/* * Driver for PowerMac Z85c30 based ESCC cell found in the * "macio" ASICs of various PowerMac models * * Copyright (C) 2003 Ben. Herrenschmidt (benh@kernel.crashing.org) * * Derived from drivers/macintosh/macserial.c by Paul Mackerras * and drivers/serial/sunzilog.c by David S. Miller * * Hrm... actually, I ripped most of sunzilog (Thanks David !) and * adapted special tweaks needed for us. I don't think it's worth * merging back those though. The DMA code still has to get in * and once done, I expect that driver to remain fairly stable in * the long term, unless we change the driver model again... * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * 2004-08-06 Harald Welte * - Enable BREAK interrupt * - Add support for sysreq * * TODO: - Add DMA support * - Defer port shutdown to a few seconds after close * - maybe put something right into uap->clk_divisor */ #undef DEBUG #undef DEBUG_HARD #undef USE_CTRL_O_SYSRQ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_PPC_PMAC #include #include #include #include #include #else #include #define of_machine_is_compatible(x) (0) #endif #if defined (CONFIG_SERIAL_PMACZILOG_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) #define SUPPORT_SYSRQ #endif #include #include #include "pmac_zilog.h" /* Not yet implemented */ #undef HAS_DBDMA static char version[] __initdata = "pmac_zilog: 0.6 (Benjamin Herrenschmidt )"; MODULE_AUTHOR("Benjamin Herrenschmidt "); MODULE_DESCRIPTION("Driver for the Mac and PowerMac serial ports."); MODULE_LICENSE("GPL"); #ifdef CONFIG_SERIAL_PMACZILOG_TTYS #define PMACZILOG_MAJOR TTY_MAJOR #define PMACZILOG_MINOR 64 #define PMACZILOG_NAME "ttyS" #else #define PMACZILOG_MAJOR 204 #define PMACZILOG_MINOR 192 #define PMACZILOG_NAME "ttyPZ" #endif /* * For the sake of early serial console, we can do a pre-probe * (optional) of the ports at rather early boot time. */ static struct uart_pmac_port pmz_ports[MAX_ZS_PORTS]; static int pmz_ports_count; static DEFINE_MUTEX(pmz_irq_mutex); static struct uart_driver pmz_uart_reg = { .owner = THIS_MODULE, .driver_name = PMACZILOG_NAME, .dev_name = PMACZILOG_NAME, .major = PMACZILOG_MAJOR, .minor = PMACZILOG_MINOR, }; /* * Load all registers to reprogram the port * This function must only be called when the TX is not busy. The UART * port lock must be held and local interrupts disabled. */ static void pmz_load_zsregs(struct uart_pmac_port *uap, u8 *regs) { int i; if (ZS_IS_ASLEEP(uap)) return; /* Let pending transmits finish. */ for (i = 0; i < 1000; i++) { unsigned char stat = read_zsreg(uap, R1); if (stat & ALL_SNT) break; udelay(100); } ZS_CLEARERR(uap); zssync(uap); ZS_CLEARFIFO(uap); zssync(uap); ZS_CLEARERR(uap); /* Disable all interrupts. */ write_zsreg(uap, R1, regs[R1] & ~(RxINT_MASK | TxINT_ENAB | EXT_INT_ENAB)); /* Set parity, sync config, stop bits, and clock divisor. */ write_zsreg(uap, R4, regs[R4]); /* Set misc. TX/RX control bits. */ write_zsreg(uap, R10, regs[R10]); /* Set TX/RX controls sans the enable bits. */ write_zsreg(uap, R3, regs[R3] & ~RxENABLE); write_zsreg(uap, R5, regs[R5] & ~TxENABLE); /* now set R7 "prime" on ESCC */ write_zsreg(uap, R15, regs[R15] | EN85C30); write_zsreg(uap, R7, regs[R7P]); /* make sure we use R7 "non-prime" on ESCC */ write_zsreg(uap, R15, regs[R15] & ~EN85C30); /* Synchronous mode config. */ write_zsreg(uap, R6, regs[R6]); write_zsreg(uap, R7, regs[R7]); /* Disable baud generator. */ write_zsreg(uap, R14, regs[R14] & ~BRENAB); /* Clock mode control. */ write_zsreg(uap, R11, regs[R11]); /* Lower and upper byte of baud rate generator divisor. */ write_zsreg(uap, R12, regs[R12]); write_zsreg(uap, R13, regs[R13]); /* Now rewrite R14, with BRENAB (if set). */ write_zsreg(uap, R14, regs[R14]); /* Reset external status interrupts. */ write_zsreg(uap, R0, RES_EXT_INT); write_zsreg(uap, R0, RES_EXT_INT); /* Rewrite R3/R5, this time without enables masked. */ write_zsreg(uap, R3, regs[R3]); write_zsreg(uap, R5, regs[R5]); /* Rewrite R1, this time without IRQ enabled masked. */ write_zsreg(uap, R1, regs[R1]); /* Enable interrupts */ write_zsreg(uap, R9, regs[R9]); } /* * We do like sunzilog to avoid disrupting pending Tx * Reprogram the Zilog channel HW registers with the copies found in the * software state struct. If the transmitter is busy, we defer this update * until the next TX complete interrupt. Else, we do it right now. * * The UART port lock must be held and local interrupts disabled. */ static void pmz_maybe_update_regs(struct uart_pmac_port *uap) { if (!ZS_REGS_HELD(uap)) { if (ZS_TX_ACTIVE(uap)) { uap->flags |= PMACZILOG_FLAG_REGS_HELD; } else { pmz_debug("pmz: maybe_update_regs: updating\n"); pmz_load_zsregs(uap, uap->curregs); } } } static struct tty_struct *pmz_receive_chars(struct uart_pmac_port *uap) { struct tty_struct *tty = NULL; unsigned char ch, r1, drop, error, flag; int loops = 0; /* The interrupt can be enabled when the port isn't open, typically * that happens when using one port is open and the other closed (stale * interrupt) or when one port is used as a console. */ if (!ZS_IS_OPEN(uap)) { pmz_debug("pmz: draining input\n"); /* Port is closed, drain input data */ for (;;) { if ((++loops) > 1000) goto flood; (void)read_zsreg(uap, R1); write_zsreg(uap, R0, ERR_RES); (void)read_zsdata(uap); ch = read_zsreg(uap, R0); if (!(ch & Rx_CH_AV)) break; } return NULL; } /* Sanity check, make sure the old bug is no longer happening */ if (uap->port.state == NULL || uap->port.state->port.tty == NULL) { WARN_ON(1); (void)read_zsdata(uap); return NULL; } tty = uap->port.state->port.tty; while (1) { error = 0; drop = 0; r1 = read_zsreg(uap, R1); ch = read_zsdata(uap); if (r1 & (PAR_ERR | Rx_OVR | CRC_ERR)) { write_zsreg(uap, R0, ERR_RES); zssync(uap); } ch &= uap->parity_mask; if (ch == 0 && uap->flags & PMACZILOG_FLAG_BREAK) { uap->flags &= ~PMACZILOG_FLAG_BREAK; } #if defined(CONFIG_MAGIC_SYSRQ) && defined(CONFIG_SERIAL_CORE_CONSOLE) #ifdef USE_CTRL_O_SYSRQ /* Handle the SysRq ^O Hack */ if (ch == '\x0f') { uap->port.sysrq = jiffies + HZ*5; goto next_char; } #endif /* USE_CTRL_O_SYSRQ */ if (uap->port.sysrq) { int swallow; spin_unlock(&uap->port.lock); swallow = uart_handle_sysrq_char(&uap->port, ch); spin_lock(&uap->port.lock); if (swallow) goto next_char; } #endif /* CONFIG_MAGIC_SYSRQ && CONFIG_SERIAL_CORE_CONSOLE */ /* A real serial line, record the character and status. */ if (drop) goto next_char; flag = TTY_NORMAL; uap->port.icount.rx++; if (r1 & (PAR_ERR | Rx_OVR | CRC_ERR | BRK_ABRT)) { error = 1; if (r1 & BRK_ABRT) { pmz_debug("pmz: got break !\n"); r1 &= ~(PAR_ERR | CRC_ERR); uap->port.icount.brk++; if (uart_handle_break(&uap->port)) goto next_char; } else if (r1 & PAR_ERR) uap->port.icount.parity++; else if (r1 & CRC_ERR) uap->port.icount.frame++; if (r1 & Rx_OVR) uap->port.icount.overrun++; r1 &= uap->port.read_status_mask; if (r1 & BRK_ABRT) flag = TTY_BREAK; else if (r1 & PAR_ERR) flag = TTY_PARITY; else if (r1 & CRC_ERR) flag = TTY_FRAME; } if (uap->port.ignore_status_mask == 0xff || (r1 & uap->port.ignore_status_mask) == 0) { tty_insert_flip_char(tty, ch, flag); } if (r1 & Rx_OVR) tty_insert_flip_char(tty, 0, TTY_OVERRUN); next_char: /* We can get stuck in an infinite loop getting char 0 when the * line is in a wrong HW state, we break that here. * When that happens, I disable the receive side of the driver. * Note that what I've been experiencing is a real irq loop where * I'm getting flooded regardless of the actual port speed. * Something strange is going on with the HW */ if ((++loops) > 1000) goto flood; ch = read_zsreg(uap, R0); if (!(ch & Rx_CH_AV)) break; } return tty; flood: uap->curregs[R1] &= ~(EXT_INT_ENAB | TxINT_ENAB | RxINT_MASK); write_zsreg(uap, R1, uap->curregs[R1]); zssync(uap); pmz_error("pmz: rx irq flood !\n"); return tty; } static void pmz_status_handle(struct uart_pmac_port *uap) { unsigned char status; status = read_zsreg(uap, R0); write_zsreg(uap, R0, RES_EXT_INT); zssync(uap); if (ZS_IS_OPEN(uap) && ZS_WANTS_MODEM_STATUS(uap)) { if (status & SYNC_HUNT) uap->port.icount.dsr++; /* The Zilog just gives us an interrupt when DCD/CTS/etc. change. * But it does not tell us which bit has changed, we have to keep * track of this ourselves. * The CTS input is inverted for some reason. -- paulus */ if ((status ^ uap->prev_status) & DCD) uart_handle_dcd_change(&uap->port, (status & DCD)); if ((status ^ uap->prev_status) & CTS) uart_handle_cts_change(&uap->port, !(status & CTS)); wake_up_interruptible(&uap->port.state->port.delta_msr_wait); } if (status & BRK_ABRT) uap->flags |= PMACZILOG_FLAG_BREAK; uap->prev_status = status; } static void pmz_transmit_chars(struct uart_pmac_port *uap) { struct circ_buf *xmit; if (ZS_IS_ASLEEP(uap)) return; if (ZS_IS_CONS(uap)) { unsigned char status = read_zsreg(uap, R0); /* TX still busy? Just wait for the next TX done interrupt. * * It can occur because of how we do serial console writes. It would * be nice to transmit console writes just like we normally would for * a TTY line. (ie. buffered and TX interrupt driven). That is not * easy because console writes cannot sleep. One solution might be * to poll on enough port->xmit space becoming free. -DaveM */ if (!(status & Tx_BUF_EMP)) return; } uap->flags &= ~PMACZILOG_FLAG_TX_ACTIVE; if (ZS_REGS_HELD(uap)) { pmz_load_zsregs(uap, uap->curregs); uap->flags &= ~PMACZILOG_FLAG_REGS_HELD; } if (ZS_TX_STOPPED(uap)) { uap->flags &= ~PMACZILOG_FLAG_TX_STOPPED; goto ack_tx_int; } /* Under some circumstances, we see interrupts reported for * a closed channel. The interrupt mask in R1 is clear, but * R3 still signals the interrupts and we see them when taking * an interrupt for the other channel (this could be a qemu * bug but since the ESCC doc doesn't specify precsiely whether * R3 interrup status bits are masked by R1 interrupt enable * bits, better safe than sorry). --BenH. */ if (!ZS_IS_OPEN(uap)) goto ack_tx_int; if (uap->port.x_char) { uap->flags |= PMACZILOG_FLAG_TX_ACTIVE; write_zsdata(uap, uap->port.x_char); zssync(uap); uap->port.icount.tx++; uap->port.x_char = 0; return; } if (uap->port.state == NULL) goto ack_tx_int; xmit = &uap->port.state->xmit; if (uart_circ_empty(xmit)) { uart_write_wakeup(&uap->port); goto ack_tx_int; } if (uart_tx_stopped(&uap->port)) goto ack_tx_int; uap->flags |= PMACZILOG_FLAG_TX_ACTIVE; write_zsdata(uap, xmit->buf[xmit->tail]); zssync(uap); xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); uap->port.icount.tx++; if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) uart_write_wakeup(&uap->port); return; ack_tx_int: write_zsreg(uap, R0, RES_Tx_P); zssync(uap); } /* Hrm... we register that twice, fixme later.... */ static irqreturn_t pmz_interrupt(int irq, void *dev_id) { struct uart_pmac_port *uap = dev_id; struct uart_pmac_port *uap_a; struct uart_pmac_port *uap_b; int rc = IRQ_NONE; struct tty_struct *tty; u8 r3; uap_a = pmz_get_port_A(uap); uap_b = uap_a->mate; spin_lock(&uap_a->port.lock); r3 = read_zsreg(uap_a, R3); #ifdef DEBUG_HARD pmz_debug("irq, r3: %x\n", r3); #endif /* Channel A */ tty = NULL; if (r3 & (CHAEXT | CHATxIP | CHARxIP)) { write_zsreg(uap_a, R0, RES_H_IUS); zssync(uap_a); if (r3 & CHAEXT) pmz_status_handle(uap_a); if (r3 & CHARxIP) tty = pmz_receive_chars(uap_a); if (r3 & CHATxIP) pmz_transmit_chars(uap_a); rc = IRQ_HANDLED; } spin_unlock(&uap_a->port.lock); if (tty != NULL) tty_flip_buffer_push(tty); if (uap_b->node == NULL) goto out; spin_lock(&uap_b->port.lock); tty = NULL; if (r3 & (CHBEXT | CHBTxIP | CHBRxIP)) { write_zsreg(uap_b, R0, RES_H_IUS); zssync(uap_b); if (r3 & CHBEXT) pmz_status_handle(uap_b); if (r3 & CHBRxIP) tty = pmz_receive_chars(uap_b); if (r3 & CHBTxIP) pmz_transmit_chars(uap_b); rc = IRQ_HANDLED; } spin_unlock(&uap_b->port.lock); if (tty != NULL) tty_flip_buffer_push(tty); out: #ifdef DEBUG_HARD pmz_debug("irq done.\n"); #endif return rc; } /* * Peek the status register, lock not held by caller */ static inline u8 pmz_peek_status(struct uart_pmac_port *uap) { unsigned long flags; u8 status; spin_lock_irqsave(&uap->port.lock, flags); status = read_zsreg(uap, R0); spin_unlock_irqrestore(&uap->port.lock, flags); return status; } /* * Check if transmitter is empty * The port lock is not held. */ static unsigned int pmz_tx_empty(struct uart_port *port) { struct uart_pmac_port *uap = to_pmz(port); unsigned char status; if (ZS_IS_ASLEEP(uap) || uap->node == NULL) return TIOCSER_TEMT; status = pmz_peek_status(to_pmz(port)); if (status & Tx_BUF_EMP) return TIOCSER_TEMT; return 0; } /* * Set Modem Control (RTS & DTR) bits * The port lock is held and interrupts are disabled. * Note: Shall we really filter out RTS on external ports or * should that be dealt at higher level only ? */ static void pmz_set_mctrl(struct uart_port *port, unsigned int mctrl) { struct uart_pmac_port *uap = to_pmz(port); unsigned char set_bits, clear_bits; /* Do nothing for irda for now... */ if (ZS_IS_IRDA(uap)) return; /* We get called during boot with a port not up yet */ if (ZS_IS_ASLEEP(uap) || !(ZS_IS_OPEN(uap) || ZS_IS_CONS(uap))) return; set_bits = clear_bits = 0; if (ZS_IS_INTMODEM(uap)) { if (mctrl & TIOCM_RTS) set_bits |= RTS; else clear_bits |= RTS; } if (mctrl & TIOCM_DTR) set_bits |= DTR; else clear_bits |= DTR; /* NOTE: Not subject to 'transmitter active' rule. */ uap->curregs[R5] |= set_bits; uap->curregs[R5] &= ~clear_bits; if (ZS_IS_ASLEEP(uap)) return; write_zsreg(uap, R5, uap->curregs[R5]); pmz_debug("pmz_set_mctrl: set bits: %x, clear bits: %x -> %x\n", set_bits, clear_bits, uap->curregs[R5]); zssync(uap); } /* * Get Modem Control bits (only the input ones, the core will * or that with a cached value of the control ones) * The port lock is held and interrupts are disabled. */ static unsigned int pmz_get_mctrl(struct uart_port *port) { struct uart_pmac_port *uap = to_pmz(port); unsigned char status; unsigned int ret; if (ZS_IS_ASLEEP(uap) || uap->node == NULL) return 0; status = read_zsreg(uap, R0); ret = 0; if (status & DCD) ret |= TIOCM_CAR; if (status & SYNC_HUNT) ret |= TIOCM_DSR; if (!(status & CTS)) ret |= TIOCM_CTS; return ret; } /* * Stop TX side. Dealt like sunzilog at next Tx interrupt, * though for DMA, we will have to do a bit more. * The port lock is held and interrupts are disabled. */ static void pmz_stop_tx(struct uart_port *port) { to_pmz(port)->flags |= PMACZILOG_FLAG_TX_STOPPED; } /* * Kick the Tx side. * The port lock is held and interrupts are disabled. */ static void pmz_start_tx(struct uart_port *port) { struct uart_pmac_port *uap = to_pmz(port); unsigned char status; pmz_debug("pmz: start_tx()\n"); uap->flags |= PMACZILOG_FLAG_TX_ACTIVE; uap->flags &= ~PMACZILOG_FLAG_TX_STOPPED; if (ZS_IS_ASLEEP(uap) || uap->node == NULL) return; status = read_zsreg(uap, R0); /* TX busy? Just wait for the TX done interrupt. */ if (!(status & Tx_BUF_EMP)) return; /* Send the first character to jump-start the TX done * IRQ sending engine. */ if (port->x_char) { write_zsdata(uap, port->x_char); zssync(uap); port->icount.tx++; port->x_char = 0; } else { struct circ_buf *xmit = &port->state->xmit; write_zsdata(uap, xmit->buf[xmit->tail]); zssync(uap); xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); port->icount.tx++; if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) uart_write_wakeup(&uap->port); } pmz_debug("pmz: start_tx() done.\n"); } /* * Stop Rx side, basically disable emitting of * Rx interrupts on the port. We don't disable the rx * side of the chip proper though * The port lock is held. */ static void pmz_stop_rx(struct uart_port *port) { struct uart_pmac_port *uap = to_pmz(port); if (ZS_IS_ASLEEP(uap) || uap->node == NULL) return; pmz_debug("pmz: stop_rx()()\n"); /* Disable all RX interrupts. */ uap->curregs[R1] &= ~RxINT_MASK; pmz_maybe_update_regs(uap); pmz_debug("pmz: stop_rx() done.\n"); } /* * Enable modem status change interrupts * The port lock is held. */ static void pmz_enable_ms(struct uart_port *port) { struct uart_pmac_port *uap = to_pmz(port); unsigned char new_reg; if (ZS_IS_IRDA(uap) || uap->node == NULL) return; new_reg = uap->curregs[R15] | (DCDIE | SYNCIE | CTSIE); if (new_reg != uap->curregs[R15]) { uap->curregs[R15] = new_reg; if (ZS_IS_ASLEEP(uap)) return; /* NOTE: Not subject to 'transmitter active' rule. */ write_zsreg(uap, R15, uap->curregs[R15]); } } /* * Control break state emission * The port lock is not held. */ static void pmz_break_ctl(struct uart_port *port, int break_state) { struct uart_pmac_port *uap = to_pmz(port); unsigned char set_bits, clear_bits, new_reg; unsigned long flags; if (uap->node == NULL) return; set_bits = clear_bits = 0; if (break_state) set_bits |= SND_BRK; else clear_bits |= SND_BRK; spin_lock_irqsave(&port->lock, flags); new_reg = (uap->curregs[R5] | set_bits) & ~clear_bits; if (new_reg != uap->curregs[R5]) { uap->curregs[R5] = new_reg; /* NOTE: Not subject to 'transmitter active' rule. */ if (ZS_IS_ASLEEP(uap)) { spin_unlock_irqrestore(&port->lock, flags); return; } write_zsreg(uap, R5, uap->curregs[R5]); } spin_unlock_irqrestore(&port->lock, flags); } #ifdef CONFIG_PPC_PMAC /* * Turn power on or off to the SCC and associated stuff * (port drivers, modem, IR port, etc.) * Returns the number of milliseconds we should wait before * trying to use the port. */ static int pmz_set_scc_power(struct uart_pmac_port *uap, int state) { int delay = 0; int rc; if (state) { rc = pmac_call_feature( PMAC_FTR_SCC_ENABLE, uap->node, uap->port_type, 1); pmz_debug("port power on result: %d\n", rc); if (ZS_IS_INTMODEM(uap)) { rc = pmac_call_feature( PMAC_FTR_MODEM_ENABLE, uap->node, 0, 1); delay = 2500; /* wait for 2.5s before using */ pmz_debug("modem power result: %d\n", rc); } } else { /* TODO: Make that depend on a timer, don't power down * immediately */ if (ZS_IS_INTMODEM(uap)) { rc = pmac_call_feature( PMAC_FTR_MODEM_ENABLE, uap->node, 0, 0); pmz_debug("port power off result: %d\n", rc); } pmac_call_feature(PMAC_FTR_SCC_ENABLE, uap->node, uap->port_type, 0); } return delay; } #else static int pmz_set_scc_power(struct uart_pmac_port *uap, int state) { return 0; } #endif /* !CONFIG_PPC_PMAC */ /* * FixZeroBug....Works around a bug in the SCC receiving channel. * Inspired from Darwin code, 15 Sept. 2000 -DanM * * The following sequence prevents a problem that is seen with O'Hare ASICs * (most versions -- also with some Heathrow and Hydra ASICs) where a zero * at the input to the receiver becomes 'stuck' and locks up the receiver. * This problem can occur as a result of a zero bit at the receiver input * coincident with any of the following events: * * The SCC is initialized (hardware or software). * A framing error is detected. * The clocking option changes from synchronous or X1 asynchronous * clocking to X16, X32, or X64 asynchronous clocking. * The decoding mode is changed among NRZ, NRZI, FM0, or FM1. * * This workaround attempts to recover from the lockup condition by placing * the SCC in synchronous loopback mode with a fast clock before programming * any of the asynchronous modes. */ static void pmz_fix_zero_bug_scc(struct uart_pmac_port *uap) { write_zsreg(uap, 9, ZS_IS_CHANNEL_A(uap) ? CHRA : CHRB); zssync(uap); udelay(10); write_zsreg(uap, 9, (ZS_IS_CHANNEL_A(uap) ? CHRA : CHRB) | NV); zssync(uap); write_zsreg(uap, 4, X1CLK | MONSYNC); write_zsreg(uap, 3, Rx8); write_zsreg(uap, 5, Tx8 | RTS); write_zsreg(uap, 9, NV); /* Didn't we already do this? */ write_zsreg(uap, 11, RCBR | TCBR); write_zsreg(uap, 12, 0); write_zsreg(uap, 13, 0); write_zsreg(uap, 14, (LOOPBAK | BRSRC)); write_zsreg(uap, 14, (LOOPBAK | BRSRC | BRENAB)); write_zsreg(uap, 3, Rx8 | RxENABLE); write_zsreg(uap, 0, RES_EXT_INT); write_zsreg(uap, 0, RES_EXT_INT); write_zsreg(uap, 0, RES_EXT_INT); /* to kill some time */ /* The channel should be OK now, but it is probably receiving * loopback garbage. * Switch to asynchronous mode, disable the receiver, * and discard everything in the receive buffer. */ write_zsreg(uap, 9, NV); write_zsreg(uap, 4, X16CLK | SB_MASK); write_zsreg(uap, 3, Rx8); while (read_zsreg(uap, 0) & Rx_CH_AV) { (void)read_zsreg(uap, 8); write_zsreg(uap, 0, RES_EXT_INT); write_zsreg(uap, 0, ERR_RES); } } /* * Real startup routine, powers up the hardware and sets up * the SCC. Returns a delay in ms where you need to wait before * actually using the port, this is typically the internal modem * powerup delay. This routine expect the lock to be taken. */ static int __pmz_startup(struct uart_pmac_port *uap) { int pwr_delay = 0; memset(&uap->curregs, 0, sizeof(uap->curregs)); /* Power up the SCC & underlying hardware (modem/irda) */ pwr_delay = pmz_set_scc_power(uap, 1); /* Nice buggy HW ... */ pmz_fix_zero_bug_scc(uap); /* Reset the channel */ uap->curregs[R9] = 0; write_zsreg(uap, 9, ZS_IS_CHANNEL_A(uap) ? CHRA : CHRB); zssync(uap); udelay(10); write_zsreg(uap, 9, 0); zssync(uap); /* Clear the interrupt registers */ write_zsreg(uap, R1, 0); write_zsreg(uap, R0, ERR_RES); write_zsreg(uap, R0, ERR_RES); write_zsreg(uap, R0, RES_H_IUS); write_zsreg(uap, R0, RES_H_IUS); /* Setup some valid baud rate */ uap->curregs[R4] = X16CLK | SB1; uap->curregs[R3] = Rx8; uap->curregs[R5] = Tx8 | RTS; if (!ZS_IS_IRDA(uap)) uap->curregs[R5] |= DTR; uap->curregs[R12] = 0; uap->curregs[R13] = 0; uap->curregs[R14] = BRENAB; /* Clear handshaking, enable BREAK interrupts */ uap->curregs[R15] = BRKIE; /* Master interrupt enable */ uap->curregs[R9] |= NV | MIE; pmz_load_zsregs(uap, uap->curregs); /* Enable receiver and transmitter. */ write_zsreg(uap, R3, uap->curregs[R3] |= RxENABLE); write_zsreg(uap, R5, uap->curregs[R5] |= TxENABLE); /* Remember status for DCD/CTS changes */ uap->prev_status = read_zsreg(uap, R0); return pwr_delay; } static void pmz_irda_reset(struct uart_pmac_port *uap) { uap->curregs[R5] |= DTR; write_zsreg(uap, R5, uap->curregs[R5]); zssync(uap); mdelay(110); uap->curregs[R5] &= ~DTR; write_zsreg(uap, R5, uap->curregs[R5]); zssync(uap); mdelay(10); } /* * This is the "normal" startup routine, using the above one * wrapped with the lock and doing a schedule delay */ static int pmz_startup(struct uart_port *port) { struct uart_pmac_port *uap = to_pmz(port); unsigned long flags; int pwr_delay = 0; pmz_debug("pmz: startup()\n"); if (ZS_IS_ASLEEP(uap)) return -EAGAIN; if (uap->node == NULL) return -ENODEV; mutex_lock(&pmz_irq_mutex); uap->flags |= PMACZILOG_FLAG_IS_OPEN; /* A console is never powered down. Else, power up and * initialize the chip */ if (!ZS_IS_CONS(uap)) { spin_lock_irqsave(&port->lock, flags); pwr_delay = __pmz_startup(uap); spin_unlock_irqrestore(&port->lock, flags); } pmz_get_port_A(uap)->flags |= PMACZILOG_FLAG_IS_IRQ_ON; if (request_irq(uap->port.irq, pmz_interrupt, IRQF_SHARED, "SCC", uap)) { pmz_error("Unable to register zs interrupt handler.\n"); pmz_set_scc_power(uap, 0); mutex_unlock(&pmz_irq_mutex); return -ENXIO; } mutex_unlock(&pmz_irq_mutex); /* Right now, we deal with delay by blocking here, I'll be * smarter later on */ if (pwr_delay != 0) { pmz_debug("pmz: delaying %d ms\n", pwr_delay); msleep(pwr_delay); } /* IrDA reset is done now */ if (ZS_IS_IRDA(uap)) pmz_irda_reset(uap); /* Enable interrupts emission from the chip */ spin_lock_irqsave(&port->lock, flags); uap->curregs[R1] |= INT_ALL_Rx | TxINT_ENAB; if (!ZS_IS_EXTCLK(uap)) uap->curregs[R1] |= EXT_INT_ENAB; write_zsreg(uap, R1, uap->curregs[R1]); spin_unlock_irqrestore(&port->lock, flags); pmz_debug("pmz: startup() done.\n"); return 0; } static void pmz_shutdown(struct uart_port *port) { struct uart_pmac_port *uap = to_pmz(port); unsigned long flags; pmz_debug("pmz: shutdown()\n"); if (uap->node == NULL) return; mutex_lock(&pmz_irq_mutex); /* Release interrupt handler */ free_irq(uap->port.irq, uap); spin_lock_irqsave(&port->lock, flags); uap->flags &= ~PMACZILOG_FLAG_IS_OPEN; if (!ZS_IS_OPEN(uap->mate)) pmz_get_port_A(uap)->flags &= ~PMACZILOG_FLAG_IS_IRQ_ON; /* Disable interrupts */ if (!ZS_IS_ASLEEP(uap)) { uap->curregs[R1] &= ~(EXT_INT_ENAB | TxINT_ENAB | RxINT_MASK); write_zsreg(uap, R1, uap->curregs[R1]); zssync(uap); } if (ZS_IS_CONS(uap) || ZS_IS_ASLEEP(uap)) { spin_unlock_irqrestore(&port->lock, flags); mutex_unlock(&pmz_irq_mutex); return; } /* Disable receiver and transmitter. */ uap->curregs[R3] &= ~RxENABLE; uap->curregs[R5] &= ~TxENABLE; /* Disable all interrupts and BRK assertion. */ uap->curregs[R5] &= ~SND_BRK; pmz_maybe_update_regs(uap); /* Shut the chip down */ pmz_set_scc_power(uap, 0); spin_unlock_irqrestore(&port->lock, flags); mutex_unlock(&pmz_irq_mutex); pmz_debug("pmz: shutdown() done.\n"); } /* Shared by TTY driver and serial console setup. The port lock is held * and local interrupts are disabled. */ static void pmz_convert_to_zs(struct uart_pmac_port *uap, unsigned int cflag, unsigned int iflag, unsigned long baud) { int brg; /* Switch to external clocking for IrDA high clock rates. That * code could be re-used for Midi interfaces with different * multipliers */ if (baud >= 115200 && ZS_IS_IRDA(uap)) { uap->curregs[R4] = X1CLK; uap->curregs[R11] = RCTRxCP | TCTRxCP; uap->curregs[R14] = 0; /* BRG off */ uap->curregs[R12] = 0; uap->curregs[R13] = 0; uap->flags |= PMACZILOG_FLAG_IS_EXTCLK; } else { switch (baud) { case ZS_CLOCK/16: /* 230400 */ uap->curregs[R4] = X16CLK; uap->curregs[R11] = 0; uap->curregs[R14] = 0; break; case ZS_CLOCK/32: /* 115200 */ uap->curregs[R4] = X32CLK; uap->curregs[R11] = 0; uap->curregs[R14] = 0; break; default: uap->curregs[R4] = X16CLK; uap->curregs[R11] = TCBR | RCBR; brg = BPS_TO_BRG(baud, ZS_CLOCK / 16); uap->curregs[R12] = (brg & 255); uap->curregs[R13] = ((brg >> 8) & 255); uap->curregs[R14] = BRENAB; } uap->flags &= ~PMACZILOG_FLAG_IS_EXTCLK; } /* Character size, stop bits, and parity. */ uap->curregs[3] &= ~RxN_MASK; uap->curregs[5] &= ~TxN_MASK; switch (cflag & CSIZE) { case CS5: uap->curregs[3] |= Rx5; uap->curregs[5] |= Tx5; uap->parity_mask = 0x1f; break; case CS6: uap->curregs[3] |= Rx6; uap->curregs[5] |= Tx6; uap->parity_mask = 0x3f; break; case CS7: uap->curregs[3] |= Rx7; uap->curregs[5] |= Tx7; uap->parity_mask = 0x7f; break; case CS8: default: uap->curregs[3] |= Rx8; uap->curregs[5] |= Tx8; uap->parity_mask = 0xff; break; }; uap->curregs[4] &= ~(SB_MASK); if (cflag & CSTOPB) uap->curregs[4] |= SB2; else uap->curregs[4] |= SB1; if (cflag & PARENB) uap->curregs[4] |= PAR_ENAB; else uap->curregs[4] &= ~PAR_ENAB; if (!(cflag & PARODD)) uap->curregs[4] |= PAR_EVEN; else uap->curregs[4] &= ~PAR_EVEN; uap->port.read_status_mask = Rx_OVR; if (iflag & INPCK) uap->port.read_status_mask |= CRC_ERR | PAR_ERR; if (iflag & (BRKINT | PARMRK)) uap->port.read_status_mask |= BRK_ABRT; uap->port.ignore_status_mask = 0; if (iflag & IGNPAR) uap->port.ignore_status_mask |= CRC_ERR | PAR_ERR; if (iflag & IGNBRK) { uap->port.ignore_status_mask |= BRK_ABRT; if (iflag & IGNPAR) uap->port.ignore_status_mask |= Rx_OVR; } if ((cflag & CREAD) == 0) uap->port.ignore_status_mask = 0xff; } /* * Set the irda codec on the imac to the specified baud rate. */ static void pmz_irda_setup(struct uart_pmac_port *uap, unsigned long *baud) { u8 cmdbyte; int t, version; switch (*baud) { /* SIR modes */ case 2400: cmdbyte = 0x53; break; case 4800: cmdbyte = 0x52; break; case 9600: cmdbyte = 0x51; break; case 19200: cmdbyte = 0x50; break; case 38400: cmdbyte = 0x4f; break; case 57600: cmdbyte = 0x4e; break; case 115200: cmdbyte = 0x4d; break; /* The FIR modes aren't really supported at this point, how * do we select the speed ? via the FCR on KeyLargo ? */ case 1152000: cmdbyte = 0; break; case 4000000: cmdbyte = 0; break; default: /* 9600 */ cmdbyte = 0x51; *baud = 9600; break; } /* Wait for transmitter to drain */ t = 10000; while ((read_zsreg(uap, R0) & Tx_BUF_EMP) == 0 || (read_zsreg(uap, R1) & ALL_SNT) == 0) { if (--t <= 0) { pmz_error("transmitter didn't drain\n"); return; } udelay(10); } /* Drain the receiver too */ t = 100; (void)read_zsdata(uap); (void)read_zsdata(uap); (void)read_zsdata(uap); mdelay(10); while (read_zsreg(uap, R0) & Rx_CH_AV) { read_zsdata(uap); mdelay(10); if (--t <= 0) { pmz_error("receiver didn't drain\n"); return; } } /* Switch to command mode */ uap->curregs[R5] |= DTR; write_zsreg(uap, R5, uap->curregs[R5]); zssync(uap); mdelay(1); /* Switch SCC to 19200 */ pmz_convert_to_zs(uap, CS8, 0, 19200); pmz_load_zsregs(uap, uap->curregs); mdelay(1); /* Write get_version command byte */ write_zsdata(uap, 1); t = 5000; while ((read_zsreg(uap, R0) & Rx_CH_AV) == 0) { if (--t <= 0) { pmz_error("irda_setup timed out on get_version byte\n"); goto out; } udelay(10); } version = read_zsdata(uap); if (version < 4) { pmz_info("IrDA: dongle version %d not supported\n", version); goto out; } /* Send speed mode */ write_zsdata(uap, cmdbyte); t = 5000; while ((read_zsreg(uap, R0) & Rx_CH_AV) == 0) { if (--t <= 0) { pmz_error("irda_setup timed out on speed mode byte\n"); goto out; } udelay(10); } t = read_zsdata(uap); if (t != cmdbyte) pmz_error("irda_setup speed mode byte = %x (%x)\n", t, cmdbyte); pmz_info("IrDA setup for %ld bps, dongle version: %d\n", *baud, version); (void)read_zsdata(uap); (void)read_zsdata(uap); (void)read_zsdata(uap); out: /* Switch back to data mode */ uap->curregs[R5] &= ~DTR; write_zsreg(uap, R5, uap->curregs[R5]); zssync(uap); (void)read_zsdata(uap); (void)read_zsdata(uap); (void)read_zsdata(uap); } static void __pmz_set_termios(struct uart_port *port, struct ktermios *termios, struct ktermios *old) { struct uart_pmac_port *uap = to_pmz(port); unsigned long baud; pmz_debug("pmz: set_termios()\n"); if (ZS_IS_ASLEEP(uap)) return; memcpy(&uap->termios_cache, termios, sizeof(struct ktermios)); /* XXX Check which revs of machines actually allow 1 and 4Mb speeds * on the IR dongle. Note that the IRTTY driver currently doesn't know * about the FIR mode and high speed modes. So these are unused. For * implementing proper support for these, we should probably add some * DMA as well, at least on the Rx side, which isn't a simple thing * at this point. */ if (ZS_IS_IRDA(uap)) { /* Calc baud rate */ baud = uart_get_baud_rate(port, termios, old, 1200, 4000000); pmz_debug("pmz: switch IRDA to %ld bauds\n", baud); /* Cet the irda codec to the right rate */ pmz_irda_setup(uap, &baud); /* Set final baud rate */ pmz_convert_to_zs(uap, termios->c_cflag, termios->c_iflag, baud); pmz_load_zsregs(uap, uap->curregs); zssync(uap); } else { baud = uart_get_baud_rate(port, termios, old, 1200, 230400); pmz_convert_to_zs(uap, termios->c_cflag, termios->c_iflag, baud); /* Make sure modem status interrupts are correctly configured */ if (UART_ENABLE_MS(&uap->port, termios->c_cflag)) { uap->curregs[R15] |= DCDIE | SYNCIE | CTSIE; uap->flags |= PMACZILOG_FLAG_MODEM_STATUS; } else { uap->curregs[R15] &= ~(DCDIE | SYNCIE | CTSIE); uap->flags &= ~PMACZILOG_FLAG_MODEM_STATUS; } /* Load registers to the chip */ pmz_maybe_update_regs(uap); } uart_update_timeout(port, termios->c_cflag, baud); pmz_debug("pmz: set_termios() done.\n"); } /* The port lock is not held. */ static void pmz_set_termios(struct uart_port *port, struct ktermios *termios, struct ktermios *old) { struct uart_pmac_port *uap = to_pmz(port); unsigned long flags; spin_lock_irqsave(&port->lock, flags); /* Disable IRQs on the port */ uap->curregs[R1] &= ~(EXT_INT_ENAB | TxINT_ENAB | RxINT_MASK); write_zsreg(uap, R1, uap->curregs[R1]); /* Setup new port configuration */ __pmz_set_termios(port, termios, old); /* Re-enable IRQs on the port */ if (ZS_IS_OPEN(uap)) { uap->curregs[R1] |= INT_ALL_Rx | TxINT_ENAB; if (!ZS_IS_EXTCLK(uap)) uap->curregs[R1] |= EXT_INT_ENAB; write_zsreg(uap, R1, uap->curregs[R1]); } spin_unlock_irqrestore(&port->lock, flags); } static const char *pmz_type(struct uart_port *port) { struct uart_pmac_port *uap = to_pmz(port); if (ZS_IS_IRDA(uap)) return "Z85c30 ESCC - Infrared port"; else if (ZS_IS_INTMODEM(uap)) return "Z85c30 ESCC - Internal modem"; return "Z85c30 ESCC - Serial port"; } /* We do not request/release mappings of the registers here, this * happens at early serial probe time. */ static void pmz_release_port(struct uart_port *port) { } static int pmz_request_port(struct uart_port *port) { return 0; } /* These do not need to do anything interesting either. */ static void pmz_config_port(struct uart_port *port, int flags) { } /* We do not support letting the user mess with the divisor, IRQ, etc. */ static int pmz_verify_port(struct uart_port *port, struct serial_struct *ser) { return -EINVAL; } #ifdef CONFIG_CONSOLE_POLL static int pmz_poll_get_char(struct uart_port *port) { struct uart_pmac_port *uap = (struct uart_pmac_port *)port; int tries = 2; while (tries) { if ((read_zsreg(uap, R0) & Rx_CH_AV) != 0) return read_zsdata(uap); if (tries--) udelay(5); } return NO_POLL_CHAR; } static void pmz_poll_put_char(struct uart_port *port, unsigned char c) { struct uart_pmac_port *uap = (struct uart_pmac_port *)port; /* Wait for the transmit buffer to empty. */ while ((read_zsreg(uap, R0) & Tx_BUF_EMP) == 0) udelay(5); write_zsdata(uap, c); } #endif /* CONFIG_CONSOLE_POLL */ static struct uart_ops pmz_pops = { .tx_empty = pmz_tx_empty, .set_mctrl = pmz_set_mctrl, .get_mctrl = pmz_get_mctrl, .stop_tx = pmz_stop_tx, .start_tx = pmz_start_tx, .stop_rx = pmz_stop_rx, .enable_ms = pmz_enable_ms, .break_ctl = pmz_break_ctl, .startup = pmz_startup, .shutdown = pmz_shutdown, .set_termios = pmz_set_termios, .type = pmz_type, .release_port = pmz_release_port, .request_port = pmz_request_port, .config_port = pmz_config_port, .verify_port = pmz_verify_port, #ifdef CONFIG_CONSOLE_POLL .poll_get_char = pmz_poll_get_char, .poll_put_char = pmz_poll_put_char, #endif }; #ifdef CONFIG_PPC_PMAC /* * Setup one port structure after probing, HW is down at this point, * Unlike sunzilog, we don't need to pre-init the spinlock as we don't * register our console before uart_add_one_port() is called */ static int __init pmz_init_port(struct uart_pmac_port *uap) { struct device_node *np = uap->node; const char *conn; const struct slot_names_prop { int count; char name[1]; } *slots; int len; struct resource r_ports, r_rxdma, r_txdma; /* * Request & map chip registers */ if (of_address_to_resource(np, 0, &r_ports)) return -ENODEV; uap->port.mapbase = r_ports.start; uap->port.membase = ioremap(uap->port.mapbase, 0x1000); uap->control_reg = uap->port.membase; uap->data_reg = uap->control_reg + 0x10; /* * Request & map DBDMA registers */ #ifdef HAS_DBDMA if (of_address_to_resource(np, 1, &r_txdma) == 0 && of_address_to_resource(np, 2, &r_rxdma) == 0) uap->flags |= PMACZILOG_FLAG_HAS_DMA; #else memset(&r_txdma, 0, sizeof(struct resource)); memset(&r_rxdma, 0, sizeof(struct resource)); #endif if (ZS_HAS_DMA(uap)) { uap->tx_dma_regs = ioremap(r_txdma.start, 0x100); if (uap->tx_dma_regs == NULL) { uap->flags &= ~PMACZILOG_FLAG_HAS_DMA; goto no_dma; } uap->rx_dma_regs = ioremap(r_rxdma.start, 0x100); if (uap->rx_dma_regs == NULL) { iounmap(uap->tx_dma_regs); uap->tx_dma_regs = NULL; uap->flags &= ~PMACZILOG_FLAG_HAS_DMA; goto no_dma; } uap->tx_dma_irq = irq_of_parse_and_map(np, 1); uap->rx_dma_irq = irq_of_parse_and_map(np, 2); } no_dma: /* * Detect port type */ if (of_device_is_compatible(np, "cobalt")) uap->flags |= PMACZILOG_FLAG_IS_INTMODEM; conn = of_get_property(np, "AAPL,connector", &len); if (conn && (strcmp(conn, "infrared") == 0)) uap->flags |= PMACZILOG_FLAG_IS_IRDA; uap->port_type = PMAC_SCC_ASYNC; /* 1999 Powerbook G3 has slot-names property instead */ slots = of_get_property(np, "slot-names", &len); if (slots && slots->count > 0) { if (strcmp(slots->name, "IrDA") == 0) uap->flags |= PMACZILOG_FLAG_IS_IRDA; else if (strcmp(slots->name, "Modem") == 0) uap->flags |= PMACZILOG_FLAG_IS_INTMODEM; } if (ZS_IS_IRDA(uap)) uap->port_type = PMAC_SCC_IRDA; if (ZS_IS_INTMODEM(uap)) { struct device_node* i2c_modem = of_find_node_by_name(NULL, "i2c-modem"); if (i2c_modem) { const char* mid = of_get_property(i2c_modem, "modem-id", NULL); if (mid) switch(*mid) { case 0x04 : case 0x05 : case 0x07 : case 0x08 : case 0x0b : case 0x0c : uap->port_type = PMAC_SCC_I2S1; } printk(KERN_INFO "pmac_zilog: i2c-modem detected, id: %d\n", mid ? (*mid) : 0); of_node_put(i2c_modem); } else { printk(KERN_INFO "pmac_zilog: serial modem detected\n"); } } /* * Init remaining bits of "port" structure */ uap->port.iotype = UPIO_MEM; uap->port.irq = irq_of_parse_and_map(np, 0); uap->port.uartclk = ZS_CLOCK; uap->port.fifosize = 1; uap->port.ops = &pmz_pops; uap->port.type = PORT_PMAC_ZILOG; uap->port.flags = 0; /* * Fixup for the port on Gatwick for which the device-tree has * missing interrupts. Normally, the macio_dev would contain * fixed up interrupt info, but we use the device-tree directly * here due to early probing so we need the fixup too. */ if (uap->port.irq == NO_IRQ && np->parent && np->parent->parent && of_device_is_compatible(np->parent->parent, "gatwick")) { /* IRQs on gatwick are offset by 64 */ uap->port.irq = irq_create_mapping(NULL, 64 + 15); uap->tx_dma_irq = irq_create_mapping(NULL, 64 + 4); uap->rx_dma_irq = irq_create_mapping(NULL, 64 + 5); } /* Setup some valid baud rate information in the register * shadows so we don't write crap there before baud rate is * first initialized. */ pmz_convert_to_zs(uap, CS8, 0, 9600); return 0; } /* * Get rid of a port on module removal */ static void pmz_dispose_port(struct uart_pmac_port *uap) { struct device_node *np; np = uap->node; iounmap(uap->rx_dma_regs); iounmap(uap->tx_dma_regs); iounmap(uap->control_reg); uap->node = NULL; of_node_put(np); memset(uap, 0, sizeof(struct uart_pmac_port)); } /* * Called upon match with an escc node in the device-tree. */ static int pmz_attach(struct macio_dev *mdev, const struct of_device_id *match) { int i; /* Iterate the pmz_ports array to find a matching entry */ for (i = 0; i < MAX_ZS_PORTS; i++) if (pmz_ports[i].node == mdev->ofdev.dev.of_node) { struct uart_pmac_port *uap = &pmz_ports[i]; uap->dev = mdev; dev_set_drvdata(&mdev->ofdev.dev, uap); if (macio_request_resources(uap->dev, "pmac_zilog")) printk(KERN_WARNING "%s: Failed to request resource" ", port still active\n", uap->node->name); else uap->flags |= PMACZILOG_FLAG_RSRC_REQUESTED; return 0; } return -ENODEV; } /* * That one should not be called, macio isn't really a hotswap device, * we don't expect one of those serial ports to go away... */ static int pmz_detach(struct macio_dev *mdev) { struct uart_pmac_port *uap = dev_get_drvdata(&mdev->ofdev.dev); if (!uap) return -ENODEV; if (uap->flags & PMACZILOG_FLAG_RSRC_REQUESTED) { macio_release_resources(uap->dev); uap->flags &= ~PMACZILOG_FLAG_RSRC_REQUESTED; } dev_set_drvdata(&mdev->ofdev.dev, NULL); uap->dev = NULL; return 0; } static int pmz_suspend(struct macio_dev *mdev, pm_message_t pm_state) { struct uart_pmac_port *uap = dev_get_drvdata(&mdev->ofdev.dev); struct uart_state *state; unsigned long flags; if (uap == NULL) { printk("HRM... pmz_suspend with NULL uap\n"); return 0; } if (pm_state.event == mdev->ofdev.dev.power.power_state.event) return 0; pmz_debug("suspend, switching to state %d\n", pm_state.event); state = pmz_uart_reg.state + uap->port.line; mutex_lock(&pmz_irq_mutex); mutex_lock(&state->port.mutex); spin_lock_irqsave(&uap->port.lock, flags); if (ZS_IS_OPEN(uap) || ZS_IS_CONS(uap)) { /* Disable receiver and transmitter. */ uap->curregs[R3] &= ~RxENABLE; uap->curregs[R5] &= ~TxENABLE; /* Disable all interrupts and BRK assertion. */ uap->curregs[R1] &= ~(EXT_INT_ENAB | TxINT_ENAB | RxINT_MASK); uap->curregs[R5] &= ~SND_BRK; pmz_load_zsregs(uap, uap->curregs); uap->flags |= PMACZILOG_FLAG_IS_ASLEEP; mb(); } spin_unlock_irqrestore(&uap->port.lock, flags); if (ZS_IS_OPEN(uap) || ZS_IS_OPEN(uap->mate)) if (ZS_IS_ASLEEP(uap->mate) && ZS_IS_IRQ_ON(pmz_get_port_A(uap))) { pmz_get_port_A(uap)->flags &= ~PMACZILOG_FLAG_IS_IRQ_ON; disable_irq(uap->port.irq); } if (ZS_IS_CONS(uap)) uap->port.cons->flags &= ~CON_ENABLED; /* Shut the chip down */ pmz_set_scc_power(uap, 0); mutex_unlock(&state->port.mutex); mutex_unlock(&pmz_irq_mutex); pmz_debug("suspend, switching complete\n"); mdev->ofdev.dev.power.power_state = pm_state; return 0; } static int pmz_resume(struct macio_dev *mdev) { struct uart_pmac_port *uap = dev_get_drvdata(&mdev->ofdev.dev); struct uart_state *state; unsigned long flags; int pwr_delay = 0; if (uap == NULL) return 0; if (mdev->ofdev.dev.power.power_state.event == PM_EVENT_ON) return 0; pmz_debug("resume, switching to state 0\n"); state = pmz_uart_reg.state + uap->port.line; mutex_lock(&pmz_irq_mutex); mutex_lock(&state->port.mutex); spin_lock_irqsave(&uap->port.lock, flags); if (!ZS_IS_OPEN(uap) && !ZS_IS_CONS(uap)) { spin_unlock_irqrestore(&uap->port.lock, flags); goto bail; } pwr_delay = __pmz_startup(uap); /* Take care of config that may have changed while asleep */ __pmz_set_termios(&uap->port, &uap->termios_cache, NULL); if (ZS_IS_OPEN(uap)) { /* Enable interrupts */ uap->curregs[R1] |= INT_ALL_Rx | TxINT_ENAB; if (!ZS_IS_EXTCLK(uap)) uap->curregs[R1] |= EXT_INT_ENAB; write_zsreg(uap, R1, uap->curregs[R1]); } spin_unlock_irqrestore(&uap->port.lock, flags); if (ZS_IS_CONS(uap)) uap->port.cons->flags |= CON_ENABLED; /* Re-enable IRQ on the controller */ if (ZS_IS_OPEN(uap) && !ZS_IS_IRQ_ON(pmz_get_port_A(uap))) { pmz_get_port_A(uap)->flags |= PMACZILOG_FLAG_IS_IRQ_ON; enable_irq(uap->port.irq); } bail: mutex_unlock(&state->port.mutex); mutex_unlock(&pmz_irq_mutex); /* Right now, we deal with delay by blocking here, I'll be * smarter later on */ if (pwr_delay != 0) { pmz_debug("pmz: delaying %d ms\n", pwr_delay); msleep(pwr_delay); } pmz_debug("resume, switching complete\n"); mdev->ofdev.dev.power.power_state.event = PM_EVENT_ON; return 0; } /* * Probe all ports in the system and build the ports array, we register * with the serial layer at this point, the macio-type probing is only * used later to "attach" to the sysfs tree so we get power management * events */ static int __init pmz_probe(void) { struct device_node *node_p, *node_a, *node_b, *np; int count = 0; int rc; /* * Find all escc chips in the system */ node_p = of_find_node_by_name(NULL, "escc"); while (node_p) { /* * First get channel A/B node pointers * * TODO: Add routines with proper locking to do that... */ node_a = node_b = NULL; for (np = NULL; (np = of_get_next_child(node_p, np)) != NULL;) { if (strncmp(np->name, "ch-a", 4) == 0) node_a = of_node_get(np); else if (strncmp(np->name, "ch-b", 4) == 0) node_b = of_node_get(np); } if (!node_a && !node_b) { of_node_put(node_a); of_node_put(node_b); printk(KERN_ERR "pmac_zilog: missing node %c for escc %s\n", (!node_a) ? 'a' : 'b', node_p->full_name); goto next; } /* * Fill basic fields in the port structures */ pmz_ports[count].mate = &pmz_ports[count+1]; pmz_ports[count+1].mate = &pmz_ports[count]; pmz_ports[count].flags = PMACZILOG_FLAG_IS_CHANNEL_A; pmz_ports[count].node = node_a; pmz_ports[count+1].node = node_b; pmz_ports[count].port.line = count; pmz_ports[count+1].port.line = count+1; /* * Setup the ports for real */ rc = pmz_init_port(&pmz_ports[count]); if (rc == 0 && node_b != NULL) rc = pmz_init_port(&pmz_ports[count+1]); if (rc != 0) { of_node_put(node_a); of_node_put(node_b); memset(&pmz_ports[count], 0, sizeof(struct uart_pmac_port)); memset(&pmz_ports[count+1], 0, sizeof(struct uart_pmac_port)); goto next; } count += 2; next: node_p = of_find_node_by_name(node_p, "escc"); } pmz_ports_count = count; return 0; } #else extern struct platform_device scc_a_pdev, scc_b_pdev; static int __init pmz_init_port(struct uart_pmac_port *uap) { struct resource *r_ports; int irq; r_ports = platform_get_resource(uap->node, IORESOURCE_MEM, 0); irq = platform_get_irq(uap->node, 0); if (!r_ports || !irq) return -ENODEV; uap->port.mapbase = r_ports->start; uap->port.membase = (unsigned char __iomem *) r_ports->start; uap->port.iotype = UPIO_MEM; uap->port.irq = irq; uap->port.uartclk = ZS_CLOCK; uap->port.fifosize = 1; uap->port.ops = &pmz_pops; uap->port.type = PORT_PMAC_ZILOG; uap->port.flags = 0; uap->control_reg = uap->port.membase; uap->data_reg = uap->control_reg + 4; uap->port_type = 0; pmz_convert_to_zs(uap, CS8, 0, 9600); return 0; } static int __init pmz_probe(void) { int err; pmz_ports_count = 0; pmz_ports[0].mate = &pmz_ports[1]; pmz_ports[0].port.line = 0; pmz_ports[0].flags = PMACZILOG_FLAG_IS_CHANNEL_A; pmz_ports[0].node = &scc_a_pdev; err = pmz_init_port(&pmz_ports[0]); if (err) return err; pmz_ports_count++; pmz_ports[1].mate = &pmz_ports[0]; pmz_ports[1].port.line = 1; pmz_ports[1].flags = 0; pmz_ports[1].node = &scc_b_pdev; err = pmz_init_port(&pmz_ports[1]); if (err) return err; pmz_ports_count++; return 0; } static void pmz_dispose_port(struct uart_pmac_port *uap) { memset(uap, 0, sizeof(struct uart_pmac_port)); } static int __init pmz_attach(struct platform_device *pdev) { int i; for (i = 0; i < pmz_ports_count; i++) if (pmz_ports[i].node == pdev) return 0; return -ENODEV; } static int __exit pmz_detach(struct platform_device *pdev) { return 0; } #endif /* !CONFIG_PPC_PMAC */ #ifdef CONFIG_SERIAL_PMACZILOG_CONSOLE static void pmz_console_write(struct console *con, const char *s, unsigned int count); static int __init pmz_console_setup(struct console *co, char *options); static struct console pmz_console = { .name = PMACZILOG_NAME, .write = pmz_console_write, .device = uart_console_device, .setup = pmz_console_setup, .flags = CON_PRINTBUFFER, .index = -1, .data = &pmz_uart_reg, }; #define PMACZILOG_CONSOLE &pmz_console #else /* CONFIG_SERIAL_PMACZILOG_CONSOLE */ #define PMACZILOG_CONSOLE (NULL) #endif /* CONFIG_SERIAL_PMACZILOG_CONSOLE */ /* * Register the driver, console driver and ports with the serial * core */ static int __init pmz_register(void) { int i, rc; pmz_uart_reg.nr = pmz_ports_count; pmz_uart_reg.cons = PMACZILOG_CONSOLE; /* * Register this driver with the serial core */ rc = uart_register_driver(&pmz_uart_reg); if (rc) return rc; /* * Register each port with the serial core */ for (i = 0; i < pmz_ports_count; i++) { struct uart_pmac_port *uport = &pmz_ports[i]; /* NULL node may happen on wallstreet */ if (uport->node != NULL) rc = uart_add_one_port(&pmz_uart_reg, &uport->port); if (rc) goto err_out; } return 0; err_out: while (i-- > 0) { struct uart_pmac_port *uport = &pmz_ports[i]; uart_remove_one_port(&pmz_uart_reg, &uport->port); } uart_unregister_driver(&pmz_uart_reg); return rc; } #ifdef CONFIG_PPC_PMAC static struct of_device_id pmz_match[] = { { .name = "ch-a", }, { .name = "ch-b", }, {}, }; MODULE_DEVICE_TABLE (of, pmz_match); static struct macio_driver pmz_driver = { .driver = { .name = "pmac_zilog", .owner = THIS_MODULE, .of_match_table = pmz_match, }, .probe = pmz_attach, .remove = pmz_detach, .suspend = pmz_suspend, .resume = pmz_resume, }; #else static struct platform_driver pmz_driver = { .remove = __exit_p(pmz_detach), .driver = { .name = "scc", .owner = THIS_MODULE, }, }; #endif /* !CONFIG_PPC_PMAC */ static int __init init_pmz(void) { int rc, i; printk(KERN_INFO "%s\n", version); /* * First, we need to do a direct OF-based probe pass. We * do that because we want serial console up before the * macio stuffs calls us back, and since that makes it * easier to pass the proper number of channels to * uart_register_driver() */ if (pmz_ports_count == 0) pmz_probe(); /* * Bail early if no port found */ if (pmz_ports_count == 0) return -ENODEV; /* * Now we register with the serial layer */ rc = pmz_register(); if (rc) { printk(KERN_ERR "pmac_zilog: Error registering serial device, disabling pmac_zilog.\n" "pmac_zilog: Did another serial driver already claim the minors?\n"); /* effectively "pmz_unprobe()" */ for (i=0; i < pmz_ports_count; i++) pmz_dispose_port(&pmz_ports[i]); return rc; } /* * Then we register the macio driver itself */ #ifdef CONFIG_PPC_PMAC return macio_register_driver(&pmz_driver); #else return platform_driver_probe(&pmz_driver, pmz_attach); #endif } static void __exit exit_pmz(void) { int i; #ifdef CONFIG_PPC_PMAC /* Get rid of macio-driver (detach from macio) */ macio_unregister_driver(&pmz_driver); #else platform_driver_unregister(&pmz_driver); #endif for (i = 0; i < pmz_ports_count; i++) { struct uart_pmac_port *uport = &pmz_ports[i]; if (uport->node != NULL) { uart_remove_one_port(&pmz_uart_reg, &uport->port); pmz_dispose_port(uport); } } /* Unregister UART driver */ uart_unregister_driver(&pmz_uart_reg); } #ifdef CONFIG_SERIAL_PMACZILOG_CONSOLE static void pmz_console_putchar(struct uart_port *port, int ch) { struct uart_pmac_port *uap = (struct uart_pmac_port *)port; /* Wait for the transmit buffer to empty. */ while ((read_zsreg(uap, R0) & Tx_BUF_EMP) == 0) udelay(5); write_zsdata(uap, ch); } /* * Print a string to the serial port trying not to disturb * any possible real use of the port... */ static void pmz_console_write(struct console *con, const char *s, unsigned int count) { struct uart_pmac_port *uap = &pmz_ports[con->index]; unsigned long flags; if (ZS_IS_ASLEEP(uap)) return; spin_lock_irqsave(&uap->port.lock, flags); /* Turn of interrupts and enable the transmitter. */ write_zsreg(uap, R1, uap->curregs[1] & ~TxINT_ENAB); write_zsreg(uap, R5, uap->curregs[5] | TxENABLE | RTS | DTR); uart_console_write(&uap->port, s, count, pmz_console_putchar); /* Restore the values in the registers. */ write_zsreg(uap, R1, uap->curregs[1]); /* Don't disable the transmitter. */ spin_unlock_irqrestore(&uap->port.lock, flags); } /* * Setup the serial console */ static int __init pmz_console_setup(struct console *co, char *options) { struct uart_pmac_port *uap; struct uart_port *port; int baud = 38400; int bits = 8; int parity = 'n'; int flow = 'n'; unsigned long pwr_delay; /* * XServe's default to 57600 bps */ if (of_machine_is_compatible("RackMac1,1") || of_machine_is_compatible("RackMac1,2") || of_machine_is_compatible("MacRISC4")) baud = 57600; /* * Check whether an invalid uart number has been specified, and * if so, search for the first available port that does have * console support. */ if (co->index >= pmz_ports_count) co->index = 0; uap = &pmz_ports[co->index]; if (uap->node == NULL) return -ENODEV; port = &uap->port; /* * Mark port as beeing a console */ uap->flags |= PMACZILOG_FLAG_IS_CONS; /* * Temporary fix for uart layer who didn't setup the spinlock yet */ spin_lock_init(&port->lock); /* * Enable the hardware */ pwr_delay = __pmz_startup(uap); if (pwr_delay) mdelay(pwr_delay); if (options) uart_parse_options(options, &baud, &parity, &bits, &flow); return uart_set_options(port, co, baud, parity, bits, flow); } static int __init pmz_console_init(void) { /* Probe ports */ pmz_probe(); /* TODO: Autoprobe console based on OF */ /* pmz_console.index = i; */ register_console(&pmz_console); return 0; } console_initcall(pmz_console_init); #endif /* CONFIG_SERIAL_PMACZILOG_CONSOLE */ module_init(init_pmz); module_exit(exit_pmz);