tmf_sata_srst_high || isci_request_access_tmf(ireq)->tmf_code == isci_tmf_sata_srst_low)) { state = SCI_REQ_STP_SOFT_RESET_WAIT_H2D_ASSERTED; } else if (task && task->task_proto == SAS_PROTOCOL_SMP) { state = SCI_REQ_SMP_WAIT_RESP; } else if (task && sas_protocol_ata(task->task_proto) && !task->ata_task.use_ncq) { if (dev->sata_dev.command_set == ATAPI_COMMAND_SET && task->ata_task.fis.command == ATA_CMD_PACKET) { state = SCI_REQ_ATAPI_WAIT_H2D; } else if (task->data_dir == DMA_NONE) { state = SCI_REQ_STP_NON_DATA_WAIT_H2D; } else if (task->ata_task.dma_xfer) { state = SCI_REQ_STP_UDMA_WAIT_TC_COMP; } else /* PIO */ { state = SCI_REQ_STP_PIO_WAIT_H2D; } } else { /* SSP or NCQ are fully accelerated, no substates */ return; } sci_change_state(sm, state); } static void sci_request_completed_state_enter(struct sci_base_state_machine *sm) { struct isci_request *ireq = container_of(sm, typeof(*ireq), sm); struct isci_host *ihost = ireq->owning_controller; /* Tell the SCI_USER that the IO request is complete */ if (!test_bit(IREQ_TMF, &ireq->flags)) isci_request_io_request_complete(ihost, ireq, ireq->sci_status); else isci_task_request_complete(ihost, ireq, ireq->sci_status); } static void sci_request_aborting_state_enter(struct sci_base_state_machine *sm) { struct isci_request *ireq = container_of(sm, typeof(*ireq), sm); /* Setting the abort bit in the Task Context is required by the silicon. */ ireq->tc->abort = 1; } static void sci_stp_request_started_non_data_await_h2d_completion_enter(struct sci_base_state_machine *sm) { struct isci_request *ireq = container_of(sm, typeof(*ireq), sm); ireq->target_device->working_request = ireq; } static void sci_stp_request_started_pio_await_h2d_completion_enter(struct sci_base_state_machine *sm) { struct isci_request *ireq = container_of(sm, typeof(*ireq), sm); ireq->target_device->working_request = ireq; } static void sci_stp_request_started_soft_reset_await_h2d_asserted_completion_enter(struct sci_base_state_machine *sm) { struct isci_request *ireq = container_of(sm, typeof(*ireq), sm); ireq->target_device->working_request = ireq; } static void sci_stp_request_started_soft_reset_await_h2d_diagnostic_completion_enter(struct sci_base_state_machine *sm) { struct isci_request *ireq = container_of(sm, typeof(*ireq), sm); struct scu_task_context *tc = ireq->tc; struct host_to_dev_fis *h2d_fis; enum sci_status status; /* Clear the SRST bit */ h2d_fis = &ireq->stp.cmd; h2d_fis->control = 0; /* Clear the TC control bit */ tc->control_frame = 0; status = sci_controller_continue_io(ireq); WARN_ONCE(status != SCI_SUCCESS, "isci: continue io failure\n"); } static const struct sci_base_state sci_request_state_table[] = { [SCI_REQ_INIT] = { }, [SCI_REQ_CONSTRUCTED] = { }, [SCI_REQ_STARTED] = { .enter_state = sci_request_started_state_enter, }, [SCI_REQ_STP_NON_DATA_WAIT_H2D] = { .enter_state = sci_stp_request_started_non_data_await_h2d_completion_enter, }, [SCI_REQ_STP_NON_DATA_WAIT_D2H] = { }, [SCI_REQ_STP_PIO_WAIT_H2D] = { .enter_state = sci_stp_request_started_pio_await_h2d_completion_enter, }, [SCI_REQ_STP_PIO_WAIT_FRAME] = { }, [SCI_REQ_STP_PIO_DATA_IN] = { }, [SCI_REQ_STP_PIO_DATA_OUT] = { }, [SCI_REQ_STP_UDMA_WAIT_TC_COMP] = { }, [SCI_REQ_STP_UDMA_WAIT_D2H] = { }, [SCI_REQ_STP_SOFT_RESET_WAIT_H2D_ASSERTED] = { .enter_state = sci_stp_request_started_soft_reset_await_h2d_asserted_completion_enter, }, [SCI_REQ_STP_SOFT_RESET_WAIT_H2D_DIAG] = { .enter_state = sci_stp_request_started_soft_reset_await_h2d_diagnostic_completion_enter, }, [SCI_REQ_STP_SOFT_RESET_WAIT_D2H] = { }, [SCI_REQ_TASK_WAIT_TC_COMP] = { }, [SCI_REQ_TASK_WAIT_TC_RESP] = { }, [SCI_REQ_SMP_WAIT_RESP] = { }, [SCI_REQ_SMP_WAIT_TC_COMP] = { }, [SCI_REQ_ATAPI_WAIT_H2D] = { }, [SCI_REQ_ATAPI_WAIT_PIO_SETUP] = { }, [SCI_REQ_ATAPI_WAIT_D2H] = { }, [SCI_REQ_ATAPI_WAIT_TC_COMP] = { }, [SCI_REQ_COMPLETED] = { .enter_state = sci_request_completed_state_enter, }, [SCI_REQ_ABORTING] = { .enter_state = sci_request_aborting_state_enter, }, [SCI_REQ_FINAL] = { }, }; static void sci_general_request_construct(struct isci_host *ihost, struct isci_remote_device *idev, struct isci_request *ireq) { sci_init_sm(&ireq->sm, sci_request_state_table, SCI_REQ_INIT); ireq->target_device = idev; ireq->protocol = SCIC_NO_PROTOCOL; ireq->saved_rx_frame_index = SCU_INVALID_FRAME_INDEX; ireq->sci_status = SCI_SUCCESS; ireq->scu_status = 0; ireq->post_context = 0xFFFFFFFF; } static enum sci_status sci_io_request_construct(struct isci_host *ihost, struct isci_remote_device *idev, struct isci_request *ireq) { struct domain_device *dev = idev->domain_dev; enum sci_status status = SCI_SUCCESS; /* Build the common part of the request */ sci_general_request_construct(ihost, idev, ireq); if (idev->rnc.remote_node_index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) return SCI_FAILURE_INVALID_REMOTE_DEVICE; if (dev->dev_type == SAS_END_DEV) /* pass */; else if (dev->dev_type == SATA_DEV || (dev->tproto & SAS_PROTOCOL_STP)) memset(&ireq->stp.cmd, 0, sizeof(ireq->stp.cmd)); else if (dev_is_expander(dev)) /* pass */; else return SCI_FAILURE_UNSUPPORTED_PROTOCOL; memset(ireq->tc, 0, offsetof(struct scu_task_context, sgl_pair_ab)); return status; } enum sci_status sci_task_request_construct(struct isci_host *ihost, struct isci_remote_device *idev, u16 io_tag, struct isci_request *ireq) { struct domain_device *dev = idev->domain_dev; enum sci_status status = SCI_SUCCESS; /* Build the common part of the request */ sci_general_request_construct(ihost, idev, ireq); if (dev->dev_type == SAS_END_DEV || dev->dev_type == SATA_DEV || (dev->tproto & SAS_PROTOCOL_STP)) { set_bit(IREQ_TMF, &ireq->flags); memset(ireq->tc, 0, sizeof(struct scu_task_context)); } else status = SCI_FAILURE_UNSUPPORTED_PROTOCOL; return status; } static enum sci_status isci_request_ssp_request_construct( struct isci_request *request) { enum sci_status status; dev_dbg(&request->isci_host->pdev->dev, "%s: request = %p\n", __func__, request); status = sci_io_request_construct_basic_ssp(request); return status; } static enum sci_status isci_request_stp_request_construct(struct isci_request *ireq) { struct sas_task *task = isci_request_access_task(ireq); struct host_to_dev_fis *fis = &ireq->stp.cmd; struct ata_queued_cmd *qc = task->uldd_task; enum sci_status status; dev_dbg(&ireq->isci_host->pdev->dev, "%s: ireq = %p\n", __func__, ireq); memcpy(fis, &task->ata_task.fis, sizeof(struct host_to_dev_fis)); if (!task->ata_task.device_control_reg_update) fis->flags |= 0x80; fis->flags &= 0xF0; status = sci_io_request_construct_basic_sata(ireq); if (qc && (qc->tf.command == ATA_CMD_FPDMA_WRITE || qc->tf.command == ATA_CMD_FPDMA_READ)) { fis->sector_count = qc->tag << 3; ireq->tc->type.stp.ncq_tag = qc->tag; } return status; } static enum sci_status sci_io_request_construct_smp(struct device *dev, struct isci_request *ireq, struct sas_task *task) { struct scatterlist *sg = &task->smp_task.smp_req; struct isci_remote_device *idev; struct scu_task_context *task_context; struct isci_port *iport; struct smp_req *smp_req; void *kaddr; u8 req_len; u32 cmd; kaddr = kmap_atomic(sg_page(sg), KM_IRQ0); smp_req = kaddr + sg->offset; /* * Look at the SMP requests' header fields; for certain SAS 1.x SMP * functions under SAS 2.0, a zero request length really indicates * a non-zero default length. */ if (smp_req->req_len == 0) { switch (smp_req->func) { case SMP_DISCOVER: case SMP_REPORT_PHY_ERR_LOG: case SMP_REPORT_PHY_SATA: case SMP_REPORT_ROUTE_INFO: smp_req->req_len = 2; break; case SMP_CONF_ROUTE_INFO: case SMP_PHY_CONTROL: case SMP_PHY_TEST_FUNCTION: smp_req->req_len = 9; break; /* Default - zero is a valid default for 2.0. */ } } req_len = smp_req->req_len; sci_swab32_cpy(smp_req, smp_req, sg->length / sizeof(u32)); cmd = *(u32 *) smp_req; kunmap_atomic(kaddr, KM_IRQ0); if (!dma_map_sg(dev, sg, 1, DMA_TO_DEVICE)) return SCI_FAILURE; ireq->protocol = SCIC_SMP_PROTOCOL; /* byte swap the smp request. */ task_context = ireq->tc; idev = ireq->target_device; iport = idev->owning_port; /* * Fill in the TC with the its required data * 00h */ task_context->priority = 0; task_context->initiator_request = 1; task_context->connection_rate = idev->connection_rate; task_context->protocol_engine_index = ISCI_PEG; task_context->logical_port_index = iport->physical_port_index; task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_SMP; task_context->abort = 0; task_context->valid = SCU_TASK_CONTEXT_VALID; task_context->context_type = SCU_TASK_CONTEXT_TYPE; /* 04h */ task_context->remote_node_index = idev->rnc.remote_node_index; task_context->command_code = 0; task_context->task_type = SCU_TASK_TYPE_SMP_REQUEST; /* 08h */ task_context->link_layer_control = 0; task_context->do_not_dma_ssp_good_response = 1; task_context->strict_ordering = 0; task_context->control_frame = 1; task_context->timeout_enable = 0; task_context->block_guard_enable = 0; /* 0ch */ task_context->address_modifier = 0; /* 10h */ task_context->ssp_command_iu_length = req_len; /* 14h */ task_context->transfer_length_bytes = 0; /* * 18h ~ 30h, protocol specific * since commandIU has been build by framework at this point, we just * copy the frist DWord from command IU to this location. */ memcpy(&task_context->type.smp, &cmd, sizeof(u32)); /* * 40h * "For SMP you could program it to zero. We would prefer that way * so that done code will be consistent." - Venki */ task_context->task_phase = 0; ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC | (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) | (iport->physical_port_index << SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) | ISCI_TAG_TCI(ireq->io_tag)); /* * Copy the physical address for the command buffer to the SCU Task * Context command buffer should not contain command header. */ task_context->command_iu_upper = upper_32_bits(sg_dma_address(sg)); task_context->command_iu_lower = lower_32_bits(sg_dma_address(sg) + sizeof(u32)); /* SMP response comes as UF, so no need to set response IU address. */ task_context->response_iu_upper = 0; task_context->response_iu_lower = 0; sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED); return SCI_SUCCESS; } /* * isci_smp_request_build() - This function builds the smp request. * @ireq: This parameter points to the isci_request allocated in the * request construct function. * * SCI_SUCCESS on successfull completion, or specific failure code. */ static enum sci_status isci_smp_request_build(struct isci_request *ireq) { struct sas_task *task = isci_request_access_task(ireq); struct device *dev = &ireq->isci_host->pdev->dev; enum sci_status status = SCI_FAILURE; status = sci_io_request_construct_smp(dev, ireq, task); if (status != SCI_SUCCESS) dev_dbg(&ireq->isci_host->pdev->dev, "%s: failed with status = %d\n", __func__, status); return status; } /** * isci_io_request_build() - This function builds the io request object. * @ihost: This parameter specifies the ISCI host object * @request: This parameter points to the isci_request object allocated in the * request construct function. * @sci_device: This parameter is the handle for the sci core's remote device * object that is the destination for this request. * * SCI_SUCCESS on successfull completion, or specific failure code. */ static enum sci_status isci_io_request_build(struct isci_host *ihost, struct isci_request *request, struct isci_remote_device *idev) { enum sci_status status = SCI_SUCCESS; struct sas_task *task = isci_request_access_task(request); dev_dbg(&ihost->pdev->dev, "%s: idev = 0x%p; request = %p, " "num_scatter = %d\n", __func__, idev, request, task->num_scatter); /* map the sgl addresses, if present. * libata does the mapping for sata devices * before we get the request. */ if (task->num_scatter && !sas_protocol_ata(task->task_proto) && !(SAS_PROTOCOL_SMP & task->task_proto)) { request->num_sg_entries = dma_map_sg( &ihost->pdev->dev, task->scatter, task->num_scatter, task->data_dir ); if (request->num_sg_entries == 0) return SCI_FAILURE_INSUFFICIENT_RESOURCES; } status = sci_io_request_construct(ihost, idev, request); if (status != SCI_SUCCESS) { dev_dbg(&ihost->pdev->dev, "%s: failed request construct\n", __func__); return SCI_FAILURE; } switch (task->task_proto) { case SAS_PROTOCOL_SMP: status = isci_smp_request_build(request); break; case SAS_PROTOCOL_SSP: status = isci_request_ssp_request_construct(request); break; case SAS_PROTOCOL_SATA: case SAS_PROTOCOL_STP: case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP: status = isci_request_stp_request_construct(request); break; default: dev_dbg(&ihost->pdev->dev, "%s: unknown protocol\n", __func__); return SCI_FAILURE; } return SCI_SUCCESS; } static struct isci_request *isci_request_from_tag(struct isci_host *ihost, u16 tag) { struct isci_request *ireq; ireq = ihost->reqs[ISCI_TAG_TCI(tag)]; ireq->io_tag = tag; ireq->io_request_completion = NULL; ireq->flags = 0; ireq->num_sg_entries = 0; INIT_LIST_HEAD(&ireq->completed_node); INIT_LIST_HEAD(&ireq->dev_node); isci_request_change_state(ireq, allocated); return ireq; } static struct isci_request *isci_io_request_from_tag(struct isci_host *ihost, struct sas_task *task, u16 tag) { struct isci_request *ireq; ireq = isci_request_from_tag(ihost, tag); ireq->ttype_ptr.io_task_ptr = task; clear_bit(IREQ_TMF, &ireq->flags); task->lldd_task = ireq; return ireq; } struct isci_request *isci_tmf_request_from_tag(struct isci_host *ihost, struct isci_tmf *isci_tmf, u16 tag) { struct isci_request *ireq; ireq = isci_request_from_tag(ihost, tag); ireq->ttype_ptr.tmf_task_ptr = isci_tmf; set_bit(IREQ_TMF, &ireq->flags); return ireq; } int isci_request_execute(struct isci_host *ihost, struct isci_remote_device *idev, struct sas_task *task, u16 tag) { enum sci_status status = SCI_FAILURE_UNSUPPORTED_PROTOCOL; struct isci_request *ireq; unsigned long flags; int ret = 0; /* do common allocation and init of request object. */ ireq = isci_io_request_from_tag(ihost, task, tag); status = isci_io_request_build(ihost, ireq, idev); if (status != SCI_SUCCESS) { dev_dbg(&ihost->pdev->dev, "%s: request_construct failed - status = 0x%x\n", __func__, status); return status; } spin_lock_irqsave(&ihost->scic_lock, flags); if (test_bit(IDEV_IO_NCQERROR, &idev->flags)) { if (isci_task_is_ncq_recovery(task)) { /* The device is in an NCQ recovery state. Issue the * request on the task side. Note that it will * complete on the I/O request side because the * request was built that way (ie. * ireq->is_task_management_request is false). */ status = sci_controller_start_task(ihost, idev, ireq); } else { status = SCI_FAILURE; } } else { /* send the request, let the core assign the IO TAG. */ status = sci_controller_start_io(ihost, idev, ireq); } if (status != SCI_SUCCESS && status != SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) { dev_dbg(&ihost->pdev->dev, "%s: failed request start (0x%x)\n", __func__, status); spin_unlock_irqrestore(&ihost->scic_lock, flags); return status; } /* Either I/O started OK, or the core has signaled that * the device needs a target reset. * * In either case, hold onto the I/O for later. * * Update it's status and add it to the list in the * remote device object. */ list_add(&ireq->dev_node, &idev->reqs_in_process); if (status == SCI_SUCCESS) { isci_request_change_state(ireq, started); } else { /* The request did not really start in the * hardware, so clear the request handle * here so no terminations will be done. */ set_bit(IREQ_TERMINATED, &ireq->flags); isci_request_change_state(ireq, completed); } spin_unlock_irqrestore(&ihost->scic_lock, flags); if (status == SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) { /* Signal libsas that we need the SCSI error * handler thread to work on this I/O and that * we want a device reset. */ spin_lock_irqsave(&task->task_state_lock, flags); task->task_state_flags |= SAS_TASK_NEED_DEV_RESET; spin_unlock_irqrestore(&task->task_state_lock, flags); /* Cause this task to be scheduled in the SCSI error * handler thread. */ isci_execpath_callback(ihost, task, sas_task_abort); /* Change the status, since we are holding * the I/O until it is managed by the SCSI * error handler. */ status = SCI_SUCCESS; } return ret; }